
q A cluster of machines 

q 16~GB RAM

q 8-cores 3.30~GHz Xeon CPU

q 10~Gbps NIC.

q Orchestrator

q Programed by policies scripted in an adapted version of ℒ"#$%&' language 

q Reacts to environment states and threats

q Virtual Infrastructure Manager (VIM)

q Manages the resources of a virtual edge-server

q Provides a north-bound API for Orchestrator and SMAS

q Security Monitoring Analytics System (SMAS)
q Monitors and analyzes the collected data

q Feeds the orchestrator with alerts that may trigger security actions
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q Content Delivery Networks (CDNs) provide high QoE in delivering digital content
q CDNs cache content in edge-servers in the vicinity of end-users 
q Attacks against CDN edge-servers deteriorate QoE
q Limitations of current defense mechanisms

q Hardware security functions
q Expensive, not elastic, not flexible

q Scrubbing centers
q Redirection latency, proprietary mechanisms

q Current software solutions
q Massive changes in infrastructure, not-automated deployment, exclusive to DDoS

Introduction and Motivation

Dynamic Security Orchestration

Demo 1: Network Layer Rate Limiting

Architecture Components

Demo Setup

Mitigation Chain

q Attack
q TCP flooding attacks

q Impacts
q Exhausting bandwidth resources
q Making service unavailable

q Defense
q Per IP traffic rate-limiting

Context Security Policy

system must execute a certain sequence of actions. Essentially,
the enforcement of these policies translate into the deployment,
modification, and removal of security chains.

2) Virtual Infrastructure Manager (VIM): This component
manages security function chains and the virtual edge-server’s
resources. It provides a northbound API to create and delete
a chain, insert and delete a function to and from a chain, and
query information about deployed chains. We leverage Docker
[11], network service header [12], and open virtual switch [2]
in the VIM implementation.

3) Security Monitoring Analytics System (SMAS): This
component collects data about security chains using the VIM’s
API and monitors a virtual edge-server’s resources. SMAS
analyzes these data and sends alerts to the orchestrator which
may trigger security actions. In our current implementation,
SMAS monitors and analyzes network-bandwidth, storage,
memory, and processing resources.

III. DEMONSTRATION

CDNs commonly use rate-limiting in response to network
and application layer attacks [3], [4]. There are different rate-
limiting mechanisms, for example rate-limiting in different
layers of the protocol stack and per content, end-user, server,
and geography. In the following two demonstration scenarios,
we present how our system mitigates network layer and
application layer threats using rate-limiting.

A. Network Layer Rate Limiting

Context. Network flooding attacks (e.g., TCP flooding and
SYN flooding attacks) exhaust the resources of an edge-server
and make the service unavailable to legitimate end-users. In
a multi-stage scenario, we program our system to rate-limit
traffic per-IP which is a common rate-limiting mechanism to
mitigate TCP flooding attacks.

Environment Setup. We employ a cluster of machines each
of which equipped with 16 GB RAM, 8-cores 3.30 GHz Xeon
CPU, and 10 Gbps NIC. As the device under test, a server
hosts security chains and an active daemon of our system. One
to four servers generate traffic load using iperf client,
and a server running iperf server acts as the traffic sink.

Overview. Figure 2a illustrates the experimental setup of
this demo. We use Traffic Gen. 1 to send legitimate traffic
and Traffic Gen. 2 to 4 to generate flooding traffic. Our system
is programmed using security policies1 presented in Figure 3
to setup the mitigation security chain shown in Figure 2b.
Table I explains the details of the stages of this demonstration
scenario.

Details. The demo begins with sending only legitimate
traffic from Traffic Gen. 1 (stage 1). We incrementally increase
flooding traffic using Traffic Gen. 2 to 4 that results in a
throughput drop of the legitimate traffic (stages 2 to 4). If
the number of connections surpasses a predefined threshold,
too_many_con alert is raised to the orchestrator. As shown
in Figure 3, upon receiving the too_many_con alert, the

1For more details about the policies, we refer readers to our paper [9].
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Fig. 2: Network Layer Rate Limiting

TABLE I: The Stages of Responsiveness Experiment

Stage Flooding traffic share Active traffic generators

1 0% Traffic Gen. 1

2 50% Traffic Gen. 1 and 2

3 66.6% Traffic Gen. 1, 2, and 3

4 75% Traffic Gen. 1, 2, 3, and 4

5 Limited to 1 Gpbs Traffic Gen. 1, 2, 3, and 4

orchestrator is instructed by Policies 1-3 to deploy chain r
containing a Rate-limit, if no rate-limiting service exists. As
shown in Figure 2b, this chain applies per-IP rate-limiting on
traffic coming from Traffic Gen. 2 to 4, while the legitimate
traffic coming from Traffic Gen. 1 is exempted and directly
served. In this way, the flooding traffic is rate-limited, and the
throughput of the legitimate traffic is immediately recovered
(stage 5).

too_many_con initiates create_chain(r:

<“not src net 129.97.124.0/24”, 1, 2>,

{f :Rate-Lim.})

if not chain(r) (1)

lim after create_chain(r)

if true (2)

lim initiates run(f, “rate_limit.sh”)

if true (3)

Fig. 3: Network Layer Rate Limiting Policies

B. Application Layer Rate Limiting

Context. An important CDN application is Video on De-
mand (VoD) streaming. CDNs use HTTP-based media stream-
ing, such as HTTP Live Streaming (HLS) and HTTP Smooth
Streaming (HSS) to provide VoD services. These protocols
enable end-users to request different media qualities in near-
real-time. An original media is encoded and segmented into
multiple chunks with different bit-rates and formats. These
chunks are listed in a manifest file. A common VoD session

system must execute a certain sequence of actions. Essentially,
the enforcement of these policies translate into the deployment,
modification, and removal of security chains.

2) Virtual Infrastructure Manager (VIM): This component
manages security function chains and the virtual edge-server’s
resources. It provides a northbound API to create and delete
a chain, insert and delete a function to and from a chain, and
query information about deployed chains. We leverage Docker
[11], network service header [12], and open virtual switch [2]
in the VIM implementation.

3) Security Monitoring Analytics System (SMAS): This
component collects data about security chains using the VIM’s
API and monitors a virtual edge-server’s resources. SMAS
analyzes these data and sends alerts to the orchestrator which
may trigger security actions. In our current implementation,
SMAS monitors and analyzes network-bandwidth, storage,
memory, and processing resources.

III. DEMONSTRATION

CDNs commonly use rate-limiting in response to network
and application layer attacks [3], [4]. There are different rate-
limiting mechanisms, for example rate-limiting in different
layers of the protocol stack and per content, end-user, server,
and geography. In the following two demonstration scenarios,
we present how our system mitigates network layer and
application layer threats using rate-limiting.

A. Network Layer Rate Limiting

Context. Network flooding attacks (e.g., TCP flooding and
SYN flooding attacks) exhaust the resources of an edge-server
and make the service unavailable to legitimate end-users. In
a multi-stage scenario, we program our system to rate-limit
traffic per-IP which is a common rate-limiting mechanism to
mitigate TCP flooding attacks.

Environment Setup. We employ a cluster of machines each
of which equipped with 16 GB RAM, 8-cores 3.30 GHz Xeon
CPU, and 10 Gbps NIC. As the device under test, a server
hosts security chains and an active daemon of our system. One
to four servers generate traffic load using iperf client,
and a server running iperf server acts as the traffic sink.

Overview. Figure 2a illustrates the experimental setup of
this demo. We use Traffic Gen. 1 to send legitimate traffic
and Traffic Gen. 2 to 4 to generate flooding traffic. Our system
is programmed using security policies1 presented in Figure 3
to setup the mitigation security chain shown in Figure 2b.
Table I explains the details of the stages of this demonstration
scenario.

Details. The demo begins with sending only legitimate
traffic from Traffic Gen. 1 (stage 1). We incrementally increase
flooding traffic using Traffic Gen. 2 to 4 that results in a
throughput drop of the legitimate traffic (stages 2 to 4). If
the number of connections surpasses a predefined threshold,
too_many_con alert is raised to the orchestrator. As shown
in Figure 3, upon receiving the too_many_con alert, the

1For more details about the policies, we refer readers to our paper [9].
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TABLE I: The Stages of Responsiveness Experiment

Stage Flooding traffic share Active traffic generators

1 0% Traffic Gen. 1

2 50% Traffic Gen. 1 and 2

3 66.6% Traffic Gen. 1, 2, and 3

4 75% Traffic Gen. 1, 2, 3, and 4

5 Limited to 1 Gpbs Traffic Gen. 1, 2, 3, and 4

orchestrator is instructed by Policies 1-3 to deploy chain r
containing a Rate-limit, if no rate-limiting service exists. As
shown in Figure 2b, this chain applies per-IP rate-limiting on
traffic coming from Traffic Gen. 2 to 4, while the legitimate
traffic coming from Traffic Gen. 1 is exempted and directly
served. In this way, the flooding traffic is rate-limited, and the
throughput of the legitimate traffic is immediately recovered
(stage 5).

too_many_con initiates create_chain(r:

<“not src net 129.97.124.0/24”, 1, 2>,

{f :Rate-Lim.})

if not chain(r) (1)

lim after create_chain(r)

if true (2)

lim initiates run(f, “rate_limit.sh”)

if true (3)

Fig. 3: Network Layer Rate Limiting Policies

B. Application Layer Rate Limiting

Context. An important CDN application is Video on De-
mand (VoD) streaming. CDNs use HTTP-based media stream-
ing, such as HTTP Live Streaming (HLS) and HTTP Smooth
Streaming (HSS) to provide VoD services. These protocols
enable end-users to request different media qualities in near-
real-time. An original media is encoded and segmented into
multiple chunks with different bit-rates and formats. These
chunks are listed in a manifest file. A common VoD session
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q Device under test

q Hosting security chains 

q Hosting our system

q Traffic generators: iperf client

q Traffic sink: iperf server

Attack Emulation

q A cluster of machines 

q 16~GB RAM

q 8-cores 3.30~GHz Xeon CPU

q 10~Gbps NIC.

Demo 2: Application Layer Rate Limiting

Demo Setup

q We demonstrated a configurable security system that protects CDN edge-servers

q This system behavior is governed by high-level policies

q The deployment of security function chains is dynamic and automatic

q We illustrated how our system can be flexibly programmed to mitigate real-world threats

q In first demonstration, our system mitigates a network layer flooding attack

q Deploying a chain of a rate-limiting function recovering legitimate traffic

q In second demonstration, an application layer abusive behavior is rate-limited

q Deploying a chain of a TLS termination and a WAF to rate-limit abusive requests

Conclusion

q Device under test

q Hosting security chains 

q Hosting our system

q Traffic generators: VLC, curl

q Traffic sink: Apache server

Attack Emulation and Mitigation Chain

End-user 
3

End-user 
2

End-user 
1

Virtual 
Edge 

Server
Bridge

eth0

Web 
Server

eth0

Virtual Edge 
ServerTLS-Term

SMAS

eth0 eth1

WAF

eth0 eth1

4 5 6

21

3

 A P R I L  2 0 1 5  27

heaviest- hit industry sectors were 
gaming (33.67 percent), media and 
entertainment (23.65 percent), soft-
ware and technology (19.44 percent), 
financial services (9.22 percent), and 
Internet and telecom (8.82 percent). 
Further, attacks originated in every 
corner of the globe, with the largest 
sources being the US (23.95 percent), 
China (20.07 percent), Brazil (17.6 per-
cent), and Mexico (14.16 percent).

THE ATTACK LANDSCAPE 
DDoS attacks employ a wide range of 
mechanisms, as Figure 1 shows.1 To 
give a better sense of how such attacks work, we describe 
two popular types: volumetric attacks, also known as floods, 
and reflection/amplification attacks. In addition to DDoS 
attacks, we describe attempts to steal data using Web appli-
cation exploits. Our goal here is not to be comprehensive but 
only to provide a flavor of common current attack modes. 

Volumetric attacks
A flood attempts to overwhelm some component of the 
platform hosting the website by sending fake requests to 
the site. Imposing a very large demand for the platform’s 
resources can degrade or even completely deny service to 
legitimate users.

SYN floods are the most common, constituting nearly 
one- quarter of all reported DDoS attacks on websites 
hosted by Akamai in Q3 2014.1 A SYN flood works as fol-
lows. To establish a TCP connection with a server, a cli-
ent sends a packet with the SYN flag set. To acknowl-
edge receipt of the SYN packet, the server sends back a 
packet that has both the SYN and ACK flags set. The client 
then completes the “three- way handshake” by sending a 
packet with the ACK flag set, thus establishing the TCP 
connection. In a SYN flood, the attacker, acting as a client 
(or clients), sends a large number of SYN packets to a web-
server, but never responds to the server’s SYN- ACK pack-
ets with ACK packets. After sending a SYN- ACK response, 
the server waits for an ACK packet from the client, which 
never arrives. The large number of “half- open” TCP con-
nections, where the server is waiting for an ACK packet, 
tie up memory on the server, leaving too little to serve 
legitimate users. The flood could also exhaust bandwidth 
resources of network components en route to the server.

UDP floods are the second most common, accounting for 
15 percent of the DDoS attacks against Akamai customers 
in Q3 2014.1 The User Datagram Protocol is connectionless 
and thus does not require an initial handshake between 
the client and server. To prevent firewalls from filter-
ing these packets, attackers often use spoofed IP source 
addresses for the packets in the flood so they appear to 
originate from multiple legitimate sources. Attackers can 
also randomize the port to which UDP packets are sent to 
subvert port- filtering firewalls.

Besides network- layer protocols such as the Internet 
Control Message Protocol (ICMP), and transport- layer pro-
tocols such as the Transmission Control Protocol (TCP) and 
UDP, attackers often exploit application- layer protocols. 
The most common application- layer attack is a DNS flood, 
in which the attacker generates numerous Domain Name 
System requests and, typically, directs them at the author-
itative name servers of the target website. When the name 
servers’ resources are exhausted, legitimate users cannot 
receive valid DNS responses. Unable to resolve the web-
site’s domain name, the name servers deny service to legit-
imate users.

Large- scale volumetric attacks often present multi-
ple types of floods simultaneously. For instance, the larg-
est attack campaign measured by Akamai used both SYN 
and UDP floods, and generated 321 Gbps of bandwidth and 
72 million packets per second at peak. Such attacks typ-
ically employ botnets of personal computers and servers 
infected with malware. A more recent trend is for attackers 
to take over other sorts of devices commonly deployed in 
small enterprises or at home using ARM- based DDoS bina-
ries.1 Such devices include cable modems, mobile devices, 

SYN flood,
23.09%UDP flood,

15.25%

UDP fragment, 
13.88%

HTTP GET,
8.90%

ICMP,
8.05%

DNS,
7.42% SSDP,

7.31% NTP,
4.56%
CHARGEN, 

3.92%
ACK, 3.81%

TCP RESET, 0.64%

HTTP PUSH, 0.64%

HTTP POST, 0.53%

FIN flood, 0.42%

SYN PUSH, 0.42%

SSL GET, 0.42%

FIN PUSH, 0.21%
SNMP, 0.21%
SSL POST, 0.21%
RP, 0.11%

Other, 3.81%

FIGURE 1. Classification of distributed denial- of- service (DDoS) attacks that occurred 
in Q3 2014 on websites hosted by Akamai Technologies. Attackers can exploit a variety 
of protocols to conduct DDoS attacks, especially volumetric and reflection/amplification 
attacks. CHARGEN: Character Generator Protocol; ICMP: Internet Control Message Protocol; 
NTP: Network Time Protocol; RP: Reserved Protocol; SNMP: Simple Network Management 
Protocol; SSDP: Simple Service Discovery Protocol; UDP: User Datagram Protocol. 
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q Automatic and dynamic deployment and flexible modification of security services

q Instantiating and modifying security chains in reaction to events

q Inspecting only suspicious traffic by security services

q Classifying traffic at the beginning of the chains

q Attack
q HTTP flooding attacks

q Impacts
q Exhausting processing resources
q Degrading quality of experience

q Defense
q Per IP, per request rate-limiting

Context Security Policy

starts with an end-user acquiring a manifest file and then
issuing subsequent requests of individual chunks. Abusive end-
users attempt application-layer attacks by requesting video
chunks repeatedly. In response, CDNs need to mitigate such
threats by rejecting requests with abnormal rates. In this demo,
we present how our system can mitigate these threats.

Environment Setup. We use the same cluster of servers
employed in the first demo. A server runs an Apache based
streaming engine and an active daemon of our system. This
server maintains video chunks and their corresponding man-
ifest files and uses the HLS protocol to serve VoD requests.
End-users use VLC to request the manifest files. To implement
a legitimate behavior, we use VLC to issue requests for video
chunks automatically. On the other hand, an abusive behavior
is implemented by issuing frequent requests for one or several
video chunks. We use curl to request chunk URLs according
to the manifest files and retrieve the video chunks more
frequently compared to VLC.

Overview. Figure 4a depicts the setup of this demo. We
use End-user 1 to send legitimate requests, and End-user 2
and 3 to generate abusive requests. Figure 4b illustrates the
mitigation setup, and Figure 5 presents the policies that are
used to program the orchestrator.

Details. This demonstration scenario begins with 3 end-
users requesting for a video stream. End-user 1, the legitimate
end-user, streams the HLS formatted video by acquiring the
manifest file and issuing the corresponding chunk requests.
Once the manifest file is received, End-user 2, an abusive
end-user, starts issuing frequent requests for the same video
chunk during short time intervals. End-user 3, another abusive
end-user, requests a group of video chunks repeatedly. An
abnormal rate of manifest file or chunk requests from one
or several end-users raises a suspicious_ip alert. Such an alert
triggers Policy 4 in the orchestrator. As shown in Figure 4b,
the orchestrator deploys a chain composed of two security
functions: (1) a TLS termination which terminates TLS ses-
sions, and (2) a ModSecurity Web Application Firewall (WAF)
[1] programmed with rate-limiting policies in the application
layer. These rules instruct the WAF to limit VoD requests per-
IP. According to these rules a Web Server cannot deliver (to
an identical IP):

• a video chunk more than 2 times per 10 seconds
• a group of 4 video chunks more than once per 5 seconds

The parameters (i.e., the permitted rate of identical requests
per-IP) in the rate-limiting rules can be configured on a per-
media basis. For instance, chunks with a higher bit-rate could
be allowed to be requested less frequently (e.g., n chunks
downloadable every n×d time interval, where d is the average
length of chunks calculated from the manifest file), whereas
chunks with lower bitrates could be allowed to be downloaded
more frequently (n chunks every 0.5 n× d).

IV. CONCLUSION

This paper described the demonstration of a configurable
security system developed to protect edge-servers. This system
behavior is governed by high-level policies the enforcement of
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Fig. 4: Application Layer Rate Limiting

suspicious_ip initiates create_chain(l:

“not src net 99.231.0.0/16”, 1, 2,

{t : TLS-Term,w : WAF})

if not chain(l) (4)

Fig. 5: Application Layer Rate Limiting Policies

which results in the deployment of security function chains.
This deployment is achieved dynamically and automatically.
We illustrated the system architecture and demonstrated how
our system can be flexibly programmed to mitigate two real-
world threats. In the first demonstration, our system mitigates a
network layer flooding attack by deploying a chain consisting
of a rate-limiting function. We show how our system immedi-
ately recovered the degraded throughput of legitimate traffic.
In the second demonstration scenario, an application layer
abusive behavior is immediately rate-limited by deploying a
security chain including a TLS termination and a WAF that is
configured to rate-limit or block abusive requests.
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