MULE: Multi-Layer Virtual Network Embedding

Shihabur R. Chowdhury, Sara Ayoubi, Reaz Ahmed, Nashid Shahriar, Raouf Boutaba

Jeebak Mitra, Liu Liu

University of Waterloo
Faculty of Mathematics
David R. Cheriton School of Computer Science

Huawei
Virtual Network Embedding (VNE)
Virtual Network Embedding (VNE)

Extensive Literature, mostly focused on single-layer substrate
Multi-Layer IP-over-Optical Network

IP Network
- Packet Switched
- Flexible addressing, traffic engineering, resource allocation
Multi-Layer IP-over-Optical Network

Optical Network

- Circuit switched
- High capacity (Terabits of bandwidth/link)
Multi-Layer IP-over-Optical Network

IP overlay on Optical Network

- IP routers are directly connected to optical switches
- IP links are logical and tunneled over optical paths
- Best of two worlds
- High capacity combined with flexible addressing, routing, traffic engineering, resource allocation.
Multi-Layer IP-over-DWDM Network
Multi-Layer IP-over-DWDM Network

IP Links are tunneled over a single wavelength light-path
Multi-Layer IP-over-OTN Network

OTN Links are logical, routed over wavelengths, and can multiplex bandwidth of multiple IP Links.
Topological Flexibility of Multi-Layer Network
Topological Flexibility of Multi-Layer Network

New IP Links can be created on-the-fly
Question:

How can we leverage the topological flexibility of multi-layer networks for VN embedding?
(One Possible) Answer:
If IP network does not have sufficient capacity for VN embedding, then we can increase capacity, by creating new IP links
The Problem

Multi-Layer Virtual Network Embedding (MULE)

In the most resource efficient way, jointly determine
The Problem

Multi-Layer Virtual Network Embedding (MULE)

In the most resource efficient way, jointly determine

Creation of New IP links (if necessary)
The Problem

Multi-Layer Virtual Network Embedding (MULE)

In the most resource efficient way, jointly determine

- Creation of New IP links (if necessary)
- VN Embedding on the IP Layer
The Problem

Multi-Layer Virtual Network Embedding (MULE)

In the most resource efficient way, jointly determine

- Creation of New IP links (if necessary)
- VN Embedding on the IP Layer
- Embedding of new IP Links on Optical Layer
Context

Multi-Layer IP-over-OTN Network

OTN is static and OTN Links are already provisioned on light-paths in DWDM layer.

No multi-path embedding; No node capacities
MULE: Example

Given

Multi-Layer Substrate Network
MULE: Example

Given

Multi-Layer Substrate Network

Logical IP Layer

Physical Optical Layer
MULE: Example

Given

Logical IP Layer

Physical Optical Layer

Multi-Layer Substrate Network

Virtual Network (VN)

Location Constraint
MULE: Example

Embed the VN on the IP Layer
MULE: Example

Embed the VN on the IP Layer

Create new IP links (if necessary)
MULE: Example

Embed the VN on the IP Layer

Create new IP links (if necessary)

Embed the new IP links on Optical Layer
MULE: Example

Embed the VN on the IP Layer

Create new IP links (if necessary)

Embed the new IP links on Optical Layer

Objective: Minimize bandwidth allocation cost on both layers
Our Contributions

A suit of solutions to MULE

OPT-MULE
ILP-based Optimal Solution (NP-hard)

FAST-MULE
Three Step Heuristic: Collapse, Extract, Embed
State-of-the-art

D-VNE*
- No Optimal Solution
- Collapses multiple layers into one with information loss
- Two step virtual node and virtual link embedding

MULE
- ILP-based Optimal Solution
- Collapses multiple layers into one without information loss
- Jointly embeds virtual nodes and links as much as possible

OPT-MULE: ILP model for optimal solution to MULE that minimizes bandwidth allocation cost for embedding VN and provisioning new IP links.
OPT-MULE

<table>
<thead>
<tr>
<th>Decision Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Typical VN Embedding constraints for VN to IP Layer Mapping</td>
</tr>
<tr>
<td>- Newly created IP links must be embedded on the Optical layer</td>
</tr>
<tr>
<td>- Port constraint for IP nodes</td>
</tr>
<tr>
<td>- Capacity constraint for OTN links,</td>
</tr>
</tbody>
</table>

* Details are in the paper
OPT-MULE*

<table>
<thead>
<tr>
<th>Decision Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Typical VN Embedding constraints for VN to IP Layer Mapping</td>
</tr>
<tr>
<td>• Newly created IP links must be embedded on the Optical layer</td>
</tr>
<tr>
<td>• Port constraint for IP nodes</td>
</tr>
<tr>
<td>• Capacity constraint for OTN links</td>
</tr>
</tbody>
</table>

Details are in the paper
OPT-MULE*

Decision Variables

| Creation of new IP Links, **IP Layer to Optical Layer Embedding for new IP links**, Virtual Node and Link mapping |

Constraints

- Typical VN Embedding constraints for VN to IP Layer Mapping
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes
- Capacity constraint for OTN links

* Details are in the paper
OPT-MULE*

Decision Variables

Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping

Constraints

- Typical VN Embedding constraints for VN to IP Layer Mapping
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes
- Capacity constraint for OTN links

* Details are in the paper
OPT-MULE*

Decision Variables

- Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping

Constraints

- Virtual links can be mapped to existing or newly created IP links
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes

* Details are in the paper
OPT-MULE

Decision Variables

Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping

Constraints

- Virtual links can be mapped to existing or newly created IP links
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes

Details are in the paper
OPT-MULE

Decision Variables

- Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping

Constraints

- Virtual links can be mapped to existing or newly created IP links
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes

* Details are in the paper
OPT-MULE

Decision Variables

Creation of new IP Links, IP Layer to Optical Layer Embedding for new IP links, Virtual Node and Link mapping

Constraints

- Virtual links can be mapped to existing or newly created IP links
- Newly created IP links must be embedded on the Optical layer
- Port constraint for IP nodes

* Details are in the paper
FAST-MULE: Challenges
FAST-MULE: Challenges

Challenge - I

Joint Embedding on IP and Optical Layer
FAST-MULE: Challenges

<table>
<thead>
<tr>
<th>Challenge - I</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Embedding on IP and Optical Layer</td>
<td>Collapse IP and Optical Layer into a single layer</td>
</tr>
<tr>
<td>Challenge - I</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Joint Embedding on IP and Optical Layer</td>
<td>Collapse IP and Optical Layer into a single layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenge - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint embedding of virtual nodes and virtual links</td>
</tr>
</tbody>
</table>
FAST-MULE: Challenges

Challenge - I
Joint Embedding on IP and Optical Layer

Solution
Collapse IP and Optical Layer into a single layer

Challenge - II
Joint embedding of virtual nodes and virtual links

Solution
Embed star subgraphs from VN in a single shot using min-cost max-flow
FAST-MULE: 3-Phase Algorithm
FAST-MULE: 3-Phase Algorithm

Phase-I (Collapse): Collapse IP and Optical Layers into a single layer collapsed graph
FAST-MULE: 3-Phase Algorithm

Phase-I (Collapse): Collapse IP and Optical Layers into a single layer collapsed graph

Phase-II (Extract): Extract star subgraphs from VN
FAST-MULE: 3-Phase Algorithm

Phase-I (Collapse): Collapse IP and Optical Layers into a single layer collapsed graph

Phase-II (Extract): Extract star subgraphs from VN

Phase-III (Embed): Jointly embed nodes and links of each star subgraph on the collapsed graph
Phase-I: Collapse
Phase-I: Collapse

Place as many direct links as the number of ports of an IP node to the corresponding OTN node (set bandwidth to port capacity)
Phase-I: Collapse

- Place IP links between OTN nodes where the link’s IP endpoints are.
- Keep IP link cost as is, set OTN link cost to very high.
Phase-II: Extract

Extract star-shaped subgraph from VN

Embedding a star-shaped subgraph in one-shot corresponds to jointly embedding a virtual node and all its incident virtual links.
Phase – III: Embed

We reduce star-subgraph embedding to solving min-cost max-flow on collapsed graph.
Phase – III: Embed

Map center node of star to one of its location constraint IP node.
Phase-III: Embed

Add meta-node for each other Vnode.
Phase-III: Embed

Add link from a VNode's location constraint nodes to its meta-node.
Phase-III: Embed

Add a sink node (t). Add unit capacity link from all meta-nodes to sink node.
Phase-III: Embed

Set cap. of other links to: max. number of VLinks that can be placed on that link
Phase-III: Embed

Solve min-cost max-flow to obtain joint node and link embedding.
Evaluation: Setup

- FAST-MULE compared with OPT-MULE and D-VNE*
- OTN
 - 15 – 100 nodes
- IP Network
 - ~60% the size of the OTN
- Virtual Network
 - 4 – 8 nodes
 - 20 VNs for each IP/OTN combination

FAST-MULE Performance Highlights

Optimal for star shaped VN*

* Proof is in the paper
FAST-MULE Performance Highlights

- Optimal for star shaped VN*
- 67% better than D-VNE on avg.

* Proof is in the paper
FAST-MULE Performance Highlights

- Optimal for star shaped VN*
- 67% better than D-VNE on avg.
- Within ~47% of optimal on avg.

* Proof is in the paper
FAST-MULE Performance Highlights

- Optimal for star shaped VN*
- 67% better than D-VNE on avg.
- Within ~47% of optimal on avg.
- 2-3 Orders of magnitude faster than OPT-MULE

* Proof is in the paper
We address VNE problem for Multi-Layer IP-over-OTN Network

Two Solutions to MULE: OPT-MULE, FAST-MULE

FAST-MULE performs ~47% better than the optimal (empirically); allocates ~66% less resources than the state-of-the-art
What's Next?

- Can we exploit topological flexibility for failure recovery?
- What is the impact of fragmentation?
- How challenging is it to address MULE for other Optical network technologies (e.g., Elastic Optical Networks)?
Backup Layer
FAST-MULE: Complexity

\(O(|V'||V||E|^2 \log V) \)

- \(V' = \) Number of Virtual nodes
- \(V = \) Number of nodes in collapsed graph
- \(E = \) Number of links in collapsed graph
Conflict Resolution using “Referee Node”

Add meta link:
Conflicting node \rightarrow referee node \rightarrow meta-node
Impact of Virtual Node Ordering

Fixed substrate size
Why MULE?
Why MULE?