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Content Delivery Network
Content Delivery Network (CDNs) play a critical role in delivering digital content
◦ Open-Connect carries Netflix's content (35.2 of all the traffic across North America)
◦ Akamai CDN daily delivers more than 30 Tbps of traffic
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Attacks against CDN Edge Servers
DENIAL OF SERVICE ATTACKS

 A P R I L  2 0 1 5  27

heaviest- hit industry sectors were 
gaming (33.67 percent), media and 
entertainment (23.65 percent), soft-
ware and technology (19.44 percent), 
financial services (9.22 percent), and 
Internet and telecom (8.82 percent). 
Further, attacks originated in every 
corner of the globe, with the largest 
sources being the US (23.95 percent), 
China (20.07 percent), Brazil (17.6 per-
cent), and Mexico (14.16 percent).

THE ATTACK LANDSCAPE 
DDoS attacks employ a wide range of 
mechanisms, as Figure 1 shows.1 To 
give a better sense of how such attacks work, we describe 
two popular types: volumetric attacks, also known as floods, 
and reflection/amplification attacks. In addition to DDoS 
attacks, we describe attempts to steal data using Web appli-
cation exploits. Our goal here is not to be comprehensive but 
only to provide a flavor of common current attack modes. 

Volumetric attacks
A flood attempts to overwhelm some component of the 
platform hosting the website by sending fake requests to 
the site. Imposing a very large demand for the platform’s 
resources can degrade or even completely deny service to 
legitimate users.

SYN floods are the most common, constituting nearly 
one- quarter of all reported DDoS attacks on websites 
hosted by Akamai in Q3 2014.1 A SYN flood works as fol-
lows. To establish a TCP connection with a server, a cli-
ent sends a packet with the SYN flag set. To acknowl-
edge receipt of the SYN packet, the server sends back a 
packet that has both the SYN and ACK flags set. The client 
then completes the “three- way handshake” by sending a 
packet with the ACK flag set, thus establishing the TCP 
connection. In a SYN flood, the attacker, acting as a client 
(or clients), sends a large number of SYN packets to a web-
server, but never responds to the server’s SYN- ACK pack-
ets with ACK packets. After sending a SYN- ACK response, 
the server waits for an ACK packet from the client, which 
never arrives. The large number of “half- open” TCP con-
nections, where the server is waiting for an ACK packet, 
tie up memory on the server, leaving too little to serve 
legitimate users. The flood could also exhaust bandwidth 
resources of network components en route to the server.

UDP floods are the second most common, accounting for 
15 percent of the DDoS attacks against Akamai customers 
in Q3 2014.1 The User Datagram Protocol is connectionless 
and thus does not require an initial handshake between 
the client and server. To prevent firewalls from filter-
ing these packets, attackers often use spoofed IP source 
addresses for the packets in the flood so they appear to 
originate from multiple legitimate sources. Attackers can 
also randomize the port to which UDP packets are sent to 
subvert port- filtering firewalls.

Besides network- layer protocols such as the Internet 
Control Message Protocol (ICMP), and transport- layer pro-
tocols such as the Transmission Control Protocol (TCP) and 
UDP, attackers often exploit application- layer protocols. 
The most common application- layer attack is a DNS flood, 
in which the attacker generates numerous Domain Name 
System requests and, typically, directs them at the author-
itative name servers of the target website. When the name 
servers’ resources are exhausted, legitimate users cannot 
receive valid DNS responses. Unable to resolve the web-
site’s domain name, the name servers deny service to legit-
imate users.

Large- scale volumetric attacks often present multi-
ple types of floods simultaneously. For instance, the larg-
est attack campaign measured by Akamai used both SYN 
and UDP floods, and generated 321 Gbps of bandwidth and 
72 million packets per second at peak. Such attacks typ-
ically employ botnets of personal computers and servers 
infected with malware. A more recent trend is for attackers 
to take over other sorts of devices commonly deployed in 
small enterprises or at home using ARM- based DDoS bina-
ries.1 Such devices include cable modems, mobile devices, 
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FIGURE 1. Classification of distributed denial- of- service (DDoS) attacks that occurred 
in Q3 2014 on websites hosted by Akamai Technologies. Attackers can exploit a variety 
of protocols to conduct DDoS attacks, especially volumetric and reflection/amplification 
attacks. CHARGEN: Character Generator Protocol; ICMP: Internet Control Message Protocol; 
NTP: Network Time Protocol; RP: Reserved Protocol; SNMP: Simple Network Management 
Protocol; SSDP: Simple Service Discovery Protocol; UDP: User Datagram Protocol. 

APPLICATION LAYER ATTACKS

SQL Injection - 84.8% Command Injection - 0.3%

Cross Site Scripting - 7.6% PHP Injection - 0.4%

Remote File Include - 6.9 %
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[1] Gillman, D., Lin, Y., Maggs, B. and Sitaraman, R.K., 2015. 
Protecting Websites from Attack with Secure Delivery Networks. 
Computer, 48(4), pp.26-34.



Current Defense Mechanisms
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Hardware Security Functions
• Vertically integrated
• Not Elastic/flexible

Scrubbing Centers
• Redirection latency
• Proprietary mechanisms

Existing Software Defined Solutions
• Not-automated deployment
• Exclusive to DDoS
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Our Approach
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Hardware Security Functions
• Vertically integrated
• Not elastic/flexible

Scrubbing Centers
• Redirection latency
• Proprietary mechanisms

Existing Software Defined Solutions
• Not-automated deployment
• Exclusive to DDoS

Virtual Security Functions
• Virtual functions running on 

commodity hardware 
• Elastic/flexible

In-house Mitigation
• No redirection latency
• Custom mechanisms

Our Software Defined Solutions
• Automated deployment
• Wide range of attacks



Our Approach 
Deploying security services on edge servers

Dynamic and automatic deployment of security services

Security services realized through service function chaining
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Architecture
Orchestrator

◦ Enforcing high-level policies
◦ Reacting to environment states and attacks

Virtual Infrastructure Managers
◦ Creating, updating, querying, and deleting 

security chains

Security Monitoring Analytics System 
◦ Monitoring and analyzing the collected data
◦ Feeding the orchestrator with alerts
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Implementation 
ORCHEST R ATOR  

V IRT UAL  INFR AST R U C T U R E M ANAGERS

SECU R IT Y  M ONITOR ING ANALY T ICS  SYST EM  
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Orchestrator
Adopting ℒ"#$%&' language

Event Condition Action paradigm
◦ Event

◦ Security alerts generated by SMAS
◦ Internal events

◦ Condition
◦ Time related
◦ Service related 
◦ Traffic related

◦ Action
◦ Creating, deleting, modifying a chain
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attempts. Various rate-limiting mechanisms exist, such as
limiting traffic-rate per user, geography, or server. In this
use-case, traffic is rate-limited per-user. Fig. 6 illustrates this
scenario, and Fig. 7 lists the applicable security policies.

Monitoring Stage. Fig. 6a shows the initial system deploy-
ment. At the beginning, SMAS performs light resource mon-
itoring of the virtual edge-server. Large traffic volume causes
high bandwidth and CPU consumption. SMAS identifies this
suspicious behavior as bandwidth and CPU are consumed
beyond certain thresholds. SMAS raises an alert, high_rate,
to notify the orchestrator regarding this suspicious traffic.

Rate Limiting Stage. Based on Rules 6-8, upon receiving
the alert high_rate, if no rate-limiting service exists, the
system deploys chain r containing a Rate-limit to limit the
traffic-rate per IP (representing per end-user traffic). A white-
list of IP addresses are exempted from rate-limiting. Fig. 6b
shows this chain. To enforce Rule 9, a timer starts after the
installation of the chain for the predefined period of time d.
Upon the expiry of this timer, a timeout event is generated
with a parameter tr. Finally, upon receiving the timeout event
carrying tr parameter, Rules 10 and 11 are matched. First,
executing Rule 10, chain n with no function is deployed. As
chain n connects ports 1 and 2, traffic is forwarded to the Web-
server. Then, Rule 11 is matched, and chain r is removed.

B. Mitigating HTTPS DDoS Use-case

HTTPS DDoS attacks exploit HTTP and HTTPS and target
Web applications running on a server [25], [44]. Such attacks
usually generate less traffic and use seamingly legitimate
requests, and are, therefore, harder to detect. CDNs commonly
utilize Web Application Firewalls (WAFs) to mitigate these
attacks [14], [17]. Inspection at the application layer is a heavy
process that can affect the application response time [9]. In this
use-case, our system deploys a security service to mitigate
HTTPS DDoS attacks. This service inspects the content of
suspicious traffic to mitigate the attack, while legitimate traffic
is served directly without inspection. Fig. 8 depicts this use-
case scenario, and Fig. 9 lists ECA policies enforced.

high_rate initiates create_chain(r:
<“not src net 129.97.124.0/24”, 1, 2>,
{f :Rate-limit})
if not chain(r) (6)

lim after create_chain(r)
if true (7)

lim initiates run(f, “rate_limit.sh”)

if true (8)
create_chain(r) causes timer(tr, d)

if true (9)
timeout(tr) initiates create_chain(n:<_, 1, 2>, {})

if true (10)
timeout(tr) initiates delete_chain(r)

if chain(r) (11)

Fig. 7: Rate Limiting Policies
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Fig. 8: Mitigating HTTPS DDoS Scenario

cpu_high initiates create_chain(u:<“ip”, 1, 2>,
{f :Firewall})
if not chain(u) (12)

block after create_chain(u)
if true (13)

block initiates run(f, “block.sh”)

if true (14)
create_chain(u) causes timer(td, d)

if true (15)
timeout(td) initiates create_chain(l:

“not src net 99.231.0.0/16”, f, 2,
{t : TLS-Term,w : WAF})
if not chain(l) and chain(u) (16)

cpu_low initiates create_chain(n:<_, 1, 2>, {})
if true (17)

cpu_low initiates delete_chain(u)
if chain(u) (18)

cpu_low initiates delete_chain(l)
if chain(l) (19)

Fig. 9: HTTPS DDoS Mitigation Policies

Orchestrator – Continue
SECURITY POLICIES ENFORCED SECURITY CHAIN
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attempts. Various rate-limiting mechanisms exist, such as
limiting traffic-rate per user, geography, or server. In this
use-case, traffic is rate-limited per-user. Fig. 6 illustrates this
scenario, and Fig. 7 lists the applicable security policies.

Monitoring Stage. Fig. 6a shows the initial system deploy-
ment. At the beginning, SMAS performs light resource mon-
itoring of the virtual edge-server. Large traffic volume causes
high bandwidth and CPU consumption. SMAS identifies this
suspicious behavior as bandwidth and CPU are consumed
beyond certain thresholds. SMAS raises an alert, high_rate,
to notify the orchestrator regarding this suspicious traffic.

Rate Limiting Stage. Based on Rules 6-8, upon receiving
the alert high_rate, if no rate-limiting service exists, the
system deploys chain r containing a Rate-limit to limit the
traffic-rate per IP (representing per end-user traffic). A white-
list of IP addresses are exempted from rate-limiting. Fig. 6b
shows this chain. To enforce Rule 9, a timer starts after the
installation of the chain for the predefined period of time d.
Upon the expiry of this timer, a timeout event is generated
with a parameter tr. Finally, upon receiving the timeout event
carrying tr parameter, Rules 10 and 11 are matched. First,
executing Rule 10, chain n with no function is deployed. As
chain n connects ports 1 and 2, traffic is forwarded to the Web-
server. Then, Rule 11 is matched, and chain r is removed.

B. Mitigating HTTPS DDoS Use-case

HTTPS DDoS attacks exploit HTTP and HTTPS and target
Web applications running on a server [25], [44]. Such attacks
usually generate less traffic and use seamingly legitimate
requests, and are, therefore, harder to detect. CDNs commonly
utilize Web Application Firewalls (WAFs) to mitigate these
attacks [14], [17]. Inspection at the application layer is a heavy
process that can affect the application response time [9]. In this
use-case, our system deploys a security service to mitigate
HTTPS DDoS attacks. This service inspects the content of
suspicious traffic to mitigate the attack, while legitimate traffic
is served directly without inspection. Fig. 8 depicts this use-
case scenario, and Fig. 9 lists ECA policies enforced.
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cpu_high initiates create_chain(u:<“ip”, 1, 2>,
{f :Firewall})
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block after create_chain(u)
if true (13)
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Virtual Infrastructure Manager 
Docker

◦ Containers as service functions

Network Service Header (NSH)
◦ IETF standard for service function chaining 
◦ Realizing service function paths 
◦ Supporting carrying metadata

Open Virtual Switch
◦ Software based switching
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Virtual Infrastructure Manager – Cont.

{
"chain_name": "ch",
"ingress": "1",
"egress": "2",
"classification_rules": "ip",
"functions": [
{
"function_image": "Firewall",
"function_name": "firewall",
"nsh_aware": false

},
{
"function_image": "IDS",
"function_name": "ids",
"nsh_aware": false

}
]

}

Fig. 3: The Specification of a Chain and its Functions
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Fig. 4: Service Function Chaining

2) Service Function Chaining: Functions are deployed
based on the function specification using Docker. VIM creates
and configures an OVS bridge which acts as the networking
medium between functions. VIM connects each function to
the OVS bridge by creating a veth-pair. One side of this
veth-pair is attached to the OVS bridge, and the other side
is connected to the container. Fig. 4a illustrates the deployment
of the chain defined in Fig. 3.

Three sets of rules are inserted to steer traffic through
the chain. i) Classification rules filter incoming packets from
ingress based on classification_rules and attach
NSH header to these packets. ii) Forwarding rules are NSH-
based match/action rules that forward packets between func-
tions. In packet forwarding based on NSH, functions have to
participate in forwarding by modifying the NSH header. In
the case of NSH-unaware functions, a function-proxy parses
and performs NSH-based forwarding actions. VIM implements
this proxying using a third set of rules as shown in Fig. 4b.
iii) Proxy rules match and remove the NSH header before for-
warding packets to an NSH-unaware function. After receiving
from the NSH-unaware function, the appropriate NSH header
will be reattached to packets by proxy rules.

3) Northbound API: VIM provides the API shown in Fig. 5.
Arguments chain_sp and func_sp are respectively the
specifications of a chain and a function and must follow the
specifications presented in Section III-C1. The first 5 methods
correspond to actions defined in Section III-B2. The others

1 def create_chain(chain_sp)
2 def delete_chain(chain_name)
3 def insert(chain_name, func_sp)
4 def delete(chain_name, func_name)
5 def run(func_name,cmd)
6 def chains()
7 def chain(chain_name)
8 def chain_functions(chain_name)
9 def functions()

10 def function(func_name)
11 def steered(bpf,chain_name)

Fig. 5: VIM API

TABLE I: Resource Statistics

Bandwidth CPU Memory Storage

Per-NIC util.
Bytes rec./sent
Packets rec./sent
Packet drops

Total util.
Per-core util.
Sys./user modes util.
Context switches
Interrupts and IOs

Pages-ins/outs
Swap-ins/outs

Free space
Transfer per sec.
Read/write per sec.

are query methods about chains, functions, and traffic used by
SMAS and the orchestrator.

D. Security Monitoring Analytics System

Security Monitoring Analytics System (SMAS) is respon-
sible for monitoring the logs of deployed functions and re-
sources of a virtual edge-server to collect important metrics,
analyzing these monitored data, and generating security alerts
to inform the orchestrator. In the current implementation of our
system, we focus on monitoring and analyzing the resources
of the virtual edge-server to handle misuse attacks.

SMAS periodically monitors and collects statistics on
network-bandwidth, CPU, memory, and storage resources.
Our implementation relies on Linux standard tools, such as
/proc/stat file, free command, and iostat command
for data collection. Typically, when the value of a relevant
metric passes some predefined threshold, SMAS generates an
alert indicating that this value is either over or under the
threshold. For instance, if the power utilization is above a
predefined threshold or is under another predefined threshold,
SMAS generates high_cpu or low_cpu, respectively.

The statistics collected for each resource are listed in
Table I. To decide which statistic to collect, we carefully select
the metrics that do not require high monitoring overhead.
We also select metrics that provide immediate and rewarding
information. For instance, SMAS does not monitor the average
file size, since it is an expensive process; in turn SMAS
monitors page-ins and page-outs whose high rates mean that
the memory is short, or the system is spending more resources
moving pages than running actual applications.

IV. USE-CASE SCENARIOS

A. Rate Limiting Use-case

Rate limiting is a common practice [13], [18], [15] that
CDNs use against threats ranging from network layer attacks,
e.g. DDoS, to application layer attacks, e.g. brute-force login
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Security Monitoring Analytics System (SMAS) is respon-
sible for monitoring the logs of deployed functions and re-
sources of a virtual edge-server to collect important metrics,
analyzing these monitored data, and generating security alerts
to inform the orchestrator. In the current implementation of our
system, we focus on monitoring and analyzing the resources
of the virtual edge-server to handle misuse attacks.
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Our implementation relies on Linux standard tools, such as
/proc/stat file, free command, and iostat command
for data collection. Typically, when the value of a relevant
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alert indicating that this value is either over or under the
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information. For instance, SMAS does not monitor the average
file size, since it is an expensive process; in turn SMAS
monitors page-ins and page-outs whose high rates mean that
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Security Monitoring Analytics System 
Periodic resource monitoring

◦ Network-bandwidth
◦ CPU
◦ Memory
◦ Storage

Event generation
◦ Based on predefined thresholds

Standard Linux commands
◦ /proc/stat
◦ free
◦ iostat
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Evaluation 
ENVIRONMENT SETUP

PERFORMANCE EVALUATION

RESPONSIVENESS

DYNAMIC SECURITY SERVICE
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Environment Setup
A cluster of servers

◦ 16 GB RAM

◦ 8-cores 3.30 GHz Xeon CPU

◦ 10 Gbps NIC

Device under test
◦ Hosting security chains

◦ Hosting an active daemon of our system

Traffic sink
◦ iperf server

◦ Apache Web Server

Traffic generator
◦ iperf client

◦ HTTPERF
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Performance evaluation 
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L3 Mitigation Stage. An HTTPS DDoS attack exhausts
the CPU power of the virtual edge-server. SMAS generates
cpu_high alert to notify the orchestrator that CPU is consumed
beyond a predefined threshold. Upon reception of this alert to
enforce Rule 12, the system instantiates chain u composed of a
Firewall named f , as shown in Fig. 8a. Chain u processes IP
traffic coming from port 1, going to 2 (the ingress of the Web-
server). This chain starts to filter non-HTTPS traffic (Rules 13
and 14); however, since the attack targets the application layer,
CPU load is still high.

L4 Mitigation Stage. Upon creating chain u, a timer starts
to count (Rule 15). When this timer expires, another chain l
comprising a TLS-Term (a TLS termination) and a WAF
is instantiated to perform mitigation at the application layer
(Rule 16). Fig. 8b depicts this deployment. Chain l processes
a subset of traffic coming out of function f , going to the
Web-server. Note that legitimate traffic, i.e. originating from
a white-list of source IP-addresses in range 99.231.0.0/16,
is still directly steered to the Web-server, while the rest of
the traffic, i.e. suspicious traffic, is steered through chain l.
TLS-Term decrypts suspicious traffic, and WAF inspects
plain-text traffic to mitigate application layer attacks including
HTTPS DDoS. If the CPU utilization drops under a predefined
threshold, the traffic is directly forwarded to the Web-server,
and both chains u and l are deleted (Rules 17-19).

V. PERFORMANCE EVALUATION

A. Experimental Platform
Testbed. We use a cluster of machines (16GB RAM, 8-

cores 3.30GHz Xeon CPUs) connected with 10 Gbps NICs.
The servers run Ubuntu 14.04 with Linux kernel version 3.16.
We use 1 to 4 servers as load generators, a server as the Device
under Test (DuT) to host chains, and a server as the traffic sink.
An active daemon of our system runs on DuT.

Traffic generation. We use iperf and Apache
benchmark (ab) to generate line-rate TCP and Web traffic,
respectively. iperf clients and ab run on the load generator
servers, and iperf server runs on the traffic sink server.

Service functions. We use two service functions. Function
fwd passes traffic from a virtual interface to another. We
intentionally use this function in experiments in which we
benchmark the overhead of our service function chaining
platform independent from the complex functionality of a
service function. The other function is Rate-limit which
limits the rate of the incoming traffic.

B. System in Action
We measure the overhead of deploying chains using our

system, and the overhead of our chaining mechanisms in terms
of latency and throughput.

1) Chain Deployment Time: This experiment measures the
time it takes to deploy a chain using our system. We vary the
chain length (the number of functions in a chain) from 1 to 7
and repeat each experiment 5 times. In the process of creating
a chain, instantiating functions and connecting them to OVS
are the two most time-consuming procedures. As shown in
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Fig. 11: Traffic Round Trip Time

Fig. 10, the chain of length 1 has the lowest deployment time
of 1.06 s, and the chain of length 7 has the highest deployment
time of 6.13 s. The VM-based platforms (e.g. Bohatei [27])
have a chain creation time in the order of minutes, while it
is evident from this experiment that our system is capable of
deploying service function chains in less than 7 seconds.

2) Round Trip Time: In this experiment, we measure the
Round Trip Time (RTT) of traffic steered through chains
deployed by our system. We use ping for the RTT measure-
ments, and repeat each experiment 5 times. As depicted in
Fig. 11, we vary the chain length from 1 to 7 fwd functions,
and report the RTT average and standard-deviation for each
chain-length. As expected, the chains of length 1 and 7 have
the lowest RTT (405.13 µs) and the highest RTT (495.04 µs),
respectively. Although the longer the chain, the higher the
RTT, the delay introduced by our routing mechanism is small.
As shown, the RTT of the chain of length 7 is only 89.91 µs
more than that of the chain of length 1.

3) Resource Utilization and Throughput: In this experi-
ment, we measure the maximum throughput of chains com-
posed of 1 to 7 fwd functions using iperf. We repeat each
experiment 5 times. All functions of a chain are instantiated
in a single server. As shown in Fig. 12, the chain-length has a
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system must execute a certain sequence of actions. Essentially,
the enforcement of these policies translate into the deployment,
modification, and removal of security chains.

2) Virtual Infrastructure Manager (VIM): This component
manages security function chains and the virtual edge-server’s
resources. It provides a northbound API to create and delete
a chain, insert and delete a function to and from a chain, and
query information about deployed chains. We leverage Docker
[11], network service header [12], and open virtual switch [2]
in the VIM implementation.

3) Security Monitoring Analytics System (SMAS): This
component collects data about security chains using the VIM’s
API and monitors a virtual edge-server’s resources. SMAS
analyzes these data and sends alerts to the orchestrator which
may trigger security actions. In our current implementation,
SMAS monitors and analyzes network-bandwidth, storage,
memory, and processing resources.

III. DEMONSTRATION

CDNs commonly use rate-limiting in response to network
and application layer attacks [3], [4]. There are different rate-
limiting mechanisms, for example rate-limiting in different
layers of the protocol stack and per content, end-user, server,
and geography. In the following two demonstration scenarios,
we present how our system mitigates network layer and
application layer threats using rate-limiting.

A. Network Layer Rate Limiting

Context. Network flooding attacks (e.g., TCP flooding and
SYN flooding attacks) exhaust the resources of an edge-server
and make the service unavailable to legitimate end-users. In
a multi-stage scenario, we program our system to rate-limit
traffic per-IP which is a common rate-limiting mechanism to
mitigate TCP flooding attacks.

Environment Setup. We employ a cluster of machines each
of which equipped with 16 GB RAM, 8-cores 3.30 GHz Xeon
CPU, and 10 Gbps NIC. As the device under test, a server
hosts security chains and an active daemon of our system. One
to four servers generate traffic load using iperf client,
and a server running iperf server acts as the traffic sink.

Overview. Figure 2a illustrates the experimental setup of
this demo. We use Traffic Gen. 1 to send legitimate traffic
and Traffic Gen. 2 to 4 to generate flooding traffic. Our system
is programmed using security policies1 presented in Figure 3
to setup the mitigation security chain shown in Figure 2b.
Table I explains the details of the stages of this demonstration
scenario.

Details. The demo begins with sending only legitimate
traffic from Traffic Gen. 1 (stage 1). We incrementally increase
flooding traffic using Traffic Gen. 2 to 4 that results in a
throughput drop of the legitimate traffic (stages 2 to 4). If
the number of connections surpasses a predefined threshold,
too_many_con alert is raised to the orchestrator. As shown
in Figure 3, upon receiving the too_many_con alert, the

1For more details about the policies, we refer readers to our paper [9].
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TABLE I: The Stages of Responsiveness Experiment

Stage Flooding traffic share Active traffic generators

1 0% Traffic Gen. 1

2 50% Traffic Gen. 1 and 2

3 66.6% Traffic Gen. 1, 2, and 3

4 75% Traffic Gen. 1, 2, 3, and 4

5 Limited to 1 Gpbs Traffic Gen. 1, 2, 3, and 4

orchestrator is instructed by Policies 1-3 to deploy chain r
containing a Rate-limit, if no rate-limiting service exists. As
shown in Figure 2b, this chain applies per-IP rate-limiting on
traffic coming from Traffic Gen. 2 to 4, while the legitimate
traffic coming from Traffic Gen. 1 is exempted and directly
served. In this way, the flooding traffic is rate-limited, and the
throughput of the legitimate traffic is immediately recovered
(stage 5).

too_many_con initiates create_chain(r:

<“not src net 129.97.124.0/24”, 1, 2>,

{f :Rate-Lim.})

if not chain(r) (1)

lim after create_chain(r)

if true (2)

lim initiates run(f, “rate_limit.sh”)

if true (3)

Fig. 3: Network Layer Rate Limiting Policies

B. Application Layer Rate Limiting

Context. An important CDN application is Video on De-
mand (VoD) streaming. CDNs use HTTP-based media stream-
ing, such as HTTP Live Streaming (HLS) and HTTP Smooth
Streaming (HSS) to provide VoD services. These protocols
enable end-users to request different media qualities in near-
real-time. An original media is encoded and segmented into
multiple chunks with different bit-rates and formats. These
chunks are listed in a manifest file. A common VoD session
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starts with an end-user acquiring a manifest file and then
issuing subsequent requests of individual chunks. Abusive end-
users attempt application-layer attacks by requesting video
chunks repeatedly. In response, CDNs need to mitigate such
threats by rejecting requests with abnormal rates. In this demo,
we present how our system can mitigate these threats.

Environment Setup. We use the same cluster of servers
employed in the first demo. A server runs an Apache based
streaming engine and an active daemon of our system. This
server maintains video chunks and their corresponding man-
ifest files and uses the HLS protocol to serve VoD requests.
End-users use VLC to request the manifest files. To implement
a legitimate behavior, we use VLC to issue requests for video
chunks automatically. On the other hand, an abusive behavior
is implemented by issuing frequent requests for one or several
video chunks. We use curl to request chunk URLs according
to the manifest files and retrieve the video chunks more
frequently compared to VLC.

Overview. Figure 4a depicts the setup of this demo. We
use End-user 1 to send legitimate requests, and End-user 2
and 3 to generate abusive requests. Figure 4b illustrates the
mitigation setup, and Figure 5 presents the policies that are
used to program the orchestrator.

Details. This demonstration scenario begins with 3 end-
users requesting for a video stream. End-user 1, the legitimate
end-user, streams the HLS formatted video by acquiring the
manifest file and issuing the corresponding chunk requests.
Once the manifest file is received, End-user 2, an abusive
end-user, starts issuing frequent requests for the same video
chunk during short time intervals. End-user 3, another abusive
end-user, requests a group of video chunks repeatedly. An
abnormal rate of manifest file or chunk requests from one
or several end-users raises a suspicious_ip alert. Such an alert
triggers Policy 4 in the orchestrator. As shown in Figure 4b,
the orchestrator deploys a chain composed of two security
functions: (1) a TLS termination which terminates TLS ses-
sions, and (2) a ModSecurity Web Application Firewall (WAF)
[1] programmed with rate-limiting policies in the application
layer. These rules instruct the WAF to limit VoD requests per-
IP. According to these rules a Web Server cannot deliver (to
an identical IP):

• a video chunk more than 2 times per 10 seconds
• a group of 4 video chunks more than once per 5 seconds

The parameters (i.e., the permitted rate of identical requests
per-IP) in the rate-limiting rules can be configured on a per-
media basis. For instance, chunks with a higher bit-rate could
be allowed to be requested less frequently (e.g., n chunks
downloadable every n×d time interval, where d is the average
length of chunks calculated from the manifest file), whereas
chunks with lower bitrates could be allowed to be downloaded
more frequently (n chunks every 0.5 n× d).

IV. CONCLUSION

This paper described the demonstration of a configurable
security system developed to protect edge-servers. This system
behavior is governed by high-level policies the enforcement of
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Fig. 4: Application Layer Rate Limiting

suspicious_ip initiates create_chain(l:

“not src net 99.231.0.0/16”, 1, 2,

{t : TLS-Term,w : WAF})

if not chain(l) (4)

Fig. 5: Application Layer Rate Limiting Policies

which results in the deployment of security function chains.
This deployment is achieved dynamically and automatically.
We illustrated the system architecture and demonstrated how
our system can be flexibly programmed to mitigate two real-
world threats. In the first demonstration, our system mitigates a
network layer flooding attack by deploying a chain consisting
of a rate-limiting function. We show how our system immedi-
ately recovered the degraded throughput of legitimate traffic.
In the second demonstration scenario, an application layer
abusive behavior is immediately rate-limited by deploying a
security chain including a TLS termination and a WAF that is
configured to rate-limit or block abusive requests.
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Summary
Software defined security orchestration for CDN edge-servers

Governed by high-level policies

Dynamic and automatic security function chaining
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Future Work
NSH compatible SFs

◦ Passing the metadata between functions

Ensuring security policy consistency through formal verifications
◦ Free of conflicting rules

Reduce the signaling overhead in the Orchestration process
◦ Delegation of part of the SF chain management 

25



26

Q&A


