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The Problems
1. Poll-mode

→ Inefficient resource utilization 

2. Core Pinning
→ Limited number of cores

Can we just put more VNFs on a single core?
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The Problems
1. Poll-mode

→ Inefficient resource utilization 

2. Core Pinning
→ Limited number of cores

3. Inadequate Linux schedulers 
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The Problems
Default Linux schedulers 
● Completely Fair Scheduler (CFS)
● Real Time scheduler (RT)

Setup: 2 lightweight VNFs, 10Gbps NIC, ...
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The state-of-the-art

1. Flurries
Poll mode + interrupt

2. NFV-Nice
Flurries + back pressure
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Another problem:  Intrusive
Require VNF to use or be built with a certain library.

1. W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood, “Flurries: Countless fine-grained nfs for flexible per-flow 
customization,” in Proceedings of ACM CoNeXT. ACM, 2016, pp. 3–17.

2. S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic 
backpressure and scheduling for nfv service chains,” in Proceedings of ACM SIGCOMM. ACM, 2017, pp. 71–84.
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System Architecture

13



Cycle Estimator
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NF i

Cycles Estimator

Goal

● Estimate the processing cost of a VNF

Implementation

● A static offline profiler

● Run NF-i in an isolated environment

● Inject a batch of packets

● Pull the batch and calculate the timestamp 

difference



Cycle Estimator

15

NF i

Cycles Estimator

 UNiS introduces buffer occupancy based optimization to deal with 

variable cost VNF.

Goal

● Estimate the processing cost of a VNF

Implementation

● A static offline profiler

● Run NF-i in an isolated environment

● Inject a batch of packets

● Pull the batch and calculate the timestamp 

difference



Timer Subsystem
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Goal

● Keep track of time used by a VNF

Implementation

● DPDK rte_timer library

○ Async callbacks

○ Support high precision



Process Controller
Goal

● Put a process to waiting/running state

Implementation

● Linux Real Time scheduler class (SCHED_RR)

● Adjust the sched_priority parameter
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Interface Monitor
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Goal

● Provide buffer occupancy monitoring data

Implementation

● DPDK rte_ring library

○ zero copy packet transfer
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How UNiS works



Per-core Data structure
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Core 0 Core 1 . . . Core n



Other Data Structures
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vnf_id: A
cput_id: 1
ingress_port {
…
}
egress_port {
...
}

Interface Monitor
   num_pkts( buffer_id )
   refresh()
   ...

Cycle Estimator
   vnf_type1 → time_slice1
   vnf_type2 → time_slice2
   vnf_type3 → time_slice3
   ...

A B C

Configuration files
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Scheduling Algorithm



core-0core-0

Initialization Phase
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A B C

:= NULL

:= true

  
Core 0

B C

 := tsA

:= false

    A 
Core 0
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Initialization Phase
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A B C

:= NULL

:= true

  
Core 0

B C

 := tsA

:= false

    A 
Core 0

Move to the next core,

repeat the initialization



Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A
core-0
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Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A
OR
A.ingress < θmin 
OR
A.egress > θmax

== true

core-0

θmin : Low watermark
θmax : High watermark
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Execution Phase
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Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A

Running: A
Next: B

Running: B

Running: A
Next: C

B.ingress > θmin 
AND
B.egress < θmax

C A

= tsA

C A

:= tsB

:= false

else

OR
A.ingress < θmin 
OR
A.egress > θmax

== true

core-0

core-0

B C

= tsA

A

B

θmin : Low watermark
θmax : High watermark



Experiment Setup
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Testbed
● Two back-to-back connected machines

● Intel X710-DA 10Gbps NIC

● Intel Xeon E3-1230v3 3.3Ghz 4-core CPU

● 16GB memory
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VNF Types
● Fixed cost

○ Light : 50 cycles/packet

○ Medium : 150 cycles/packet

○ Heavy : 250 cycles/packet

● Variable cost

○ Step function proportional to packet size.



Workload
● Synthetic traffic 

○ DPDK-pktgen 

○ Moongen 

● Real data-center traffic

○ UNI1 traces1
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1. T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” in Proceedings of ACM IMC. ACM, 2010, 
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Evaluation
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Compared approach
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Cooperative scheduling approach 

● VNF built with a scheduling logic

○ Yield CPU after processing certain batches of packets

○ Minimal overhead



Compared approach
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Cooperative scheduling approach 

● VNF built with a scheduling logic

○ Yield CPU after processing certain batches of packets

○ Minimal overhead

Why not Flurries or NFVNice?



Evaluation Scenario 1
SFC with fixed and uniform cost VNFs
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RX
TX

All VNFs in the SFC has the same fixed processing cost.
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Workload: synthetic traffic 64B packet size at 10Gbps

Evaluation Scenario 1
SFC with fixed and uniform cost VNFs



2. SFC with fixed and non-uniform cost VNFs
Interleaving Medium and Heavy flavor VNFs.
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RX
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2. SFC with fixed and non-uniform cost VNFs
Interleaving Medium and Heavy flavor VNFs.
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RX

TX
< 2% diff



3. SFC with variable cost VNFs
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VNF processing costs vary proportionally to the packet sizes.

Workload: with real data center traffic capture.



3. SFC with variable cost VNFs
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VNF processing costs vary proportionally to the packet sizes.

Workload: with real data center traffic capture.

Intrusive vs UNiS : +2%
UNiS vs UNiS-No-Opt : +10%



4. VNF density on a single core
Fixed and uniform cost VNFs in an SFC
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4. VNF density on a single core
Fixed and uniform cost VNFs in an SFC
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RX

TX

UNiS can pack 
almost the same 
number of VNFs 



Conclusion
● Default Linux schedulers (CFS, RT) are inadequate for VNF workload

● State-of-the art solutions are intrusive 

● UNiS achieved its goals

○ a novel non-intrusive scheduling approach

○ does not require kernel modification

○ consider the VNFs order in SFC

● Experimental results show UNiS performance is promising

● UNiS saves CPU resource by packing multiple VNFs to same cores
46



Thank you
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Extra Slides
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Latency
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Scenario : SFC with fixed and uniform cost VNFs

Workload : Synthetic traffic 128B packet size at 80% sustainable throughput



5. Multiple SFCs across multiple cores
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UNiS Key Ideas

1. Estimate VNF processing cost

2. Allocate time_slice for each VNF

3. Leverage buffer occupancy information to optimize/adapt

4. Consider VNFs ordering in scheduling

5. Control the execution from userspace

6. Blackbox approach.
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Initialization Phase
● Parse the SFC configurations

● Create per-core data structures

○ wait queue, timer, expiry_flag

● Initialize each queue according to the VNFs order in the SFC

● Assign time_slice for each VNF according to the Cycle Estimator results. 
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Execution Phase

● Traverse each of the per-core DS

● Pick the pid at the queue head, run the pid, set the timer for it. 

● Periodically check 

○ IF expiry_flag for a core is set 

OR ingress buffer is empty OR egress buffer is almost full

■ Pick the next process

■ Check if its ingress buffer is not empty

■ Switch the running process

■ Reset the timer
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Execution Phase

● Traverse each of the wait queues

● Pick the pid at the head, run the pid, set the timer for it. 

● Periodically check 

○ IF expiry_flag for a core is set 

OR ingress buffer is empty OR egress buffer is almost full

■ Pick the next process

■ Check if its ingress buffer is not empty

■ Switch the running process

■ Reset the timer
Buffer Occupancy 

based Optimization
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