

□ Reacts to environment states and threats

□ Virtual Infrastructure Manager (VIM)

- Manages the resources of a virtual edge-server
- Provides a north-bound API for Orchestrator and SMAS

Security Monitoring Analytics System (SMAS)

- Monitors and analyzes the collected data
- □ Feeds the orchestrator with alerts that may trigger security actions

Dynamic Security Orchestration for CDN Edge-Servers

Elaheh Jalalpour, Milad Ghaznavi, Daniel Migault, Stere Preda, Makan Pourzandi, and Raouf Boutaba David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada Ericsson Research, Montreal, QC, Canada

Demo 1: Network Layer Rate Limitin		
Context	Security Policy	
 Attack TCP flooding attacks Impacts Exhausting bandwidth resources Making service unavailable Defense 	<pre>too_many_con initiates create_chain(r:</pre>	
Demo	o Setup	
 A cluster of machines 16~GB RAM 8-cores 3.30~GHz Xeon CPU 10~Gbps NIC 	 Device under test Hosting security chains Hosting our system 	

Traffic sink: iperf server

Attack Emulation

Stage	Flooding traffic share	Active traffic generat
1	0%	Traffic Gen. 1
2	50%	Traffic Gen. 1 and 2
3	66.6%	Traffic Gen. 1, 2, and
4	75%	Traffic Gen. 1, 2, 3,

Mitigation Chain

ERICSSON

Demo 2: Application Layer Rate Limiting Security Policy Context suspicious_ip initiates create_chain(l: □ Attack 4", 1, 2>, □ HTTP flooding attacks "not src net 99.231.0.0/16", 1, 2, □ Impacts $\{t: TLS\text{-}Term, w: WAF\})$ □ Exhausting processing resources if not chain(l)Degrading quality of experience Defense Per IP, per request rate-limiting t.sh")**Demo Setup** A cluster of machines Device under test □ 16~GB RAM Hosting security chains □ 8-cores 3.30~GHz Xeon CPU Hosting our system □ 10~Gbps NIC. □ Traffic generators: VLC, curl □ Traffic sink: **Apache server Attack Emulation and Mitigation Chain** TLS-Term WAF End-user Virtual End-user Edge 13 Bridge Server and 4 End-user

Conclusion

□ We demonstrated a configurable security system that protects CDN edge-servers □ This system behavior is governed by high-level policies

- □ The deployment of security function chains is dynamic and automatic
- □ We illustrated how our system can be flexibly programmed to mitigate real-world threats
- □ In first demonstration, our system mitigates a network layer flooding attack
- Deploying a chain of a rate-limiting function recovering legitimate traffic □ In second demonstration, an application layer abusive behavior is rate-limited Deploying a chain of a TLS termination and a WAF to rate-limit abusive requests

