14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

Bitforest: a Portable and Efficient Blockchain-Based
Naming System

Yuhao Dong
University of Waterloo
yd2dong @uwaterloo.ca

Abstract—Public key infrastructures (PKIs), or more generally
secure naming systems, lie at the foundation of the security of any
communication system. Without a trustworthy binding between
user-facing names, such as domain names, and cryptographic
identities, such as public keys, all security guarantees against
active attackers come crashing down like a house of cards.

Blockchains such as Bitcoin, by offering a decentralized yet
secure public ledger, show promise as the root of trust for naming
systems with no central trusted parties, greatly increasing their
security compared to traditional centralized PKIs. Yet blockchain
PKIs such as Namecoin and Blockstack tend to significantly
sacrifice scalability and flexibility in pursuit of decentralization,
hindering large-scale deployability on the Internet.

We propose Bitforest, a secure naming system with an archi-
tecture combining a centralized yet only partially trusted name
server with efficiently queryable verification data embedded in a
novel data structure inside a cryptocurrency blockchain. Bitforest
achieves decentralized trust and security as strong as existing
blockchain-based naming systems while retaining most of the
flexibility and performance of centralized PKIs, allowing fully-
validating thin clients to look up and verify name bindings
with comparable efficiency to traditional systems. We use both
numerical simulation and real-world experiments to evaluate the
performance of Bitforest compared with other naming systems,
both centralized and blockchain-based, showing that its perfor-
mance goals are indeed achieved.

I. INTRODUCTION

Cryptographic protocols such as TLS, which provide secure
communications over insecure networks such as the Internet,
have gained extremely pervasive deployment. Yet the security of
these protocols relies ultimately on one thing: a secure public key
infrastructure. Application-level names must be somehow bound
to cryptographic identities, such as public keys, in a trustworthy
way; otherwise, security against active man-in-the-middle attacks
cannot be achieved.

Unfortunately, building a secure PKI has proved to be quite
difficult. Traditional systems, like the hierarchical PKI used in
TLS and S/MIME, attempt to achieve their security properties
by introducing trusted third parties, such as certificate authorities
(CAs) or key servers. Centralization, however, leads to brittle
security, as compromised or incompetent trusted parties can
undermine the security of entire namespaces [1], [2].

Blockchains, public append-only ledgers that are unforgeable
yet fully decentralized, offer a promising alternative to centralized
trust. The first blockchain, Bitcoin [3], was conceived only as
a financial cryptocurrency, but its first descendant, Namecoin
[4], pioneered the idea of building a secure naming system by

978-3-903176-14-0 © 2018 IFIP

Woojung Kim
University of Waterloo
w3kim@uwaterloo.ca

Raouf Boutaba
University of Waterloo
rboutaba @uwaterloo.ca

encoding name-value pairs inside a blockchain. Several newer
blockchain naming system designs, such as Certcoin [5], follow
the same general design.

However, though Namecoin-like designs bring significant
security improvements, they also face many new challenges.
Among other issues, all nodes in the network must synchronize
a local copy of the blockchain, so anybody wishing to look up
names in a secure fashion faces large, linearly-increasing storage
costs. Additionally, without a large userbase, blockchains are
vulnerable to attacks which compromise their security guarantees.

Newer blockchain-based PKIs, most recently and successfully
Blockstack [6], do attempt to mitigate these issues. However,
although Blockstack makes it easier to deploy new features and
reduces the amount of data that needs to be replicated to all
participants by moving most of the data away from the underlying
blockchain, it still fails to eliminate the requirement for verifying
large amounts of blockchain data, and continues to be much
less flexible in enforcing rules for namespaces compared to
centralized solutions.

These issues with existing blockchain-based distributed PKIs
motivate us to build a new system, Bitforest, sidestepping the
common pitfalls of “pure” blockchain PKIs by using a hybrid
architecture combining a public blockchain with a minimally-
trusted centralized service. A novel data structure encodes
information crucial to the integrity of the PKI in an arbitrary
cryptocurrency blockchain, allowing us to inherit the security of
an underlying blockchain while retaining much of the properties
of traditional PKIs including fast name lookups, low storage
requirements, policy flexibility, and performance. We believe that
by escaping the apparent hard tradeoff between decentralized,
blockchain-anchored trust and high performance, Bitforest makes
it significantly more practical to deploy a blockchain-based PKI.

II. DESIGN

In this section, we describe Bitforest’s design principles, its
overall architecture, and how its goals are achieved by its design.

A. Design principles

Based on the experiences of previous blockchain-based PKIs,
we designed Bitforest in accordance with the following three
main principles:

Blockchain portability: Bitforest is designed to not rely on
any particular blockchain. Any cryptocurrency blockchain with
its security based on the principle of spending unspent transaction

226

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

outputs (UTXOs) at most once (i.e. “UTXO-based blockchains™)
can be easily plugged in. This allows individual deployments of
Bitforest to adapt to whatever blockchain fits the application the
best — for example, Bitcoin can be used for applications needing
high security with less concern over update throughput, while
Dashcoin can be used for scenarios needing high performance.

Centralized administration: We want it to be possible to
create centrally-managed namespaces, such as directories of
employees belonging to a certain organization. This is in contrast
to fully distributed blockchain-based PKIs such as Namecoin
and Blockstack, which are entirely permissionless and thus are
often vulnerable to name-squatting and other abuse — the vast
majority of name-value bindings in Namecoin, for example, are
in fact spam containing no useful information [7]. Furthermore
a centralized provider can be used to increase performance by
indexing the blockchain and maintaining in-blockchain data
structures, as existing “hybrid” blockchain naming systems, most
notably EthIKS [8], demonstrate.

Decentralized identity retention: On the other hand, we
need to avoid trusting the central administrator when enforcing
a bottom-line of security — identity retention. That is, even
with a malicious administrator, it should not be possible to make
changes to name-value bindings without authorization from the
owner of the name, or for anyone to be fooled into obtaining an
incorrect binding. Robustly decentralized identity retention is in
fact perhaps the raison d’étre of blockchain-based PKIs, as other
systems almost always require at least partially trusting some
centralized entity.

B. Architectural overview

Bitforest uses a client-server architecture, where namespace
administrators, or NAs, administer namespaces; clients then
look up names in a certain namespace by querying information
published by a particular NA. Instead of imposing a global
infrastructure of NAs, Bitforest allows developers to set up
application-specific NA infrastructures, similar to how traditional
PKIs may have application-specific root CAs.

In Bitforest, names in a certain namespace are mapped by NAs
to unique indices in a deterministic, verifiable way. Clients then
use an index tree, a novel insert-only dictionary data structure
embedded inside the blockchain, to map these indices to an
append-only list of operation hashes — secure hashes of each
element of the operation log, an NA-provided history of all
values ever bound to the name. Each entry in the operation log
also contains signatures by a cryptographic identity declared in
the previous entry; in effect, updates to the name describe who
is authorized to append further updates. The last entry in the
operation log defines the current binding of the name.

We double-spending prevention, available in all UTXO-based
blockchains, to secure the insert-only property of Bitforest’s index
tree, an idea pioneered by Catena [9], a blockchain-embedded
append-only log operating on a similar principle. This allows Bit-
forest to achieve strong identity retention backed by a fundamental
security guarantee of its underlying blockchain while retaining
efficient and secure lookup of names without prohibitive bootstrap-
ping cost. Furthermore, storing only indices and hashes in the in-

227

O
O
: O
Ny O Ol
]!Il‘l):(ﬂ 8
o
S BERRN [%
O et

Fig. 1: Example of an index tree with indices 1,2,3

blockchain data structure gives freedom to the NA adminsitrator
to enforce non-cryptographic constraints, such as authentication
and access control. Updates and queries must involve the NA, as
only the NA can compute indices from names or provide the
actual operations whose hashes are stored in the index tree.

C. Basic structure of the index tree

Bitforest’s index tree is essentially an insert-only binary search
tree (BST) consisting of transactions in the underlying blockchain,
mapping indices, 256-bit keys corresponding uniquely to names
(see II-E), to 256-bit cryptographic hashes of every entry in an
operation log. Every node in the index tree is a transaction, where:

o The first input, for all nodes except the root node, spends

either the 1st or 2nd output of the node’s parent in the index
tree.

o The first four outputs are, in order,

— A spendable output to be spent by the left child

— A spendable output to be spent by the right child

— A spendable output to be spent by the update chain

— An unspendable output (for example, using OP_RETURN
in Bitcoin) storing an index and the 256-bit hash of the
first operation of the name associated with the index

(The “update chain” that uses the third output of each node
stores subsequent updates to the name, and is discussed in II-D)
All the transactions in the index tree represent nodes in a BST,
sorted by index, with smaller indices to the left and larger indices
to the right; children are related to their parents by spending
a particular output in their parent. Money flows down the tree
from the root transaction and is used to cover transaction costs;
additional funds can be introduced at any point through transaction
inputs other than the first one. Fig. 1 gives an illustration of a
small index tree. Inserting a new index-hash pair to the tree is
done in a straightforward manner — a new node is broadcast to
the blockchain, spending the output that would connect it to the
tree in such a way that searching for the index would find the
new node. The NA maintains control over inserts to the index
tree by sending the spendable outputs to addresses whose private
keys only the NA knows.

An important property is that every node can have at most
one left node, and at most one right node, confirmed in the
blockchain. This is due to double-spending prevention — each
transaction output can be spent by one and only one subsequent

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

transaction — and ensures that existing nodes and links in the
index tree cannot be overwritten once created as long as the
blockchain’s guarantees hold. Thus, the BST represented by the
index tree can only be added to, and indices, once bound to a
particular hash, can never be rebound to anything else.

More crucially, for any index in the index tree, we can generate
a short proof of existence that the index is bound to a particular
256-bit hash. This proof consists of the transactions that form
the path, traced by applying the standard BST search algorithm
for the index, leading from the root transaction to a transaction
that includes the given index. Such a proof does not take up
much space: for a tree with randomly-distributed indices, the
length of a proof of existence is expected to be ©(logn). As an
example, in the index tree in Fig. 1, the root hash and its left child
constitute a proof that the index 1 is bound to a certain hash.

Any Bitforest client, with hardcoded knowledge of the root
transaction, can validate a proof of existence in an index tree for
an index z, by checking the following properties:

1) The transactions indeed exist in the blockchain.

2) The first transaction in the proof is indeed the already-
known root transaction.

3) The fourth output of the last transaction binds a hash to x.

4) Each transaction in the proof ¢; spends the expected output
of the previous transaction ¢;_1. That is, if x is smaller
than the index in the fourth output of ¢;,_1, ¢; spends its
first output while if x is bigger it spends the second output;
in case z is equal to the index of a transaction not at the
end of the path, the proof is declared invalid.

The last property is, essentially, to check that the proof of
existence really ends at the “canonical” transaction for a certain
index — the transaction on which a step-by-step search from the
root would terminate. Malicious NAs may attempt to insert non-
canonical transactions into the tree which refer to the same index,
violating the BST invariant, but paths from the root transaction to
these transactions would not satisfy the last property, preventing
the NA from being able to show a proof of existence for them,
safeguarding the insert-only property of the index tree.

Checking these properties takes very little time and storage
space. Verifying that the transactions are confirmed in the
blockchain can be done efficiently and securely by a lightweight
thin client in almost any UTXO-based cryptocurrency blockchain.
For example, for Bitcoin, this only requires the client to synchro-
nize the Bitcoin block headers — a very small amount of data
compared to the entire blockchain — using Simple Payment
Verification (SPV) [3]. The remaining three steps are done locally
by the client and complete essentially instantly.

D. Updating an index tree

In the previous section, we sketched the general structure of
the “tree” part of the index tree, which provides an insert-only,
efficiently queryable mapping from numerical indices to 256-
byte hashes embedded in the blockchain. Yet in Bitforest, names
are not mapped to a fixed immutable piece of data, but rather to
an operation log that can always be appended to. How is the
gap between the two abstractions bridged?

The answer is the update chain, a Catena transaction chain
[9] spending the 3rd output of a tree node transaction. A Catena
chain is the simplest grow-only blockchain data structure based
on exploiting double-spend prevention, and it provides an append-
only linked list of log entries. In Bitforest’s case, the update chain
is used to store hashes of operation log entries other than the first
one; the first operation’s hash is stored inline in the tree node to
reduce the number of transactions needed to register a new name.

By appending to the growing update chain, the NA can append
more entries to the operation log; the underlying blockchain’s
double spend prevention forbids the NA from either rolling back
the log to an earlier state or overwriting existing log entries,
providing the abstraction we want: a mapping of keys to append-
only operation logs.

The proofs of existence discussed in the previous subsection
can easily be extended to the entire operation log: we simply
include all the transactions forming the update chain in the proof.
Clients then verify that each transaction in the update chain does
indeed spend the previous entry’s first output, and that the first
transaction in the update chain spends the third output of the tree
node recording the correct index. The size of the proof is now
O(¢+1logn), where ¢ is the length of the update chain, and n is
the number of names in the namespace. In practice, ¢ is unlikely
to be large; names bindings in PKIs are typically changed only
due to infrequent events such as name transfer or key revocation
that may not even happen for the majority of names.

E. Mapping names to indices

We have discussed how the index tree securely maps numerical
indices to cryptographic hashes of operation logs. But how are
these “indices” related to the names in the namespace? After all,
the whole point of a Zooko’s-triangle-violating PKI is to provide
human-readable names; requiring clients to look up random
numeric indices defeats the purpose.

One naive solution is to map names to indices with a crypto-
graphically secure hash function, such as SHA-256. However, this
direct approach is unworkable, as it allows anybody with access to
the blockchain to check the existence of names in the namespace
without involving the NA, facilitating name enumeration and
severely weakening policy enforcement in the area of access
control over listing names. In addition, malicious name registrants
would be able to greatly degrade the performance of the service
by registering names with indices that when inserted in order
would grossly unbalance the index tree, causing the size of some
proofs to be exorbitantly large.

The solution to both of these problems is to compute indices
using a verifiable random function (VRF) [10], which is a random
function that requires a private key to compute, but can then be
publicly verified. One example of a VRF is VXEdDSA [11],
which Bitforest uses in practice. Given such a function VRF(),
the index x for a name n is computed as:

x = HMAC(VRF gy p (n), 1)

where HMAC() is an HMAC using SHA-256, and Kvygr is
a public key belonging to the NA already known to clients of
that NA.

228

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

Using a VRF solves both of the problems mentioned above.
Firstly, name lookups now must go through the NA, as only the
NA can compute the index using a VRF and walk the index tree
to generate a proof of existence for that index. This eliminates
the policy enforcement and name enumeration issues — both
CONIKS [12] and EthIKS [8] use a similar construction to prevent
name enumeration. Secondly, we obtain randomly distributed
indices that are verifiable after the fact, but unpredictable by
anybody other than the NA before a name is registered and placed
in the index tree. Thus, malicious registrants cannot precompute
the indices of names and register them in a pathological order
that would unbalance the tree.
Now we finally have all the details to describe a full response
by the NA to a client’s query for a name n:
o A VRF output VRF ... (n), which the client verifies and
from which it derives the index x

o A proof of existence for the operation log bound to x, which
the client checks according to the procedure given in II-C,
containing a cryptographic hash of every element in the
operation log

o The operation log itself, which the client checks does indeed

hash to the values given in the proof of existence

FE. Operation logs and identity retention

The index tree, combined with a VRF-based function mapping,
now gives us a way of securely obtaining an append-only history
of any name, which can only be appended to through the NA —
the operation log, consisting of many individual operations. Each
operation in the operation log must be signed by a cryptographic
identity declared in the previous operation, preventing any changes
to a name’s binding unauthorized by the owner of the name. This
subsection will discuss the details of how the operation log works.

1) Structure of an operation: Each operation contains the
following fields:

¢ A random nonce

o An identity script representing the cryptographic identity

authorized to generate the next operation bound to the name,
i.e. the “current owner”

o A collection of cryptographic signatures, valid with respect

to the identity script declared in the previous operation

o Data associated with the name

The random nonce is used to prevent replay attacks, where the
NA replays previous bindings in cases where a previous binding
has signatures from the latest owner. It also randomizes the hash
of each operation, preventing the operation log hashes in the
index tree from leaking any information about the namespace to
anybody without access to the NA.

2) Identity scripts and signatures: ldentity scripts are the
entities representing cryptographic identities in Bitforest. They
encode a tree structure of key quorums; an identity script is
recursively defined as either an Ed25519 [13] public key, or a
quorum of n out of m identities. We use a simple stack-based
scripting language, inspired by payment scripts in Bitcoin [3], to
represent these trees.

We note here that nothing prevents this identity script system
from expressing an entirely NA-trusting update policy that

gives up identity retention for convenience, relying instead on
transparency to implicitly regulate the NA’s actions, similar to the
behavior of “normal users” in CONIKS [12]. This can be done
simply by assigning a keypair controlled by the NA as the “owner’
which would allow the NA to append whatever log entry it wants
without cryptographic signatures from the user of the name.

s

G. Summary

In this section, we presented an architectural overview of
Bitforest. A novel data structure, the index tree, allows for the
implementation of a securely and efficiently queryable index-value
mapping embedded inside a generic cryptocurrency blockchain,
where indices can only be inserted and not deleted, and values
can only be appended to and not overwritten. This mapping then
serves as the basis for a naming system that provides a unique
combination of the strong, distributed-trust identity retention
guarantees of existing blockchain-based solutions, and the highly
flexible policy enforcement found in traditional centralized PKIs.

III. IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation of Bitforest
and evaluate Bitforest against existing naming systems, both by
measuring their performance using experiments and by numerical
simulation. We also discuss the cost of operating a Bitforest
namespace across popular public blockchains.

A. Implementation

We created a prototype reference implementation of Bitforest
in the Java programming language, which we plan on releasing
as an open-source library in the future. The Bitforest library
allows applications to easily create their own NAs and look up
names securely; by default it uses the Bitcoin blockchain to store
the index tree.

One particular area of implementation deserving some dis-
cussion is the ease of porting Bitforest to different blockchains.
Although originally we implemented Bitforest for Bitcoin, in order
to evaluate how well Bitforest achieves our goal of blockchain neu-
trality, we ported it to Litecoin [14], a well-known cryptocurrency
“altcoin” with UTXO-based semantics. Implementing the Litecoin
version of Bitforest proved to be very easy — based upon spending
transaction outputs like the majority of cryptocurrencies, Litecoin
allows us to encode the index tree exactly as we have described it.

B. Lookup performance

In our first quantitative experiment, we evaluate the performance
of doing lookups in Bitforest. As a comparison, we also evaluate
the performance of secure client-server lookups in Blockstack,
the current state-of-the-art in blockchain-neutral blockchain-based
PKIs. Unlike most other blockchain-neutral systems, Blockstack
has a secure thin-client lookup system — SNV — with at least
some decentralized trust, allowing a contest between two systems
with comparable security and portability.

Both a Blockstack full node and a Bitforest NA are installed
on a server, and a client with around 90 ms of network latency
to the server is used to benchmark the two systems. We create
a Bitforest NA — using the Bitcoin “testnet” [3] to avoid

229

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

"

LWy vty

<. sxaxd ewr: Ll

(a) Lookup latency

1N s vawds o
. «

<. oz ewr:

(b) Data transferred

Fig. 2: Lookup performance of Bitforest compared to Blockstack

1.0 I T— —
ol IR S -
s (0= 4
- BEET e e ¥
- frmma——- i

08F A
= fi
= I
£ : Iy
206! 1!
= | !
2 : . o)
2 pal: il
El 0.4 3
= =
8 | I Unverified DNS

02k - — = Client-verified DNSSEC

= " === Server-trusting Blockstack
: A
: ' e T
_.r_J_ o Bitforest
0.0 === - L " i
500 1000 1500 2000
latency (ms)

Fig. 3: Bitforest lookup latency, compared with centralized-trust
systems

exorbitant transaction costs — and insert 73,000 names, the
approximate amount of names in Blockstack. Then, we query
our Bitforest NA with 300 random dummy names previously
placed in the namespace, while for Blockstack we use SNV
to verify 300 random existing name records in the operational
Blockstack network; in both cases, we sample the namespace
without replacement. Total latency and bytes transferred are then
measured by tracing network packets using Wireshark, avoiding
inaccurate measurements due to application startup latency.

Fig. 2 summarizes the results of this experiment. Note that
Blockstack lookups grow significantly slower as we query names
registered in older and older blockchain blocks, as the SNV
process requires the client to iteratively “walk” across old blocks
until it hits the one where the name is registered; thus, we have
a separate metric for Blockstack names registered after the start
of 2017 called “Blockstack (recent)”.

We see that in both metrics, especially latency, Bitforest
performs much better than Blockstack. The particularly lopsided
difference in latency measurements likely stems from Blockstack’s
SNV implementation, which requires the client to incrementally
walk backwards along Blockstack’s virtualchain, taking up a large
amount of network round trips to complete the procedure; on the
other hand, Bitforest NAs give full proofs of existence for their

index trees in a single request-response cycle. In particular, doing
SNV proofs for old Blockstack names can take up to minutes.

Even considering this implementation flaw, though, Bitforest
still proves significantly more efficient — this is illustrated by
the comparison of data transferred, a metric less affected by
issues with the implementation. The advantages of Bitforest’s
very simple and efficient index tree, as opposed to Blockstack’s
virtualchain, clearly show, allowing Bitforest queries to transfer
only around 10 KB of data, while Blockstack SNV lookups
use up several times or even an order of magnitude more
bandwidth. Quite evidently, Bitforest’s lookup procedure is far
more performant than Blockstack’s state-of-the-art blockchain-
based secure thin-client lookup.

Furthermore, Bitforest offers acceptable speed even compared
to systems with centralized trust. Fig. 3 compares lookup
latency between Bitforest and three systems lacking distributed
trust: unsecured DNS, DNSSEC-secured DNS with all signature
validation done by the client, and Blockstack’s default server-
trusting mode. For DNS, we look up a list of US government
DNSSEC-enabled domains [15] using the dig tool [16] and its
+sigchase option, while for Bitforest and Blockstack we use the
same set of random names from the first experiment. We see that
though DNS is very fast due to its aggressive caching, compared
with client-verified DNSSEC and server-trusting Blockstack, both
of which are less amenable to caching by the ISP, Bitforest offers
excellent performance, even though it has fully-verifying clients
and distributed trust.

Finally, we numerically simulate the lookup overhead of
Bitforest for extremely large namespaces impractical to create on
the Bitcoin testnet in a reasonable period of time. This is to test
whether or not proofs of existence stay reasonably small even as
the index tree grows deeper as more names are registered. We
create index trees of sizes ranging from 100 to 10 million locally
without broadcasting any transactions onto the blockchain, and
then randomly sample the sizes of proofs of existence. The results
of the simulation are plotted in Fig. 4; the solid line indicates
the median proof size, while the error bars plot the interval in
which 95% of the samples for each namespace size lie. We see
that even for very large namespaces, Bitforest’s lookup overhead
remains small — a 10-million-name index tree, for example, has
proofs of existence ranging in size from 10 to 19 KB.

230

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

e

(R e G |

-~
-

s N 2 L [e e - I LU : W

N R TR RN

Fig. 4: Bitforest proof-of-inclusion sizes for large namespaces

In conclusion, we see that the price Bitforest pays in lookup
performance to achieve much stronger security is quite small, and
should not be problematic for the vast majority of applications.

C. Bootstrapping data

To achieve identity retention as strong as that of Bitforest,
previous blockchain-based systems must use full nodes rather
than thin clients like Blockstack’s SNV, but blockchain full
nodes are notorious for requiring very large and linearly-growing
amounts of bootstrapping data. Classically, all full nodes must
download the entire blockchain on first connection and continually
synchronize it to local storage, causing large delays in joining
the network. Even if optimizations such as pruning [3] and
“fastsync”, commonly deployed on Blockstack nodes [6], obviate
the need to actually store all the blocks seen and speed up initial
download, new blocks must still be constantly replicated across
all nodes, using up significant amounts of bandwidth.

Bitforest eliminates the need to track an entire blockchain, but
thin clients for blockchains often still have a piece of linearly
growing bootstrapping data — the Bitcoin SPV blockchain
headers for example. How does the cost of keeping up with this
data compare to that of downloading and keeping up with a
blockchain?

TABLE I: Growth rates of bootstrapping data

System Mean monthly growth Cumulative size
Bitcoin (Blockstack) 1.20 GB 155.6 GB
Ethereum 3.37 GB 337.6 GB
Namecoin 67.6 MB 5.26 GB
Bitcoin SPV (Bitforest) 370.0 KB 40.7 MB

To answer this question, we use Table I, which shows how fast
bootstrapping data grows for various blockchains and Bitcoin
SPV, using blockchain data gathered from existing historical
records. Note that Blockstack full nodes also need to catch up
with the Bitcoin network like a Bitcoin full node, and thus the
Bitcoin numbers also apply to Blockstack. Bitforest on Bitcoin
has storage overhead corresponding to the numbers we give for

Bitcoin SPV — the overhead of storing the Bitcoin block headers.

It is clear that the rate at which blockchains typically grow is
quite high, and even blockchains with very low activity, such as
Namecoin, still eventually accumulate gigabytes of blocks. On the
other hand, although the thin-client access to blockchains needed
by Bitforest does have linearly growing bootstrapping data, the
growth rate is minuscule compared to that of blockchains and
would not be a problem for all but the most tightly constrained
embedded environments.

D. Costs of operating an NA

By committing transactions to a blockchain every time names
are registered or updated in the namespace, Bitforest NAs typically
need to pay blockchain-dependent transaction fees. For high-
volume public blockchains, these fees can incur a substantial
cost to the operator of the NA — this is especially apparent
with blockchains that have both high usage and a poorly-scaling
design, such as Bitcoin.

TABLE II: Bitforest transaction costs for various cryptocurrencies.
All prices are in US dollars.

Bitcoin Litecoin
Bootstrapping $0.032 $0.022
Creating new name $0.026 $0.015
Updating name $0.013 $0.011

However, since Bitforest is blockchain-neutral, it is possible to
choose between blockchains based on the cost of creating trans-
actions. Table II illustrates the costs of Bitforest operations over
the two blockchains our prototype supports, based on exchange
rates obtained from Coinbase [17], one of the most popular
cryptocurrency exchanges, in October 2018. We clearly see that
Bitforest operations does incur some transaction fees to the NA,
roughly comparable to those of systems such as EthIKS [8], but
these costs are quite low, and vary from blockchain to blockchain.

IV. CONCLUSION

In this paper, we presented Bitforest, a naming system with
blockchain-backed security. Bitforest uses a new architecture in-
formed by the successes and shortcomings of existing blockchain-
based systems such as Blockstack and EthIKS, combining a cen-
tralized lookup service trusted only for policy enforcement with a
novel, blockchain-neutral data structure built from cryptocurrency
transactions. This provides an efficiently queryable mapping from
names to cryptographic hashes of their respective bindings, while
ensuring that the central administrator cannot do anything that
violates identity retention without breaking the security guarantees
of the underlying cryptocurrency blockchain. Bitforest also allows
high flexibility for the administrator in areas such as access
control and privacy. Experimental results show that Bitforest
performs markedly better than existing blockchain-based systems,
with faster lookup than thin clients and dramatically reduced
storage overhead compared to full nodes; we also demonstrated
that its performance penalty compared to traditional centralized
PKIs is small to nonexistent.

231

14th International Conference on Network and Service Management (CNSM 2018) - Mini Conference

REFERENCES

[1]1 A. Delignat-Lavaud, M. Abadi, A. Birrell, I. Mironov, T. Wobber, and Y. Xie,
“Web pki: Closing the gap between guidelines and practices.” in NDSS, 2014.

[2] A. Niemann and J. Brendel, “A survey on ca compromises.” [Online].
Available: https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_CDC/Documents/Lehre/SS13/Seminar/CPS/cps2014_
submission_8.pdf

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[4] “Namecoin.” [Online]. Available: http://namecoin.info

[5] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized public
key infrastructure with identity retention,” Massachusetts Inst. Technol.,
Cambridge, MA, USA, Tech. Rep, vol. 6, 2014.

[6] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global

naming and storage system secured by blockchains,” in 2016 USENIX

Annual Technical Conference (USENIX ATC 16). USENIX Association,

2016, pp. 181-194.

H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan,

“An empirical study of namecoin and lessons for decentralized namespace

design,” in WEIS, 2015.

[8] J. Bonneau, “Ethiks: Using ethereum to audit a coniks key transparency
log,” in International Conference on Financial Cryptography and Data
Security. Springer, 2016, pp. 95-105.

[9]1 A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via bitcoin,”
in IEEE Symp. on Security and Privacy, 2017.

[7

[10] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Foundations of Computer Science, 1999. 40th Annual Symposium on. 1EEE,
1999, pp. 120-130.

[11] T. Perrin, “The xeddsa and vxeddsa signature schemes,” Specification. Oct,

2016.

[12] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman,
“Coniks: Bringing key transparency to end users.” in USENIX Security
Symposium, 2015, pp. 383-398.

[13] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering, pp.
1-13, 2012.

[14] C. Lee, “Litecoin,” 2011.

[15] “Estimating usg ipv6 & dnssec external service deployment status.” [Online].
Available: https://fedv6-deployment.antd.nist.gov/cgi-bin/generate-gov

[16] “dig(1) — linux man page.” [Online]. Available: https:/linux.die.net/man/
1/dig

[17] Coinbase, “Bitcoin, ethereum, and litecoin price.” [Online]. Available:

https://www.coinbase.com/charts

232

