
Protecting Virtual Networks with DRONE
Shihabur Rahman Chowdhury∗, Reaz Ahmed∗, Md Mashrur Alam Khan∗, Nashid Shahriar∗, Raouf Boutaba∗,

Jeebak Mitra†, and Feng Zeng†
∗David R. Cheriton School of Computer Science, University of Waterloo

{sr2chowdhury | r5ahmed | mmalamkh | nshahria | rboutaba}@uwaterloo.ca
†Huawei Technologies

{jeebak.mitra | zengfeng137140}@huawei.com

Abstract—Network virtualization is enabling infrastructure
providers (InPs) to offer new services to higher level service
providers (SPs). InPs are usually bound by Service Level Agree-
ments (SLAs) to ensure various levels of resource availability for
different SPs’ virtual networks (VNs). They provision redundant
backup resources while embedding an SP’s VN request to con-
form to the SLAs during physical failures in the infrastructure.
An extreme of this backup resource provisioning is to reserve a
dedicated backup of each element in an SP’s VN request. Such
dedicated protection scheme can enable an InP to ensure fast
VN recovery, thus, providing high uptime guarantee to the SPs.
In this paper, we study the 1 + 1-Protected Virtual Network
Embedding (1 + 1-ProViNE) problem. We propose Dedicated
Protection for Virtual Network Embedding (DRONE), a suite
of solutions to the 1 + 1-ProViNE. DRONE includes an Integer
Linear Programming (ILP) formulation for optimal solution
(OPT-DRONE) and a heuristic (FAST-DRONE) to tackle the
computational complexity in computing the optimal solution.
Trace driven simulations show that FAST-DRONE allocates only
14.3% extra backup resources on average compared to the
optimal solution, while executing 200x – 12000x faster.

I. INTRODUCTION

Network virtualization has evolved as a key enabler for next
generation of network services. Infrastructure providers (InPs)
such as Data Center Network (DCN) operators and Internet
Service Providers (ISPs) are rolling out network virtualization
technologies to offer virtualized slices of their networking
infrastructure to higher level Service Providers (SPs) [1]. Even
the long haul connectivity providers, i.e., the transport network
operators are working towards leveraging Software Defined
Networking (SDN) to offer full fledged virtual networks
(VNs) to their customers [2], [3]. This next generation of
transport network, also known as Transport SDN (T-SDN),
gives customers more flexibility and control over their virtual
slice and deploy their own routing and traffic engineering.

The benefits from network virtualization come at the cost of
additional resource management challenges for the InP. A fun-
damental and well studied problem in this area is to efficiently
embed a VN request from an SP on the physical network
(PN), also known as the Virtual Network Embedding (VNE)
problem [4]. Typical objectives for VNE include maximizing
the fraction of embedded VNs [5], minimizing the resource
provisioning cost on the PN [6], [7], etc. One particular aspect
of VNE is to take the possibility of PN failures into account,
known as the Survivable VNE (SVNE) [8] problem. Protection
and restoration mechanisms exist in the literature for SVNE.

Restoration approaches reactively take action after a failure has
occurred, while protection approaches pro-actively provision
backup resources when a VN is embedded.

One extreme case for the VN protection approach is to
provision dedicated backup resource for each virtual node and
virtual link in a VN request, also known as the 1+1-protection
scheme. 1+1-protection has its roots back to Wavelength Divi-
sion Multiplexing (WDM) optical networks where light paths
are established with a dedicated backup path for recovering
fiber cuts within tens of milliseconds [9], [10]. In network
virtualization context, 1 + 1-protection for VN is motivated
by use cases from T-SDN. T-SDN leverages SDN technology
to separate the control and optical switching planes of the
Optical Transport Networks (OTNs) for flexible management
and better automation. T-SDN envisions the coexistence of
multiple customer VNs, each having full control over its
virtual slice. These customer VNs carry high volume and
high speed traffic, and usually have Service Level Agreements
(SLAs) with the InP for recovery from physical failures within
tens of milliseconds. To satisfy such tight SLAs, the InP needs
to provision dedicated backup resources for the VN request,
which can be used for immediate recovery from a physical
failure. Otherwise, a prolonged recovery time can lead to
service disruption for the SP, leading to revenue and reputation
loss for the InP. However, such fast recovery with dedicated
backup comes at the expense of provisioning idle backup
resources in the network. Therefore, the InP should carefully
provision VN requests to minimize resource provisioning cost.

In this paper, we study the problem of 1 + 1-Protected
Virtual Network Embedding (1 + 1-ProViNE) with the objec-
tive of minimizing resource provisioning cost in the PN, while
protecting each node and link in a VN request with dedicated
backup resource in PN. A major challenge in solving 1 + 1-
ProViNE is to find the primary and backup embedding at the
same time. Relevant literature [11] shows that sequentially
embedding the primary and backup can lead to failure in
embedding even though a feasible embedding exists. In this
regard, we propose Dedicated Protection for Virtual Network
Embedding (DRONE), a suite of solutions for 1 + 1-ProViNE.
DRONE guarantees a VN to survive under a single physical
node failure. We focus on single node failure scenario since
it is the most probable case [12], [13], and leave the multiple
failure scenario for future investigation. Specifically, we make
the following contributions in this paper:

OPT-DRONE: An Integer Linear Program (ILP) formula-
tion to find the optimal solution for 1+1-ProViNE, improving
on the quadratic formulation from previous work [11]. We
also show that 1 + 1-ProViNE is at least as hard as jointly
solving balanced graph partitioning and minimum unsplittable
flow problems, both of which are NP-Hard [14], [15].

FAST-DRONE: A heuristic to tackle the computational
complexity of OPT-DRONE and to find solution in a reason-
able time frame. Trace driven simulations show that FAST-
DRONE uses about 14.3% extra resources on average com-
pared to OPT-DRONE, while executing 200x – 12000x faster.

The rest of the paper is organized as follows. We begin
with introducing the mathematical notations and a formal
definition of 1 + 1-ProViNE in Section II. Then we present
the ILP formulation of 1 + 1-ProViNE, i.e., OPT-DRONE
in Section III followed by the details of FAST-DRONE in
Section IV. Section V presents our evaluation of DRONE.
Finally, we conclude with some future research directions in
Section VII.

II. MATHEMATICAL MODEL: 1 + 1-ProViNE

A

C G

F

D

B E
15

15 15

15

15 15

15

15

15

(a) Physical Network

Location

Constraint
a

b c

{A, B, C}

{C, D}

{E, F, G}
5

5

5

(b) Virtual Network Request

A

B

C G

D

E

Fa

b c

a c

b

Primary
Embedding

Backup
Embedding

(c) Embedding by DRONE

Fig. 1. Example embedding with DRONE

In this section, we first present a mathematical represen-
tation of the inputs: the PN and the VN request. Then we
formally define 1 + 1-ProViNE.

A. Physical Network

We represent the PN as an undirected graph, G = (V,E),
where V and E are the set of physical nodes and links,
respectively. The set of neighbors of each physical node u ∈ V
is represented by N (u). Each physical link (u, v) ∈ E has the
following attributes: i) buv : bandwidth capacity of the link
(u, v), ii) Cuv : cost of allocating unit bandwidth on (u, v)
for provisioning a virtual link.

B. Virtual Network

We represent a VN as an undirected graph Ḡ = (V̄ , Ē),
where V̄ and Ē are the set of virtual nodes and virtual links,

respectively. Each virtual link (ū, v̄) ∈ Ē has bandwidth
requirement būv̄ . We also have a set of location constraints,
L = {L(ū)|L(ū) ⊆ V,∀ū ∈ V̄ }, such that a virtual node
ū ∈ V̄ can only be provisioned on a physical node u ∈ L(ū).
The location constraint set for ū ∈ V̄ contains all physical
nodes when there is no location constraint for ū. The binary
variable `ūu represents the location constraint as follows:

`ūu =

{
1 if ū ∈ V̄ can be provisioned on u ∈ V,
0 otherwise.

C. 1 + 1-ProViNE Problem Statement

Given a PN G = (V,E), VN request Ḡ = (V̄ , Ē), and a
set of location constraints L, embed Ḡ on G such that:
• Each virtual node ū ∈ Ḡ has a primary and a backup

embedding in the PN, satisfying the location constraint.
• For each virtual node ū ∈ Ḡ, the physical nodes used

for the primary embedding are disjoint from the physical
nodes used for the backup embedding.

• Each virtual link (ū, v̄) ∈ Ē has a primary and a backup
embedding in the PN. A primary or backup embedding
of a virtual link on the PN corresponds to a single path
in the PN having at least būv̄ available bandwidth. The
physical paths corresponding to the primary and backup
embedding of a virtual link (ū, v̄) ∈ Ē are represented
by Pūv̄ and P ′ūv̄ , respectively.

• Backup embedding of a virtual link is disjoint from the
set of physical paths used for primary embedding of the
virtual links. The same disjointness principle applies for
the primary embedding.

• The total cost of provisioning bandwidth in PN is mini-
mum according to the following cost function:∑

∀(ū,v̄)∈Ē

∑
∀(u,v)∈Pūv̄∪P ′

ūv̄

Cuv × būv̄ (1)

Therefore, a solution of 1 + 1-ProViNE will yield two dis-
joint embeddings of a VN request on the PN while minimizing
the given cost function. Fig. 1 shows such an example with
filled nodes and thickened lines marking the primary, and
hollow nodes and thinner lines marking the backup embedding
of a VN request on a PN.

III. ILP FORMULATION: OPT-DRONE

1 + 1-ProViNE’s objective is to ensure fault tolerance of
a VN by providing dedicated protection to each VN element
with minimal resource overhead. This ensures that a single
physical element failure does not bring down both the primary
and backup embedding of the same VN element. To find an op-
timal solution, we first transform the input VN (Section III-A),
which ensures that the primary and the backup embedding are
computed simultaneously, and then provide an ILP formulation
for the optimal embedding (Section III-B).

A. Virtual Network Transformation

We formulate 1 + 1-ProViNE as simultaneously embedding
two copies of the same VN disjointly on the PN. To accom-
plish this goal, we first replicate the input VN Ḡ to obtain a

shadow VN, G̃ = (Ṽ , Ẽ). G̃ has the same number of nodes
and links as Ḡ and each shadow virtual link (ũ, ṽ) ∈ Ẽ has
the same bandwidth requirement as the original virtual link
(ū, v̄) ∈ Ē. We enumerate the nodes in the shadow VN G̃ by
using the following transformation function: τ(ū) = ũ.

Our transformed input now contains the graph Ĝ = (V̂ , Ê),
s.t. V̂ = V̄ ∪ Ṽ and Ê = Ē ∪ Ẽ. We now embed Ĝ on G
in such a way that any node u ∈ V̄ and any node ũ ∈ Ṽ are
not provisioned on the same physical node. Similar constraints
apply on the virtual links as well.

B. ILP Formulation

We begin by introducing the decision variables (Sec-
tion III-B1). Then we present the constraints (Section III-B2)
followed by the objective function (Section III-B3).

1) Decision Variables: A virtual link is mapped to a
physical path. The following decision variable indicates the
mapping between a virtual link and a physical link.

xûv̂uv =

{
1 if (û, v̂) ∈ Ê is mapped to (u, v) ∈ E,
0 otherwise.

The following decision variable represents the virtual node
mapping:

yûu =

{
1 if û ∈ V̂ is mapped to u ∈ V,
0 otherwise.

2) Constraints:
a) Link Mapping Constraints: We ensure that every vir-

tual link is mapped to a non-zero length physical path by (2). It
also ensures that no virtual link is left unmapped. Physical link
resource constraint is expressed using (3). Finally, (4) makes
sure that the in-flow and out-flow of each physical node is
equal except at the nodes where the endpoints of a virtual
link are mapped. (4) ensures a continuous path between the
mapped endpoints of a virtual link [16].

∀(û, v̂) ∈ Ê :
∑

∀(u,v)∈E

xûv̂uv ≥ 1 (2)

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

xûv̂uv × bûv̂ ≤ buv (3)

∀û, v̂ ∈ V̂ , ∀u ∈ V :
∑

∀v∈N (u)

(xûv̂uv − xûv̂vu) = yûu − yv̂u (4)

The binary nature of the virtual link mapping decision vari-
able along with the flow constraint prevents any virtual link
being mapped to more than one physical path. This restricts
the link mapping to the Multi-Commodity Unsplittable Flow
Problem [15].

b) Node Mapping Constraints: (5) and (6) ensures that a
virtual node is mapped to exactly one physical node according
to the given location constraints. Then (7) ensures that a
physical node does not host more than one virtual node from
the same virtual network request.

∀û ∈ V̂ , ∀u ∈ V :
∑
∀u∈V

yûu = 1 (5)

∀û ∈ V̂ , ∀u ∈ V : yûu ≤ `ûu (6)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (7)

The virtual node embedding follows from the virtual link
embedding since we do not have any cost associated with
virtual node embedding. Therefore, the problem of coordinated
node and link embedding is at least as hard as the Multi-
commodity Unsplittable Flow Problem with Unknown Sources
and Destinations [17].

c) Disjointness Constraints: We need to ensure that
every virtual link in Ḡ and its corresponding virtual link in G̃
is embedded on node and link disjoint paths in PN. To ensure
this disjointness property, we first constrain the virtual links in
Ḡ and G̃ to be mapped on disjoint set of physical links using
(8) and (9).
∀(u, v) ∈ E :

∑
∀(ũ,ṽ)∈Ẽ

xũṽuv = 0 if xūv̄uv = 1,∀(ū, v̄) ∈ Ē (8)

∀(u, v) ∈ E : xūv̄uv = 0 if
∑

∀(ũ,ṽ)∈Ẽ

xũṽuv > 0,∀(ū, v̄) ∈ Ē (9)

Then we forbid the virtual link endpoints of the primary
embedding to be intermediate nodes on the path of backup
embedding and vice versa using (10) and (11).

∀u ∈ V : yūu = 0, if
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv > 0 (10)

∀u ∈ V :
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv = 0, if yūu = 1 (11)

We also ensure that the physical paths corresponding to the
virtual links in Ḡ and G̃ do not share any intermediate nodes.
This constraint is necessary to ensure that a physical failure
does not affect a primary resource and its corresponding
backup resource at the same time.

∀u ∈ V :
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv = 0, if
∑

∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄uv > 0

(12)

∀u ∈ V :
∑

∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄uv = 0, if
∑

∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽuv > 0

(13)
3) Objective Function: Our objective is to minimize the

cost of provisioning bandwidth on the physical links. There-
fore, we have the following objective function:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × bûv̂


C. Hardness of 1 + 1-ProViNE

As discussed earlier in Section III-B2, the coordinated node
and link mapping without the disjointness constraints is at least
as hard as solving the NP-Hard Multi-commodity Unsplittable
Flow Problem with Unknown Source and Destinations. State-
of-the art literature reveals that this problem is also very hard
to approximate even when the source and destination of the
flows are known. Recent research works have found (7 + ε)
and (8+ε) approximation algorithms for line and cycle graphs,
respectively [18]. However, finding constant factor approxima-
tion algorithms for general graphs still remains open [18]. With

the added disjointness constraints, the embedding problem be-
comes at least as hard as partitioning the PN while minimizing
the cost of multi-commodity unsplittable flow with unknown
sources and destinations in each of the partition. Even an easier
version of this problem, balanced graph partitioning, is NP-
hard [19] and does not have a constant factor approximation
algorithm [19], [14]. This makes it challenging to devise a
constant factor approximation algorithm for 1 + 1-ProViNE.

IV. HEURISTIC SOLUTION: FAST-DRONE

Given the NP-hard nature of the 1 + 1-ProViNE problem,
we resort to a heuristic for finding solutions within reasonable
time frame. First, we restructure 1+1-ProViNE for the ease of
designing a heuristic, while keeping the original problem intact
in its meaning (Section IV-A). Then we present our heuristic
algorithm (Section IV-B) to solve the restructured problem.

A. Problem Restructuring

We reformulate 1 + 1-ProViNE as a variant of graph parti-
tioning problem as follows:

Given a PN G = (V,E), a VN request Ḡ = (V̄ , Ē), and
a set of location constraints, L = {L(ū)|L(ū) ⊆ V,∀ū ∈ V̄ }
(Section II-B), 1 + 1-ProViNE requires to partition the graph
G into two disjoint partitions P and Q such that:
• ∀ū ∈ V̄ , P has at least one element from each L(ū).
• ∀ū ∈ V̄ , Q has at least one element from each L(ū).
• The sub-graph induced by the elements of each set L(ū)

in P (and Q) is connected.
• The sum of costs of embedding Ḡ on P and Q is

minimum according to the given cost function.
The sets P and Q are disjoint partitions of G where

the primary and backup resources for Ḡ can be provisioned
without violating the disjointness constraint of 1+1-ProViNE.
An optimal P and Q will minimize the total cost of primary
and backup link embedding. Such optimal P,Q will yield the
optimal solution to 1 + 1-ProViNE.

Graph partitioning, which is an NP-hard problem [19], can
be reduced to the aforementioned partitioning problem by
relaxing the location constraint, i.e., setting each set L(ū),
∀ū ∈ V̄ , equal to V . Once we have the two partitions,
embedding the virtual links inside one partition is at least as
hard as solving the NP-Hard Multi-commodity Unsplittable
Flow problem [15], since we are not allowed to embed a
virtual link over multiple physical paths. In the next section,
we present our heuristic algorithm based on this reformulation.

B. Heuristic Algorithm

In order to find a solution to 1 + 1-ProViNE we need to
partition the PN s.t. the total cost of embedding the virtual
links in the partitions are minimized (Section IV-A). Our
heuristic starts with a seed mapping set containing the primary
and backup mapping of one virtual node and goes through the
following three phases to partition the PN and embed the VN:

Node Mapping Phase: Use the seed mapping and location
constraint set to find a primary and backup node embedding for
the other virtual nodes. This phase yields a partial partitioning

of the PN. This partial partition acts as a seed that we grow
to a complete partition of the PN into two disjoint subgraphs.

Partitioning Phase: Once we have a seed primary and
backup partition from the node mapping phase, we grow the
seed partition to include the rest of the physical nodes into
either of the partitions. At the end of this phase, all of the
physical nodes are either assigned to the primary or to the
backup partition.

Link Mapping Phase: In this phase, we have the virtual
node mapping and the primary and backup partition of the PN
as input. We embed the virtual links in these partitions sepa-
rately by using the Constrained Shortest Path First algorithm.

We run this three phase algorithm for different initial seed
node mapping and retain the solution with the minimum cost.
To generate different seed node mappings we identify the
virtual nodes that have the minimum number of elements in
their location constraint set. We call these virtual nodes the
most constrained virtual nodes. Such virtual nodes may lead to
infeasible embedding if they are not embedded first, since they
have the fewest options for embedding. For each of these most
constrained virtual nodes ūc, we take every pair of physical
nodes from ūc’s location constraint set L(ūc) and consider
that pair as a primary and backup node embedding for ūc. In
this way, we generate a number of seed node mappings and
execute the above-described three phase algorithm. In the rest
of this section, we describe the individual phases in detail.

C. Node Mapping Phase

The node mapping phase follows a greedy approach to
map the virtual nodes to it’s primary and backup physical
nodes, while satisfying the location constraint. In this phase,
we map the virtual nodes one at a time and select them in
the increasing order of their location constraint set size. The
rationale for following this order is that a virtual node with
fewer possible locations for mapping is more constrained.
Mapping a less constrained virtual node first might lead to
infeasible mapping of the more constrained virtual node(s).
Node mapping is performed by the MapVNodes procedure
(Algorithm 1). We first initialize the primary and backup
node mapping sets nmapp and nmaps, respectively, with
the provided seed. Then we take one virtual node at a time
according to the aforementioned order (Line 8) and iterate
over its location constraint set to find the best physical node
for primary mapping (Line 10 – 20) . After finding a primary
mapping, we determine the corresponding backup mapping
(Line 22 – 33). While considering a physical node u ∈ V
as primary mapping of a virtual node, we try to determine
if u is a better choice compared to bestu, the best choice
of physical node that we have seen so far considering the
node mappings we already have. This is evaluated using the
BetterAssignment procedure. This procedure performs
the following tests in the order they are listed. We choose this
order to minimize the chances of not finding a solution and
to create a partition that yields a close to optimal embedding.

Infeasibility Test: Does adding u to the primary mapping
makes the backup mapping impossible to be connected and

Algorithm 1 MapVNodes
1: function MAPVNODES(G, Ḡ, location, seed)
2: nmapp(seed.node)← seed.primary
3: nmaps(seed.node)← seed.backup
4: taken(seed.primary), taken(seed.backup)← false
5: P ← φ, Q ← φ
6: // Sequence V̄ represents virtual nodes sorted in
7: // decreasing order of location constraint set size
8: for all ū ∈ V̄ do
9: best← NIL

10: for all c ∈ location(ū) do
11: if taken(c) = false then
12: if BetterAssignment(G,P,Q, c, best) then
13: best← c
14: end if
15: end if
16: end for
17: if best 6= NIL then
18: taken(best)← true
19: nmapp(ū)← best, P ← P ∪ {best}
20: end if
21: best← NIL
22: for all c ∈ location(ū) do
23: if taken(c) = false then
24: if BetterAssignment(G,Q,P, c, best) then
25: best← c
26: end if
27: end if
28: end for
29: if best 6= NIL then
30: taken(best)← true
31: nmaps(ū)← best, Q ← Q∪ {best}
32: end if
33: end for
34: return {nmapp, nmaps}
35: end function

vice versa ? If the answer is yes, then we do not consider u
for primary node mapping of the virtual node. Otherwise, we
perform the next test.

Compact Mapping Test: Does considering u instead of
bestu in the primary (or backup) mapping decreases the mean
shortest path length among the nodes currently present in the
primary (or backup) mapping set ? If the answer is yes then u
is considered to be better than bestu. Otherwise, we perform
the next test.

Connectivity Contribution Test: Does u contribute more
connectivity to the mapping set (primary or backup) compared
to bestu ? If the answer is yes, then bestu is updated with u.
We measure connectivity contribution using the following:
• Number of connected components decreased in the cur-

rent mapping set if u is considered instead of bestu in
the mapping set.

• Number of links incident from u to the current mapping
set compared to bestu.

We iterate over all possible physical nodes u in the location
constraint set of a virtual node and find the best among them
for the mapping. We do the same iteration and tests again
(line 24 of Algorithm 1) to find a backup mapping for that
virtual node. We repeat this procedure for all the virtual nodes
and we finally obtain a primary and backup mapping of the
virtual nodes, nmapp and nmaps, respectively. This primary
and backup mapping sets acts as seed primary and backup
partitions (P0 and Q0, respectively) that we grow to full
partitions in the Partitioning phase.

D. Partitioning Phase

Algorithm 2 PartitionGraph
1: function PARTITIONGRAPH(G,nmapp, nmaps)
2: P ←

⋃
∀np∈nmapp

np, Q ←
⋃

∀ns∈nmaps

ns

3: taken← Array of size |V |, initialized with false
4: for all v ∈ V do
5: if taken(v) = false then
6: if IsFeasiblePartition(G,P,Q, v) = false then
7: Q ← Q∪ {v}
8: else
9: 1. Add u to P (or Q) if u decreases more

10: shortest path cost in P (or Q) than in Q
11: (or P)
12: 2. Break ties by adding u to P (or Q) if
13: u decreases more components in P (or Q)
14: than in Q (or P)
15: 3. In case of another tie, assign u to P
16: (or Q) if u has more edges incident to P
17: (or Q)
18: 4. Break any remaining tie by assigning u
19: to the smaller of P and Q
20: end if
21: end if
22: end for
23: return {P,Q}
24: end function

Given two seed primary (P0) and backup (Q0) partitions
obtained from the node mapping phase, we partition the
physical network G into two disjoint partitions P and Q for
the primary and backup embeddings of the virtual network,
respectively. The partitioning process is performed using the
PartitionGraph procedure (Algorithm 2). We consider
the physical nodes that are not already assigned to any of the
partitions (line 4 – 5) one at a time, and perform the following
tests in the order they are listed. Such order is chosen for
similar reasons as discussed in the node mapping phase.

Infeasibility Test: Does adding u to P makes the partition
Q impossible to be connected (line 6)? If the answer is yes,
then we do not consider u for P , rather we add u to Q.

Compact Partition Test: Does including u to P reduce
shortest path length more than that reduced when u is added

to Q (9 – 11) ? If the answer is yes, then add u to P , otherwise
evaluate the next test.

Connectivity Contribution Test: We determine whether a
candidate node u ∈ V contributes more connectivity to P or
to Q by evaluating the following:
• Does including u in P reduces more the number of

components compared to adding u to Q (line 12 – 14)?
If the answer is yes, then u is added to P , otherwise we
evaluate the next criterion.

• Does the candidate node u ∈ V has more physical links
going to P compared to Q (line 15 – 17) ? If the answer
is yes then u is added to P , otherwise u is added to Q.

Load Balancing Test: If all the previous tests fail to assign
a u ∈ V to either P or Q, then we assign u to P if |P| < |Q|,
otherwise u is assigned to Q.
PartitionGraph procedure iterates over all the unas-

signed physical nodes u ∈ V and assigns u to either P or to
Q. At the end of this phase, we have two disjoint partitions,
each of them has at least one node from each of the location
constraint sets. Therefore, this partitioning conforms to the
conditions as described in Section IV-A.

E. Link Mapping Phase

Given the two disjoint partitions, P and Q, and the node
mappings for the virtual nodes in each partition, we use
constrained shortest path first algorithm to map a virtual link
to a physical path inside a partition. Application of shortest
path based algorithms are common practice in cases when
virtual links cannot be split and embedded on multiple physical
paths [20]. We also have this constraint in 1 + 1-ProViNE.

All of the three phases are combined and presented in the
FAST-DRONE procedure (Algorithm 3). Line 2 corresponds
to the node mapping phase, Line 3 represents the partition
growing phase, and finally lines 4 and 5 gives us the link
mappings.

Algorithm 3 FAST-DRONE
1: function FAST-DRONE(G, Ḡ, location)
2: {nmapp, nmaps} ← MapVNodes(G, Ḡ, location)
3: {P,Q} ← PartitionGraph(G,nmapp, nmaps)
4: emapp ← EmbedAllVLinks(G, Ḡ,P, nmapp)
5: emaps ← EmbedAllVLinks(G, Ḡ,Q, nmaps)
6: Compute embedding cost from emapp and emaps
7: return {nmapp, emapp, nmaps, emaps, cost}
8: end function

F. Running Time Analysis

Before going to the analysis we first introduce the following
notations:
• n = Number of vertices in the physical network
• n′ = Number of vertices in the virtual network
• m = Number of edges in the physical network
• m′ = Number of edges in the virtual network
• σ = Maximum size of a location constraints set for any

virtual node

• δ = Maximum degree of a physical node
We analyze the running time of FAST-DRONE procedure by
analyzing the running time for each of the phases as follows:

Node Mapping Phase: Sorting the virtual nodes requires
O(n′ log n′) time. Then for each of these n′ virtual nodes,
we traverse its location constraint set, which can have ≤ σ
elements. For each of these O(σ) nodes, we perform: (i)
feasibility check (ii) compute the reduction in shortest path
length (iii) compute the decrease in number of components
and (iv) compute the number of edges incident form the
candidate physical node to the current set of mappings. (i)
can be accomplished in O(n + m) time by simply keeping
a disjoint set data structure with O(n) elements, and perform
union operation on the data structure. (ii) can take up to O(n′3)
time. (iii) can be performed in O(n + m) time in the worst
case with a disjoint set data structure. Finally for step (iv), the
number of edges incident from a candidate physical node to
a mapping set can be computed in O(δ) time. Therefore, the
mapping phase runs in O(n′σ(n+m+ δ + n′3)) time.

Graph Partitioning Phase We iterate over O(n) unas-
signed physical nodes and perform similar steps as in the
node mapping phase. Therefore, the time complexity of each
iteration is the same as the four tasks described for the
node mapping phase. Hence, partitioning the graph requires
O(n(n+m+ δ + n′3)) time.

Link Mapping Phase For the link mapping phase, we
compute shortest path between the mapped nodes for each of
the m′ virtual links using Dijkstra’s shortest path algorithm.
This requires O(m′m log n) time in total.

Overall, the running time of the proposed heuristic is:
O((n′σ + n)(n+m+ δ + n′3) +m′m log n).

V. PERFORMANCE EVALUATION

We evaluate the proposed solutions for 1 + 1-ProViNE
through extensive simulation. We perform simulations using
randomly generated network topologies with various connec-
tivity levels. Section V-A discusses the simulation setup in
detail and Section V-B defines the performance metrics. Our
evaluation is focused on the following aspects: i) comparing
the performance of the proposed heuristic (FAST-DRONE)
with the optimal (OPT-DRONE) (Section V-C), ii) analyze the
impact of physical network connectivity levels (Section V-D),
iii) scalability of FAST-DRONE (Section V-E), and iv) com-
paring DRONE with PAR from [11] (Section V-F).

A. Simulation Setup

1) Testbed: We have implemented OPT-DRONE, the ILP
based optimal solution for 1 + 1-ProViNE using IBM ILOG
CPLEX 12.5 C++ libraries. The heuristic is also implemented
in C++. We exploited inherent parallelism in the heuristic
and implemented it as a multi-threaded program. Both the
hueristic and CPLEX solution were run on a machine with
hyper-threaded 8×10 core Intel Xeon E7-8870 CPU and 1TB
of memory. Both CPLEX and heuristic implementations spawn
upto 160 threads to saturate all the processing cores during
their executions.

2) Physical Network Topology: We have generated random
topologies by varying the number of nodes from 50 to 200 in
increments of 25, and varying the Link-to-Node Ratio (LNR)
from 1.2 to 2.2 in steps of 0.1. We used PNs with different
LNR to study the impact of physical network’s connectivity
on FAST-DRONE’s performance.

3) Virtual Network Topology: We generated three types of
VN requests: ring, star and randomly connected graphs with
≤ 16 nodes evaluate FAST-DRONE’s performance. Since our
focus is to study the resource efficiency given that a feasible
embedding exists, we set the bandwidth requirement in VN
and bandwidth capacity in PN to make sure at least one
feasible embedding exists.

B. Performance Metrics

1) Embedding Cost: The embedding cost is the cost of
provisioning bandwidth for the virtual links and their backups,
computed using (1).

2) Execution Time: The time required for an algorithm to
find the solution to 1 + 1-ProViNE.

C. Comparison between OPT-DRONE and FAST-DRONE

In this section, we present the results on how much extra
resource is provisioned by FAST-DRONE compared to OPT-
DRONE. This extra resource usage is measured as the ratio
of FAST-DRONE’s cost to OPT-DRONE’s cost since our cost
function is proportional to the total bandwidth allocated for
the VN. Fig. 2 shows the CDF of cost ratio for different types
of VN requests as well as the CDF for all types combined.
This plot shows that about 70% VN requests are embedded by
FAST-DRONE with at most 15% extra resources, while 90%
VN requests are embedded with at most 23% extra resources.
On average, FAST-DRONE provisions 14.3% extra resource
compared to OPT-DRONE over all VN request types.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

C
D

F

FAST-DRONE to OPT-DRONE Cost Ratio

Ring VN
Random VN

Star VN
All VN Type

Fig. 2. Comparison between OPT-DRONE and FAST-DRONE

D. Impact of Physical Network Connectivity

In this section we present results on how the connectiv-
ity level of the underlying PN impacts the performance of
FAST-DRONE. We varied the LNR of the generated physical
networks from 1.2 to 2.2 in increments of 0.1 and measured
the mean FAST-DRONE to OPT-DRONE cost ratio for each
case. Fig. 3 shows the mean cost ratio with 5-th and 95-th
percentile error bars against different LNRs. This plot gives
us an idea about a good operating region for FAST-DRONE. As
we can see, FAST-DRONE allocates about 15% extra resources

compared to the optimal solution for PNs having an LNR
≤ 1.8. For higher LNR, the increased path diversity may
lead to more sub-optimal solution since the heuristic does not
explore all paths to keep the running time fast.

 1

 1.1

 1.2

 1.3

 1.4

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

C
os

t R
at

io

LNR (PN)

Fig. 3. Impact of PN Connectivity

E. Scalability of Heuristic

 0.1

 0.2

 0.3

 0.4

 0.5

 40 60 80 100 120 140 160 180 200
100

101

102

103

104

FA
ST

-D
R

O
N

E
Ex

ec
ut

io
n

Ti
m

e
(s

ec
)

O
PT

-D
R

O
N

E
Ex

ec
ut

io
n

Ti
m

e
(s

ec
)

PN Node Count

FAST-DRONE
OPT-DRONE

Fig. 4. Comparison of Execution time

To demonstrate the scalability of FAST-DRONE we show the
execution times of FAST-DRONE and OPT-DRONE on same
problem instances in Fig. 4. As it turns out, FAST-DRONE
takes less than 500ms on average over all test cases, whereas
OPT-DRONE takes more than 2-minutes to run on average on
the smallest PN instance. For larger instances, the execution
time exponentially increases for OPT-DRONE and becomes in
the order of hours (e.g., about 110 minutes on average for a
175 node PN). We found FAST-DRONE to be 200x – 1200x
faster than OPT-DRONE depending on the problem instance.
With our current setup OPT-DRONE did not scale beyond PNs
with more than 175 nodes.

F. Comparison with PAR [11]

PAR [11] is a greedy heuristic for embedding a VN request
on a PN with 1+1-protection. PAR maximizes the probability
of accepting a VN request by first embedding the virtual
nodes on physical nodes with higher residual node capacities.
After node embedding, PAR embeds the virtual links using a
modified version of Suurballe’s algorithm [21]. In our case, we
do not have node capacities. Therefore, we first implemented
PAR by randomly mapping a virtual node ū ∈ V̄ to a physical
node within its location constraint set L(ū). However, such
random mapping lead to infeasible solutions almost all the
time. Then we used our proposed MapVNodes (Algorithm 1)
procedure to map the virtual nodes. The link embedding was
done exactly the same way as described in [11]. It is worth
noting that even after the modification in the node embedding,
PAR could only find solutions for ≈ 12% test cases in our
simulation setting.

We first compare how much extra resource is allocated by
PAR and FAST-DRONE compared to OPT-DRONE. For this
comparison, we compute the ratio of costs (cost is computed
using (1)) between PAR and OPT-DRONE, and FAST-DRONE
and OPT-DRONE. Fig. 5(a) shows the CDF of these cost
ratios. This plot shows that in 90% cases, PAR allocates up to
40% additional resources compared to the optimal, whereas,
FAST-DRONE allocates up to 23% additional resources. On
average, the amount of extra resource allocated compared to
the optimal is 25% and 14.3% for PAR and FAST-DRONE,
respectively. We also compute the ratio of PAR’s cost to that
of FAST-DRONE and plot the CDF in Fig. 5(b) to see how
much FAST-DRONE improves over PAR. This plot shows that
PAR never performs better than FAST-DRONE and allocates
up to 40% extra resources compared to FAST-DRONE at the
90-th percentile. On average, we found PAR to allocate 17.5%
additional resources compared to FAST-DRONE.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

C
D

F

Cost Ratio

FAST-DRONE : OPT-DRONE
PAR : OPT-DRONE

(a) Comparison with OPT-DRONE

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
D

F

Cost Ratio of PAR to DRONE

PAR : FAST-DRONE

(b) Cost Ratio of PAR to FAST-DRONE
Fig. 5. Comparison between FAST-DRONE and PAR [11]

VI. RELATED WORKS

A. VNE with Dedicated Protection

A very recent work by Ye et al. addresses a similar problem
of providing dedicated protection for VNE with different goals
and a different input model [11]. They formulate the problem
using a Quadratic Integer Program in contrast to our ILP
formulation. However, the major difference between their ap-
proach and ours is the objective. [11] focused on increasing the
VN request acceptance ratio over time, whereas we focus on
minimizing the resource allocation cost for embedding virtual
networks. Ye et al. proposed a greedy heuristic based on the
node resource requirement, which is not suitable for our case
since we do not consider any node capacity or node embedding
cost. Lastly, [11] does not consider the location constraint,
which is an important constraint in our case. Another closely
related work is from Jiang et al. [22]. They propose a backup

scheme where the backup virtual nodes are disjoint from the
primary virtual nodes. However, the backup nodes can share a
single physical node and therefore exhibit lesser survivability
compared to 1 + 1-ProViNE. [22] also does not provision full
backup of the virtual links, rather provisions some backup
paths that can be used to route between the virtual nodes
during a single physical resource failure. There are also a
number of other research works in the literature that address
different aspects of SVNE [8], [11], [23], [24], [25], [26], [27],
[28], [29]. However, none of the existing research except [11]
addresses the issue of providing a dedicated 1 + 1-protection.

B. Unsplittable Flow and Partitioning

The root of providing dedicated protection for virtual net-
work embedding goes back to combinatorial optimization
problems such as graph partitioning and multi commodity
unsplittable flow problem [15], [17]. Relevant literature shows
that they are computationally hard to solve. Finding a constant
factor approximation algorithm for these problems for generic
graphs is still open [18], [19], [30]. The best known approxi-
mation ratio for graph partitioning is not constant, rather it is
a poly-logarithm function of the number of nodes [19]. On the
other hand, the unsplittable flow problem with known sources
and destinations has (7 + ε) and (8 + ε) approximation ratio
for simple line graph and cycle graph, respectively. Without
known sources for the commodity and the flow destinations,
this problem is even harder to solve.

VII. CONCLUSION AND FUTURE WORK

In this paper we have studied 1+1 Protected Virtual Ntwork
Embedding (1 + 1-ProViNE) problem that embeds a VN on
a PN while ensuring dedicated backup for each virtual node
and link. We presented DRONE, a suite of solutions for 1+1-
ProViNE. We devised an ILP based optimal solution (OPT-
DRONE) as well as a heuristic (FAST-DRONE) to tackle the
computational complexity. Trace driven simulations show that
FAST-DRONE can solve 1 + 1-ProViNE in a reasonable time
frame with only 14.3% extra resources on average compared
to OPT-DRONE.

We believe that 1 + 1-ProViNE will open up new avenues
for future research. Among the possibilities we intend to
investigate the problem of providing mixed backup scheme
for the VNs. A mixed backup scheme consists of providing
both shared and dedicated backup to the VN elements based on
the SP’s request. A mixed backup scheme can enable the SPs
to have dedicated protection for critical network paths while
shared protection for best effort network paths for instance.

ACKNOWLEDGEMENT

This work was supported in part by Huawei Technologies
and in part by an NSERC Collaborative Research and Devel-
opment Grant. Additionally, this work benefited from the use
of the CrySP RIPPLE Facility at the University of Waterloo.

REFERENCES

[1] “Amazon Virtual Private Cloud,” http://aws.amazon.com/vpc/.
[2] “OpenFlow-enabled Transport SDN,”

https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-of-enabled-transport-sdn.pdf.

[3] “Global Transport SDN Prototype Demonstration,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/oif-p0105 031 18.pdf.

[4] M. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[5] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in Proc. of IEEE
INFOCOM, 2009, pp. 783–791.

[6] A. Razzaq and M. S. Rathore, “An approach towards resource efficient
virtual network embedding,” in Evolving Internet (INTERNET), 2010
Second International Conference on. IEEE, 2010, pp. 68–73.

[7] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and
H. De Meer, “Energy efficient virtual network embedding,” Communi-
cations Letters, IEEE, vol. 16, no. 5, pp. 756–759, 2012.

[8] M. R. Rahman and R. Boutaba, “SVNE: Survivable Virtual Network
Embedding Algorithms for Network Virtualization,” Network and Ser-
vice Management, IEEE Transactions on, vol. 10, no. 2, pp. 105–118,
2013.

[9] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks.
Part I-protection,” in INFOCOM’99., vol. 2. IEEE, 1999, pp. 744–751.

[10] P. A. Bonenfant, “Optical layer survivability: a comprehensive ap-
proach,” in Optical Fiber Communication Conference and Exhibit, 1998.
OFC’98., Technical Digest. IEEE, 1998, pp. 270–271.

[11] Z. Ye, A. N. Patel, P. N. Ji, and C. Qiao, “Survivable virtual in-
frastructure mapping with dedicated protection in transport software-
defined networks [invited],” Journal of Optical Communications and
Networking, vol. 7, no. 2, pp. A183–A189, 2015.

[12] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM CCR, vol. 41, no. 4. ACM, 2011, pp. 350–361.

[13] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 4, pp. 749–762, 2008.

[14] R. Krauthgamer, J. S. Naor, and R. Schwartz, “Partitioning graphs into
balanced components,” in Proc. of SODA, 2009, pp. 942–949.

[15] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplit-
table flow problem,” Combinatorica, vol. 19, no. 1, pp. 17–41, 1999.

[16] M. Melo, J. Carapinha, S. Sargento, L. Torres, P. N. Tran, U. Killat, and
A. Timm-Giel, “Virtual network mapping–an optimization problem,” in
Mobile Networks and Management. Springer, 2012, pp. 187–200.

[17] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-nothing mul-
ticommodity flow problem,” in Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. ACM, 2004, pp. 156–165.

[18] P. Bonsma, J. Schulz, and A. Wiese, “A Constant-Factor Approximation
Algorithm for Unsplittable Flow on Paths,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 767–799, 2014.

[19] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering: Selected
Results and Surveys, LNCS 9220. Springer-Verlag, 2015 (in press).

[20] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components.” in INFOCOM, vol. 1200, no.
2006, 2006, pp. 1–12.

[21] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2,
pp. 125–145, 1974.

[22] H. Jiang, L. Gong, and Z. Zuqing, “Efficient joint approaches for
location-constrained survivable virtual network embedding,” in IEEE
GLOBECOM, 2014, pp. 1810–1815.

[23] T. Guo, N. Wang, K. Moessner, and R. Tafazolli, “Shared backup
network provision for virtual network embedding,” in Proc. of IEEE
ICC, 2011, pp. 1–5.

[24] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun, “Survivable virtual
infrastructure mapping in a federated computing and networking system
under single regional failures,” in Proc. of IEEE GLOBECOM, 2010,
pp. 1–6.

[25] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of
survivable virtual infrastructure to recover from facility node failures,”
in Proc. of IEEE ICC, 2011, pp. 1–6.

[26] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual
infrastructure mapping in virtualized data centers,” in Proc. of IEEE
CLOUD, 2012, pp. 196–203.

[27] M. G. Rabbani, M. F. Zhani, and R. Boutaba, “On achieving high
survivability in virtualized data centers,” IEICE Transactions on Com-
munications, vol. 97, no. 1, pp. 10–18, 2014.

[28] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
virtual data center embedding in clouds,” in Proc. of IEEE INFOCOM
2014, Toronto, Canada. IEEE, 2014, pp. 289–297.

[29] M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “SiMPLE:
Survivability in multi-path link embedding,” in ACM/IEEE/IFIP CNSM
2015, Barcelona, Spain, November 9-13, 2015. IEEE Computer Society,
2015, pp. 210–218.

[30] M. Skutella, “Approximating the Single Source Unsplittable Min-cost
Flow Problem,” Mathematical Programming, vol. 91, no. 3, pp. 493–
514, 2002.

