IIIIIIIIIIII

WATERLOO ERICSSON =

\\

A Security Orchestration

System for CDN Edge
Servers

ELAHEH JALALPOUR MILAD GHAZNAV| DANIEL MIGAULT

STERE PREDA MAKAN POURZANDI RAOUF BOUTABA



Outline

Introduction

Edge Server Security Orchestration
Implementation

Evaluation

Conclusion




» Introduction

Edge Server Security Orchestration
Implementation

Evaluation

Conclusion

Introduction

CONTENT DELIVERY NETWORK (CDN) ATTACKS AGAINST CDN EDGE-SERVERS

CONTENT DELIVERY PROCEDURE CURRENT DEFENSE MECHANISMS




Content Delivery Network

Content Delivery Network (CDNs) play a critical role in delivering digital content
o Open-Connect carries Netflix's content (35.2 of all the traffic across North America)

o Akamai CDN daily delivers more than 30 Thps of traffic

NETENN CGramar




Content Delivery Procedure

End Users
(Clients)

‘www.domain.com/video.mp4’? =9

IP of an Edge Server

PPpoo
— 000
000

—-— e e e e e e e e e e e e G G G G G G G G e e

0 Origin Servers |[€¢———p

- - == \

|

|
|

|
|

|
|

|
|

|
|

|
' l
| .
|Content Providerl

|
|

|
|

|
|

|
|

|
|

|
' l
l




Attacks against CDN Edge Servers

DENIAL OF SERVICE ATTACKS

TCP RESET, 0.64%

7.31% NTP,
4.56% HTTP PUSH, 0.64%

HTTP GET, CHARGEN,
8.90% 3.92%
ACK, 3.81% HTTP POST, 0.53%

Other, 3.81% FIN flood, 0.42%

SYN PUSH, 0.42%

SSL GET, 0.42%
FIN PUSH, 0.21%
SNMP, 0.21%
SSL POST, 0.21%
RP, 0.11%

[1] Gillman, D., Lin, Y., Maggs, B. and Sitaraman, R.K., 2015.
Protecting Websites from Attack with Secure Delivery Networks.
Computer, 48(4), pp.26-34.

APPLICATION LAYER ATTACKS

m SQL Injection - 84.8% m Command Injection - 0.3%
m Cross Site Scripting - 7.6% = PHP Injection - 0.4%

m Remote File Include - 6.9 %




Current Defense Mechanisms

Hardware Security Functions Scrubbing Centers Existing Software Defined Solutions
e Vertically integrated e Redirection latency * Not-automated deployment
e Not Elastic/flexible * Proprietary mechanisms e Exclusive to DDoS




Introduction

» Edge Server Security Orchestration
Implementation

Evaluation

Conclusion

Edge Server Security
Orchestration

OUR APPROACH
ARCHITECTURE




Our Approach

Virtual Security Functions In-house Mitigation Our Software Defined Solutions
* Virtual functions runningon  * No redirection latency e Automated deployment
commodity hardware e Custom mechanisms * Wide range of attacks

* Elastic/flexible

Hardware Security Functions Scrubbing Centers Existing Software Defined Solutions
* \Vertically integrated * Redirection latency * Not-automated deployment
* Not elastic/flexible * Proprietary mechanisms e Exclusive to DDoS




Our Approach

Deploying security services on edge servers

Dynamic and automatic deployment of security services

Security services realized through service function chaining




Architecture

Orchestrator
o Enforcing high-level policies
o Reacting to environment states and attacks

Virtual Infrastructure Managers

o Creating, updating, querying, and deleting
security chains

Security Monitoring Analytics System
° Monitoring and analyzing the collected data
o Feeding the orchestrator with alerts

Orchestrator

—

Virtual
Infrastructure
Manager

T

Security
Policies

Security
Monitoring
Analytics
System

|
|
|
|
|
|
|
|
|
|

r——===-- 1
|

'
II
'

|

|
|
|
|
|
b




Introduction

Edge Server Security Orchestration
» Implementation

Evaluation

Conclusion

Implementation

ORCHESTRATOR SECURITY MONITORING ANALYTICS SYSTEM

VIRTUAL INFRASTRUCTURE MANAGERS




Orchestrator

Adopting L, tive language

Event Condition Action paradigm
° Event
o Security alerts generated by SMAS
° Internal events
o Condition
° Time related
° Service related

o Traffic related

o Action

o Creating, deleting, modifying a chain

Orchestrator

Security
Policies

Virtual
Infrastructure
Manager

T

Security
Monitoring
Analytics
System




Orchestrator — Continue

SECURITY POLICIES ENFORCED SECURITY CHAIN

5::??’;?;:!';‘;‘::5 high_rate initiates create_chain(r: o Vitual Edge || [ | Virtual Edge |
event high rate <“not src net 129.97.124.0/24” 1, 2>, | Server || Rate-Lim. Server
happened and there {f:Rate-limit}) i E othd  Jetht
are no rate limiting if not chain(r) i 5
%Iﬁegﬁr}:\te limiting chain lim after create_chain(r) | _ Web ! 3 4 Web

: Bridge Server |! | Server

) lim initiates run(f, “rate_limit.sh”)
in response to event

lim

if true

Run Fate Limit.sh { it Ao g || o 1 BIAGE R 5 peng |




Virtual Infrastructure Manager

Docker
o Containers as service functions

Network Service Header (NSH)
Virtual

o |ETF standard for service function chaining Orchestrator Infrastructure
Manager

o Realizing service function paths

o Supporting carrying metadata

o Software based switching '\"Lonilto.””g
Security Sn alytics
Policies ystem




Virtual Infrastructure Manager — Cont.

VIM APIs Chain Specification Deployed Chain

def create_chain(chain_sp) {
def delete_chain(chain_name) "chain_name": "ch", Firewall IDS
def insert (chain_name, func_sp) "ingress": "1",
def delete(chain_name, func_name) "egress": "2", ;gf__g%' J%__]gﬁ
def run (func_name, cmd) "classification_rules": "ip",
def chains () "functions": | f f i
def chain(chain name) { 3 4 5 UU
def chain functions (chain_ name) "function_image": "Firewall", -
def functions () "function_name": "firewall”, — Bridge —_%EZ_"
def function (func_name) "nsh_aware": false
def steered (bpf,chain_name) },

"function_image": "IDS",

"function_name": "ids",

"nsh aware": false




Security Monitoring Analytics System

Periodic resource monitoring
> Network-bandwidth

o U e T e e e
| Security Chains

° Memory Virtual e :
Orchestrator —|Infrastructure —>: | |
o Storage Manager | Functionl [
I I
I I
[ J I

Event generation

o Based on predefined thresholds
Security
Monitoring

Standard Linux commands

Security Analytics
o /proc/stat Policies System
o free
o jostat




Introduction

Edge Server Security Orchestration
Implementation

» Evaluation

Conclusion
ENVIRONMENT SETUP RESPONSIVENESS
PERFORMANCE EVALUATION DYNAMIC SECURITY SERVICE




Environment Setup

A cluster of servers Traffic sink
° 16 GB RAM o iperf server
o 8-cores 3.30 GHz Xeon CPU o Apache Web Server
* 10 Gbps NIC Traffic generator
Device under test °c iperf client
° Hosting security chains > HTTPERF

o Hosting an active daemon of our system




Performance evaluation

Chain Deployment Time

1 1 1 1
[ Adding VNICs Delay
[|C3 Instantiating Function(s)
5 -

Time (s)
w

4 F
2 L
L I
0
1 2 3 4 5 6

Chain Length

Round Trip Time (us)

Traffic Round Trip Time

600 —
550 —
500 —
450

400 - - - -

350

300

0

1 2 3 4 5 6 7 3

Chain Length

Throughput vs. Chain Length

10000 -
9000 -
E Tooo
%% 6000
g 5000 -
£ 4000 -
g 3000 -
5 2000
& 1000 -

0 f f f f f f f i

o 1 2 3 4 5 6 7 8

Chain Length




Responsiveness

Traffic
o TCP flooding attacks

__ 10000
Defense é
L 8000
o Network layer rate-limiting 2
-
________________________ 2 6000
| _ Virtual Edge | o
Traffic | Rate-Lim. Server | 2 4000
Gen. 4 : I o
| eth0 eth1 : ﬁ
| | i 2000
g:: I% L | 3 4 Traffic || EJD
) \ggua' l Bridae Sink || 0 i i | | | i i i |
—> oo prof ] | 2 2 g l 0 20 40 60 80 100 120 140 160 180
Traffic —> | ' )
Gen. 2 | : Time (S)
I I
|
Traffic ! SMAS :
Gen. 1 | |
| |




Dynamic Security Service

Traffic
° 300 legitimate requests

o 100 suspicious requests

- * Dynamic — Static — Baseline |

o 400_"7:'_'1_'_7 T T .
Defense B 350 oo iee s R
o Applicati PR V00 J S D S A S
pplication layer mitigation e O S S S SRS Y R
8 200 Joopiei i
S e T e R Vi r?uél_EEg_;e_E g O A S S A e S G
End-user | e Server | S 100 -t T
3 i etho! @ 6tho oth : 50—-i.--E----E----E----%----E- --E----E--...E....E....E....
: I 1 3 l Web i 0 | | | | | | | | | |
End-user ’ \gggzl o~ E_LIJ LIJ_LIJ Lﬂ_@jﬁewer i 0 10 20 30 40 50 60 70 &0 90 100
2 — Server |! Bridge | Completion Time (ms)
End-user i :
1 : SMAS :




Introduction

Edge Server Security Orchestration
Implementation

Evaluation

» Conclusion

Conclusion

SUMMARY
FUTURE WORK




Summary

Software defined security orchestration for CDN edge-servers

Governed by high-level policies

Dynamic and automatic security function chaining




Future Work

NSH compatible SFs
o Passing the metadata between functions

Ensuring security policy consistency through formal verifications
° Free of conflicting rules

Reduce the signaling overhead in the Orchestration process
o Delegation of part of the SF chain management




Q&A




