
UNiS: A User-space Non-intrusive Workflow-aware
Virtual Network Function Scheduler

Anthony1, Shihabur Rahman Chowdhury1, Tim Bai1, Raouf Boutaba1,
Jerome François2

University of Waterloo1

INRIA Nancy Grand Est2

CNSM 2018, Rome, Italy

The Development of Network Function

2

Hardware middleboxes

Firewall

Deep Packet
Inspection

The Development of Network Function

3

VNF
VNF

VNF

Orchestrator

Commercial Off-the-shelf (COTS)
Servers

Virtual Network FunctionHardware middleboxes

Firewall

Deep Packet
Inspection

The Development of Network Function

4

VNF
VNF

VNF

Orchestrator

Commercial Off-the-shelf (COTS)
Servers

Performance

Kernel bypass
technologies

(DPDK, Netmap,
Solarflare, etc)

+

CPU core
pinning

+
Poll mode

Common PracticesVirtual Network FunctionHardware middleboxes

Firewall

Deep Packet
Inspection

The Problems
1. Poll-mode

→ Inefficient resource utilization

5

The Problems
1. Poll-mode

→ Inefficient resource utilization

2. Core Pinning
→ Limited number of cores

6

The Problems
1. Poll-mode

→ Inefficient resource utilization

2. Core Pinning
→ Limited number of cores

Can we just put more VNFs on a single core?

7

The Problems
1. Poll-mode

→ Inefficient resource utilization

2. Core Pinning
→ Limited number of cores

3. Inadequate Linux schedulers

8

The Problems
Default Linux schedulers
● Completely Fair Scheduler (CFS)
● Real Time scheduler (RT)

Setup: 2 lightweight VNFs, 10Gbps NIC, ...

9

The state-of-the-art

1. Flurries
Poll mode + interrupt

2. NFV-Nice
Flurries + back pressure

10

1. W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood, “Flurries: Countless fine-grained nfs for flexible per-flow
customization,” in Proceedings of ACM CoNeXT. ACM, 2016, pp. 3–17.

2. S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic
backpressure and scheduling for nfv service chains,” in Proceedings of ACM SIGCOMM. ACM, 2017, pp. 71–84.

The state-of-the-art

1. Flurries
Poll mode + interrupt

2. NFV-Nice
Flurries + back pressure

11

Another problem: Intrusive
Require VNF to use or be built with a certain library.

1. W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood, “Flurries: Countless fine-grained nfs for flexible per-flow
customization,” in Proceedings of ACM CoNeXT. ACM, 2016, pp. 3–17.

2. S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic
backpressure and scheduling for nfv service chains,” in Proceedings of ACM SIGCOMM. ACM, 2017, pp. 71–84.

12

UNiS

A User-space Non-intrusive Workflow-aware

Virtual Network Function Scheduler

System Architecture

13

Cycle Estimator

14

NF i

Cycles Estimator

Goal

● Estimate the processing cost of a VNF

Implementation

● A static offline profiler

● Run NF-i in an isolated environment

● Inject a batch of packets

● Pull the batch and calculate the timestamp

difference

Cycle Estimator

15

NF i

Cycles Estimator

 UNiS introduces buffer occupancy based optimization to deal with

variable cost VNF.

Goal

● Estimate the processing cost of a VNF

Implementation

● A static offline profiler

● Run NF-i in an isolated environment

● Inject a batch of packets

● Pull the batch and calculate the timestamp

difference

Timer Subsystem

16

Goal

● Keep track of time used by a VNF

Implementation

● DPDK rte_timer library

○ Async callbacks

○ Support high precision

Process Controller
Goal

● Put a process to waiting/running state

Implementation

● Linux Real Time scheduler class (SCHED_RR)

● Adjust the sched_priority parameter

17

Interface Monitor

18

Goal

● Provide buffer occupancy monitoring data

Implementation

● DPDK rte_ring library

○ zero copy packet transfer

19

How UNiS works

Per-core Data structure

20

Core 0 Core 1 . . . Core n

Other Data Structures

21

vnf_id: A
cput_id: 1
ingress_port {
…
}
egress_port {
...
}

Interface Monitor
 num_pkts(buffer_id)
 refresh()
 ...

Cycle Estimator
 vnf_type1 → time_slice1
 vnf_type2 → time_slice2
 vnf_type3 → time_slice3
 ...

A B C

Configuration files

22

Scheduling Algorithm

core-0core-0

Initialization Phase

23

A B C

:= NULL

:= true

Core 0

B C

 := tsA

:= false

 A
Core 0

core-0core-0

Initialization Phase

24

A B C

:= NULL

:= true

Core 0

B C

 := tsA

:= false

 A
Core 0

Move to the next core,

repeat the initialization

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A
core-0

26

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A
OR
A.ingress < θmin
OR
A.egress > θmax

== true

core-0

θmin : Low watermark
θmax : High watermark

27

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A

B C

= tsA

Running: A
Next: B

OR
A.ingress < θmin
OR
A.egress > θmax

== true

core-0

core-0

A

θmin : Low watermark
θmax : High watermark

28

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A

B.ingress > θmin
AND
B.egress < θmaxOR

A.ingress < θmin
OR
A.egress > θmax

== true

core-0

core-0

Running: A
Next: B

B C

= tsA

A

core-0

θmin : Low watermark
θmax : High watermark

29

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A

Running: A
Next: B

Running: B

B.ingress > θmin
AND
B.egress < θmax

C A

:= tsB

:= false

OR
A.ingress < θmin
OR
A.egress > θmax

== true

core-0

core-0

core-0

B C

= tsA

A

θmin : Low watermark
θmax : High watermark

30

Execution Phase

Monitor.refresh()

B C

= tsA

== true?

Running: A

Running: A
Next: B

Running: B

Running: A
Next: C

B.ingress > θmin
AND
B.egress < θmax

C A

= tsA

C A

:= tsB

:= false

else

OR
A.ingress < θmin
OR
A.egress > θmax

== true

core-0

core-0

B C

= tsA

A

B

θmin : Low watermark
θmax : High watermark

Experiment Setup

31

Testbed
● Two back-to-back connected machines

● Intel X710-DA 10Gbps NIC

● Intel Xeon E3-1230v3 3.3Ghz 4-core CPU

● 16GB memory

32

Testbed
● Two back-to-back connected machines

● Intel X710-DA 10Gbps NIC

● Intel Xeon E3-1230v3 3.3Ghz 4-core CPU

● 16GB memory

33

VNF Types
● Fixed cost

○ Light : 50 cycles/packet

○ Medium : 150 cycles/packet

○ Heavy : 250 cycles/packet

● Variable cost

○ Step function proportional to packet size.

Workload
● Synthetic traffic

○ DPDK-pktgen

○ Moongen

● Real data-center traffic

○ UNI1 traces1

34

1. T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” in Proceedings of ACM IMC. ACM, 2010,
pp. 267–280.

Evaluation

35

Compared approach

36

Cooperative scheduling approach

● VNF built with a scheduling logic

○ Yield CPU after processing certain batches of packets

○ Minimal overhead

Compared approach

37

Cooperative scheduling approach

● VNF built with a scheduling logic

○ Yield CPU after processing certain batches of packets

○ Minimal overhead

Why not Flurries or NFVNice?

Evaluation Scenario 1
SFC with fixed and uniform cost VNFs

38

RX
TX

All VNFs in the SFC has the same fixed processing cost.

39

Workload: synthetic traffic 64B packet size at 10Gbps

Evaluation Scenario 1
SFC with fixed and uniform cost VNFs

2. SFC with fixed and non-uniform cost VNFs
Interleaving Medium and Heavy flavor VNFs.

40

RX

TX

2. SFC with fixed and non-uniform cost VNFs
Interleaving Medium and Heavy flavor VNFs.

41

RX

TX
< 2% diff

3. SFC with variable cost VNFs

42

VNF processing costs vary proportionally to the packet sizes.

Workload: with real data center traffic capture.

3. SFC with variable cost VNFs

43

VNF processing costs vary proportionally to the packet sizes.

Workload: with real data center traffic capture.

Intrusive vs UNiS : +2%
UNiS vs UNiS-No-Opt : +10%

4. VNF density on a single core
Fixed and uniform cost VNFs in an SFC

44

RX

TX

4. VNF density on a single core
Fixed and uniform cost VNFs in an SFC

45

RX

TX

UNiS can pack
almost the same
number of VNFs

Conclusion
● Default Linux schedulers (CFS, RT) are inadequate for VNF workload

● State-of-the art solutions are intrusive

● UNiS achieved its goals

○ a novel non-intrusive scheduling approach

○ does not require kernel modification

○ consider the VNFs order in SFC

● Experimental results show UNiS performance is promising

● UNiS saves CPU resource by packing multiple VNFs to same cores
46

Thank you

47

Extra Slides

48

Latency

49

Scenario : SFC with fixed and uniform cost VNFs

Workload : Synthetic traffic 128B packet size at 80% sustainable throughput

5. Multiple SFCs across multiple cores

50

UNiS Key Ideas

1. Estimate VNF processing cost

2. Allocate time_slice for each VNF

3. Leverage buffer occupancy information to optimize/adapt

4. Consider VNFs ordering in scheduling

5. Control the execution from userspace

6. Blackbox approach.

51

Initialization Phase
● Parse the SFC configurations

● Create per-core data structures

○ wait queue, timer, expiry_flag

● Initialize each queue according to the VNFs order in the SFC

● Assign time_slice for each VNF according to the Cycle Estimator results.

52

53

Execution Phase

● Traverse each of the per-core DS

● Pick the pid at the queue head, run the pid, set the timer for it.

● Periodically check

○ IF expiry_flag for a core is set

OR ingress buffer is empty OR egress buffer is almost full

■ Pick the next process

■ Check if its ingress buffer is not empty

■ Switch the running process

■ Reset the timer

54

Execution Phase

● Traverse each of the wait queues

● Pick the pid at the head, run the pid, set the timer for it.

● Periodically check

○ IF expiry_flag for a core is set

OR ingress buffer is empty OR egress buffer is almost full

■ Pick the next process

■ Check if its ingress buffer is not empty

■ Switch the running process

■ Reset the timer
Buffer Occupancy

based Optimization

55

