
ENSC: Multi-Resource Hybrid Scaling for Elastic
Network Service Chain in Clouds

Hui Yu∗, Jiahai Yang∗, Carol Fung†, Raouf Boutaba‡, Yi Zhuang∗

∗Institute for Network Sciences and Cyberspace, Tsinghua University
†Department of Computer Science, Virginia Commonwealth University
‡David R. Cheriton School of Computer Science, University of Waterloo

yuhui7red@outlook.com, yang@cernet.edu.cn, cfung@vcu.edu

rboutaba@uwaterloo.ca, zhuangy17@mails.tsinghua.edu.cn

Abstract—Software-based network service chains in Network
Function Virtualization (NFV) need to be dynamically allocated
and scaled on hardware resources. This is because the resource
demand of virtual network functions (VNFs) typically varies
as a results of network flow volume. NFV elastic solutions by
coarse-grained horizontal scaling or fine-grained vertical scaling
have been investigated in recent years. However, none of the
existing solutions can achieve both efficiency and scalability. To
address this challenge, we propose elastic network service chain
(ENSC), which utilizes a fine-grained hybrid scaling method to
achieve both NFV efficiency and scalability. We systematically
compare horizontal scaling with vertical scaling from six aspects
and determine the priority within hybrid scaling. We formulate
the resource allocation problem in the cloud datacenter as an
integer linear programming (ILP) model and develop a heuristic
algorithm called Rubik. Our evaluation results show that ENSC
achieves higher acceptance ratios and resource utilization than
horizontal scaling and vertical scaling methods.

Index Terms—Middlebox; Network Function Virtualization;
Service Chain; Resource Scaling; Traffic Steering.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is an emerg-

ing technology that conquers the limitation of traditional

proprietary middleboxes [2] by decoupling Network Func-

tions (NFs) from dedicated hardware to standard commodity

servers, in order to reduce cost and improve flexibility. The

paradigm has been embraced by both academia and industry

rapidly by many leading companies and organizations [3].

A primary challenge of NFV is to dynamically allocate and

scale hardware resources for VNFs. The resource demand of

virtual network functions (VNFs) typically varies as a results

of network flow volume. If the resource cap is too low, the

VNF will experience degraded performance. On the other

side, if the resource cap is too high, resource will be wasted.

Therefore, an elastic resource scaling mechanism is called

upon to determine the resource allocation dynamically based

on the need at the time.

Several NFV studies [4], [5], [6], [7] have investigated NFV

elastic solutions by creating and destroying (scaling out/in)

VM replicas based on demand, while balancing the workload

among VMs, called horizontal scaling. Split/Merge [4] allow

the control over VNF state so that the VNFs can split or

merge for elastic execution. At the same time, the system

Fig. 1: A elastic network service chain with hybrid scaling.

partitions the network to ensure packets are routed to the

appropriate replica. E2 [5] presents a scalable and application-

agnostic scheduling framework for NFV packet processing.

However, those solutions are coarse-grained which may cause

resource over-provisioning and low resource utilization, be-

cause different VNFs can bottleneck on different resource [6].

Furthermore, the average VM startup time is costly [7] when

scaling out new VNF instances, which may further deteriorate

VNF performance. Therefore, we need a fine-grained scaling

method to achieve NFV efficiency.

Compared to horizontal scaling method, vertical scaling
method provides live resizing capability (scaling up/down) on

VMs. For instance, ElasticNFV [8] provides a fine-grained

cloud resource provisioning for VNFs. It can scale up/down

three types of resources by adjusting their resource caps and

uses a TPMM algorithm to solve scaling conflicts. Although

the vertical scaling method is superior in terms of perfor-

mance, it faces two problems: compatibility and scalability.

A study from Cao et al [9] shows that some VNFs cannot

improve their performance through resource vertical scaling,

especially vCPU and memory scaling. For example, scaling up

Snort [10] by allocating more vCPU resources is not an effec-

tive option, because Snort is a single-threaded application. On

the other hand, due to the physical machine (PM) capacity,

the vertical scaling method is limited to the capacity of a

single node. Therefore, the vertical scaling method aims at all

small and medium business and the horizontal scaling supports

small, medium and big business. In this sense, coarse-grained

horizontal scaling is more scalable than the vertical scaling.

In this paper, we present ENSC, which exploits a fine-

grained hybrid scaling method to achieve NFV scaling ef-

ficiency and scalability. The goal of ENSC is to realize

minimum performance degradation and minimum resource

cost of cloud datacenter for every service chain. To design an

34

2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-5386-7308-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICPADS.2018.00016

Suricata Varnish Flow Monitor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Middlebox

U
til

iz
at

io
n

CPU
Memory
Bandwidth

Fig. 2: Normalized resource usage of three middlebox.

elastic network service chain with hybrid scaling capability

to meet the above goal, two challenges shall be addressed.

The first is priority analysis for hybrid scaling. Hybrid scaling

contains vertical scaling and horizontal scaling as shown in

Fig. 1. We need a priority rule to determine when to scale

vertically and when to scale horizontally for VNFs to gain

optimal performance for every service chain. Second, when

the new flows come or existing flows change, we also need a

valid solution to determine how to schedule flows to optimize

resource allocation in cloud datacenter.

To address the above challenges, we systematically analyzes

the advantages and disadvantages of horizontal scaling and

vertical scaling from six aspects and conclude that vertical

scaling has higher priority than horizontal scaling. When a

PM cannot satisfy a scaling up request from VNFs, we can

also use flow migration to fix scaling up conflict and avoid

horizontal scaling. We formulate ENSC deployment in cloud

datacenter as an ILP model and propose a Rubik algorithm to

balance the trade-off in between speed and accuracy.

The contributions of this work can be summarized as

follows:

• We provide a priority analysis within hybrid scaling and

introduce a elastic multi-resource provisioning mecha-

nism of vertical scaling.

• We mathematically formulate the ENSC problem into

an ILP problem and propose a Rubik algorithm to

find a solution to optimize resource allocation in cloud

datacenter.

• We demonstrate that ENSC outperforms the existing

horizontal and vertical scaling solutions through experi-

ments.

The rest of the paper is organized as follows. Section II

analyzes the priority within hybrid scaling. Section III puts

forward an ILP model to formulate the resource allocation

problem in datacenter and a heuristic solution. Section IV

demonstrates experimental results. Finally we conclude the

work in Section V.

II. PRIORITY ANALYSIS OF HYBRID SCALING

In this section, we analyze priority within hybrid scaling to

achieve better performance for each service chain. The priority

rule determines when to scale up/down existing VNF instances

and when to scale out/in VNF instances for frequent workload

changes.

Resource utilization: Existing studies have found that

different VNFs can bottleneck on CPU, memory or link

bandwidth [6], [11], [12]. To verify these findings, we mea-

sured three types of resource footprints of several canonical

VNFs. Fig. 2 shows the results of three VNFs. Each VNF’s

maximum resource consumption was normalized to 1. We

can see that the resource consumption varies across three

types: the Suricata intrusion detection system [13] consumes

a vast amount of CPU resource, the Varnish HTTP cache [14]

bottlenecks on memory, and the flow monitoring implemented

on Click [15] is link bandwidth-bound.

Thus, an efficient resource utilization is to provide fine-

grained cloud resource provisioning for VNFs with the vertical

scaling method than to enable elasticity by creating and

destroying VM replicas with horizontal scaling.

Scaling period: Horizontal scaling method uses VM as

the scaling unit, which is limited by the VM startup time in

the cloud. Mao et al. [7] studied the startup time of cloud

VMs across three real-world cloud providers: Amazon EC2,

Microsoft Azure and Rackspace. The average VM startup time

of EC2 is 96.6 seconds, Azure is 356.6 seconds and Rackspace

is 44.2 seconds. As a vertical scaling method, KVM hypervi-

sor can dynamically adjust the number of vCPUs and memory

size of a VM at runtime. Performance measurements by Wind

River [16] show that it is possible to hot plug a CPU in

about 40 ms and unplug a CPU in about 20 ms. ElasticSwitch

[17] shows that bandwidth allocation between VMs can be

achieved in milliseconds. Compared to the VM startup time,

the vertical scaling time is negligible.

We conclude that vertical scaling methods are more time

efficient than horizontal scaling methods.

Response time: The horizontal scaling can be modeled

as multiple single-server queues (N M/M/1) and the vertical

scaling can be modeled as single queue with multiple servers

(1 M/M/N). Let N denote the number of queues for horizontal

elasticity or the number of servers for vertical elasticity. Let

λ denote the mean arrival rate, and μ denote the departure

rate. In normal conditions, λ is less than μ, otherwise there

will be a large backlog in the queue. For horizontal scalability

architecture, the average response time of the multiple single-

server queues is:

E[Rms] =
N

μ− λ
(1)

The single queue with multiple servers for elastic VM is:

E[Rsm] =
N · μ

μ2 − λ2
(2)

It is easily proven to be:

E[Rms]− E[Rsm] =
N · λ

μ2 − λ2
> 0 (3)

It can be strictly proved that the vertical scaling method

has faster response time than horizontal scaling method for

incoming tasks from the former VNFs.

Compatibility: Many researches are directed to paral-

lelizing VNFs with horizontal scaling [4], [5]. Elastic NFV

35

execution with horizontal scaling is relatively mature. On the

other hand, one of the challenging issue in vertical scaling is

that some VNFs cannot improve their performance through

dynamic resources scaling, especially vCPU and memory

scaling. As we mentioned, Cao et al [9] confirms the fact

that Snort scales poorly on multi-core systems. A potential

solution to this problem is to run multiple instances of Snort

and configure them to handle partial traffic in the same VM

(horizontal scaling).
As for the compatibility, horizontal scaling has more ad-

vantages than vertical scaling.
Scalability: Vertical scaling is limited to PM capacity,

which limits vertical scaling to small to medium businesses.

However, although horizontal scaling induces some perfor-

mance overhead, such as data synchronization and load bal-

ance, it can supports all small, medium and big business.
Therefore, horizontal scaling has better compatibility than

vertical scaling.
Robustness: The static load-balancer instance which sched-

ules flows among VNF instances can be a single-point-of-

failure in horizontal scaling. Compared to static VNF in-

stances, vertical scaling can avoid overloading and thus makes

it more resistant to failure. However, elastic VNF instances

themselves could be a single-point-of-failure.
Thus, these two scaling methods have similar performance

in robustness.
Through the above priority analysis from six aspects, we

conclude that vertical scaling has better performance than

horizontal scaling for elastic service chain, but horizontal

scaling can be applied to more scenarios. Therefore, vertial

scaling has higher priority than horizontal scaling.
As mentioned above, the average VNF instance startup time

varies from a few seconds to a few minutes. At the same

time, the flow migration can be completed in milliseconds. For

example, OpenNF [18] can move, copy and share internal NF

state alongside updates to network forwarding state. There-

fore, we leverage flow migration to fix scaling up conflict and

avoid scaling out new VNF instances, which can reduce the

system overhead induced by hybrid scaling.
In conclusion, vertical scaling has the highest priority

within hybrid scaling, then we can use flow migration to fix

scaling up conflict and avoid horizontal scaling, and horizontal

scaling has the lowest priority.

III. RESOURCE ALLOCATION IN CLOUD DATACENTER

In this section, we introduce our solution to schedule flows

to VNF instances and allocate service chains into physical dat-

acenters. Given that current datacenters are mostly organized

in oversubscribed tree-like topology [19], we consider a three-

layer single root tree-shaped datacenter for simplicity, which

is easy to expanded to multi-root topology. We start with the

formal definitions, followed by a mathematical modeling and

a heuristic solution.

A. Definitions
1) Physical Resource: R = {CPU,memory, . . .} repre-

sents different resource types of a physical machine.

2) Cloud Datacenter: D = (Ñ , L̃) represents a cloud

datacenter, where Ñ and L̃ are a set of physical machines and

physical links, respectively. crñ represents capacity of physical

machine ñ ∈ Ñ for resource type r ∈ R. bl̃ represents

bandwidth capacity of physical link l̃ ∈ L̃.
3) Service Chain: Ci = (N̄ , L̄) represents a service chain,

where N̄ and L̄ are a set of virtual links, respectively. I
represents set of service chains, i ∈ I . crn̄ represents capacity

of physical machine n̄ ∈ N̄ for resource type r ∈ R. bl̄
represents bandwidth capacity of physical link l̄ ∈ L̄.

4) Flow: F ik = (N,L) represents a flow, where N
represents a set of VNF instances the flow goes through and L
represents virtual links the flow goes through. K represents a

set of flows, k ∈ K. cikrn represents resource usage of flow in

VNF instance n̄ ∈ N̄ i for resource type r ∈ R. bikl represents

bandwidth usage of flow in virtual link l ∈ Lik.

TABLE I: Notations

Notations Definitions

r A resource

u Buffer of VNF instance

eikF Flow size of flow F ik

tikF Migration time of flow F ik

mik
Fn ∈ {0, 1} A boolean variable that indicates whether flow F ik

is migrated to VNF instance n ∈ N ik

oin̄ ∈ {0, 1} A boolean variable that indicates whether n̄i is a
new scaling out instance

xi
n̄ñ ∈ {0, 1} A boolean variable that indicates whether VNF in-

stance n̄i is embedded in physical machine ñ

yi
l̄l̃
∈ {0, 1} A boolean variable that indicates whether virtual link

l̄i is embedded in physical link l̃

yi
l̄ñ

∈ {0, 1} A boolean variable that indicates whether virtual link
l̄i is embedded in physical machine ñ

ziknn̄ ∈ {0, 1} A boolean variable indicates whether VNF instance
nik is VNF instance n̄i

wik
ll̄

∈ {0, 1} A boolean variable indicates whether virtual links lik

is virtual link l̄i

s̃ñl̃ ∈ {0, 1} A boolean variable indicates whether ñ is the source
of l̃

d̃ñl̃ ∈ {0, 1} A boolean variable indicates whether ñ is the desti-
nation of l̃

B. Mathematical Model
The challenge is how to meet resource demand of every

service chain leveraging hybrid scaling with minimum re-

source cost of datacenter. We propose a corresponding model

to formulate the hybrid scaling of service chains in datacenter.

Table I lists important notations used in this paper.
1) Physical Machine Capacity Constraint: Equation 4 en-

sures no violation of the capacities of physical machine for

resource r.
∑

i∈I

∑

n̄∈N̄i

xi
n̄ñ · cirn̄ ≤ crñ ∀ñ ∈ Ñ , r ∈ R (4)

2) Physical Link Capacity Constraint: Equation 5 ensures

no violation of the capacities of physical link for bandwidth.
∑

i∈I

∑

l̄∈L̄i

yi
l̄l̃
· bil̄ ≤ bl̃ ∀l̃ ∈ L̃ (5)

36

3) VNF Instance Capacity Constraint: Equation 6 ensures

no violation of the capacities of VNF instance for resource r.
∑

k∈K

∑

n∈N
ziknn̄ · cikrn ≤ cirn̄ ∀i ∈ I, n̄ ∈ N̄ i, r ∈ R (6)

4) VNF Link Capacity Constraint: Equation 7 ensures no

violation of the capacities of VNF link for bandwidth.
∑

k∈K

∑

l∈L
wik

ll̄ · bikl ≤ bil̄ ∀i ∈ I, l̄ ∈ L̄i (7)

5) VNF Instance Location Constraint: Equation 8 ensures

the embedding of every VNF instance n̄ ∈ N̄ i.
∑

ñ∈Ñ
xi
n̄ñ = 1 ∀i ∈ I, n̄ ∈ N̄ i (8)

6) VNF Link Location Constraint: Equation 9 ensures the

embedding of every VNF link l̄ ∈ L̄i.
∑

l̃∈L̃
yi
l̄l̃
+

∑

ñ∈Ñ
yil̄ñ = {1, 2, 4, 6, . . .} ∀i ∈ I, l̄ ∈ L̄i (9)

7) Flow Node Location Constraint: Equation 10 ensures

the embedding of every flow node n ∈ N ik.
∑

n̄∈N̄
ziknn̄ = 1 ∀i ∈ I, k ∈ K,n ∈ N ik (10)

8) Flow Link Location Constraint: Equation 11 ensures the

embedding of every flow link l ∈ Lik.
∑

l̄∈L̄
wik

ll̄ = 1 ∀i ∈ I, k ∈ K, l ∈ Lik (11)

9) Flow Constraint between Every Source and Destination
Node Pair: In our model, we also require virtual link embed-

ding to satisfy the flow constraint between every source and

destination node pair in each service chain topology. Equation

13 essentially states that the total outgoing flow of a physical

node ñ is equal to the total incoming flow unless ñ hosts

either a source or a destination virtual node.
∑

l̃∈L̃
s̃ñl̃ · yil̄l̃ −

∑

l̃∈L̃
dñl̃ · yil̄l̃ =

∑

n̄∈N̄
sin̄l̄ · xi

n̄ñ −
∑

n̄∈N̄
din̄l̄ · xi

n̄ñ

∀i ∈ I, l̄ ∈ L̄, n̄ ∈ N̄ (12)

10) VNF Instance Buffer Constraint: A safe flow migration

requires buffering in-flight traffic and avoids buffer overflow.

Equation 13 ensures no buffer overflow of the VNF instance

when migrating the flow.

mik
Fn · eikF · tikF ≤ u ∀i ∈ I, k ∈ K,n ∈ N ik (13)

11) Number of Flow Migrations: Equation 14 is the num-

ber of flow migrations.

T (M) =
∑

i∈I

∑

k∈K

∑

n∈Nik

mik
Fn (14)

12) Scaling Out VNF Instances: Equation 15 is the number

of scaling out VNF instances. Coefficient α ∈ R
+ identifies

the relative importance of the cost of scaling out VNF

instances.

S(O) = α ·
∑

i∈I

∑

n̄∈N̄i

oin̄ (15)

13) Host Usage: Equation 16 is the average host usage.

For each host, we take the lager usage between CPU and

memory as the host usage.

H(X) =
1

|Ñ | ·
∑

ñ∈Ñ
(maxr∈R

∑

i∈I

∑

n̄∈N̄i

xi
n̄ñ · cirn̄
crñ

) (16)

14) Bandwidth Usage: Equation 17 is the bandwidth us-

age. Coefficient β ∈ R
+ identifies the relative importance of

the usage of bandwidth resources.

B(Y) = β ·
∑

l̃∈L̃
∑

i ∈ I
∑

l̄∈L̄i yi
l̄l̃
· bi

l̄∑
l̃∈L̃ bl̃

(17)

15) Objective Function: Equation 18 is primary objective

function, which minimizes the performance overhead of hy-

brid scaling for each service chain.

min(T (M) + S(O)) (18)

Equation 19 is secondary objective function, which min-

imizes the aggregate cost of allocating host and bandwidth

resources to improve the utilization of datacenter.

min(H(X) +B(Y)) (19)

Equation 18 has higher priority than 19. Both two objective

functions subject to equations 4 - 13.

C. Rubik: Heuristic Solution

Rubik algorithm is a heuristic solution for the objective

function of mathematical model. As priority analysis in Sec-

tion II, here, we design the Rubik algorithm to realize the

following priorities: (1) the top priority is to satisfy a request;

(2) the second priority is to minimize the number of scaling

out VNF instances; (3) the third priority is to minimize

number of flow migrations; (4) the last priority is to minimize

the aggregate cost of allocating host and bandwidth resources

as equation 19. We use a multi-rooted tree (or fat-tree) which

is the predominant topology in today’s data centers.

Algorithm 1 Rubik Algorithm

Require: Topology tree T
Input: Request r :< t, f, c >

1: if t == DECREASE then // an existing flow decreases
2: for each VNF vi in c do
3: ScaleDown(f , vi)
4: ScaleIn(f , vi)

5: else
6: if t == NEW then // a new flow comes
7: Route(f , c)

8: for each VNF vi in c do
9: if ScaleUp(f , vi) == success then

10: continue
11: if Migrate(f , vi) == success then
12: continue
13: if ScaleOut(f , vi) == success then
14: continue
15: return false
16: return true

Let t denote request type, which contains two situation:

an existing flow change and a new flow arrival; f denotes a

37

Fig. 3: Flow routing.

flow; c denotes a service chain; vi denotes the ith VNF of

a service chain; vik denotes the kth VNF instance of VNF i
and p denotes the set of physical machines. Rubik algorithm

is shown in Alg. 1. If the request decreases an existing flow,

we iteratively scale down each corresponding VNF instance

vik and decide whether to scale in each VNF vi (lines 1-4) or

not. If the request is from a new flow, then we route the flow

among different VNF instances in the same VNF with a flow

routing algorithm (lines 6-7). For each scaling up request (an

existing flow increases or a new flow with path), we iteratively

scale up each corresponding VNF instance vik (lines 9-10).

When a PM cannot satisfy a scaling up request, we use a flow

migration algorithm to move some flows out of the overloaded

machine in order to accommodate the new request (lines 11-

12). Finally, if the flow migration algorithm still cannot solve

the problem, we create a new VNF instance by triggering the

scaling out process (lines 13-14).

In the rest of this subsection, we provide a detailed overview

of Rubik algorithm. We present the flow routing between two

VNFs, the flow migration among different VNF instances in

the same VNF, and how to scale out/in VNF instances.

1) Flow Routing: Procedure Route(.) is used to compute a

valid path for a new flow that minimizes the combined cost of

host allocation and bandwidth resources as shown in equation

19. Route(.) computes the solution by solving the multi-choice

multidimensional knapsack problem (MMKP) [20] as shown

in Fig. 3. MMKP is a more complex variant of the classical 0-

1 knapsack problem (KP), an NP-hard problem. Given a set of

knapsacks with limited resources and some disjoint groups of

items, where each item has a profit value and requires a certain

amount of resources, MMKP aims to fill the knapsacks by

picking exactly one item from each group, such that total profit

value of the collected items is maximized and no resource

constraint of the knapsack is violated.

Suppose there are l knapsacks and n groups of items, where

each group (denoted by i) has ri items. Let L = {1, 2, · · · , l}
be the knapsack set, N = {1, 2, · · · , n} be the group set,

Ri = {1, 2, · · · , ri} be the set of items in group i, vij be the

profit value of item j in group i, wk
ij be the amount of resource

k required by item j in group i, and bk be the resource amount

available on knapsack k. Formally, the objective function of

MMKP can be written as,

max
∑

i∈N

∑

j∈Ri

vij · xij , (20)

which subjects to

∑

i∈N

∑

j∈Ri

wk
ij · xij ≤ bk, k ∈ L, (21)

∑

j∈Ri

xij = 1, i ∈ N, (22)

xij ∈ {0, 1}, i ∈ N, j ∈ Ri. (23)

In the route algorithm, each VNF has several VNF in-

stances, which represent n groups of items and each group

has ri items. For each VNF in service chain, the algorithm

should choose one VNF instance to process the flow. xij =

1 denotes VNF instance vij has been chosen for the flow.

bk contains all the CPU and memory constraint of PM and

bandwidth constraint of PL. wk
ij be the amount of resource k

required by VNF instance vij when processing the flow. The

objective function of routing algorithm is equation 19.

Algorithm 2 Procedure Route(.)

1: for each VNF vi in c do
2: for each VNF instance vik in vi do
3: choose vik for f that meets min(H(x) + β ·B(Y))

4: while true do
5: for each VNF vi in c do
6: for each VNF instance vik in vi do
7: adjust vik for f that meets min(H(x) + β ·B(Y))

8: if no VNF instance adjustment then
9: break

The routing algorithms developed for solving MMKP can

be divided into two classes, namely, exact algorithms and

heuristics. Exact algorithms, mainly based on Branch-and-

Bound [21], strive to produce the optimal solution for MMKP.

However, all these exact algorithms can only be used to solve

small-sized problems due to the nature of NP-hard problems.

Therefore, many research efforts [22], [23] have been devoted

to the development of heuristics that can find good or near

optimal solutions within an acceptable computation time. The

routing algorithm is also a heuristic solution, which constructs

an initial feasible solution by a fast greedy procedure and

then improve the quality of the initial solution by swapping

items from each class. Route algorithm is shown in Alg. 2 and

works as follows. For each VNF vi in service chain, we choose

the VNF instance vik for flow f that meets the requirement

specified in equation 19, which constructs an initial feasible

path (lines 1-3). We iteratively swap VNF instances from each

VNF until there is no significant change in equation 19 (lines

4-9).

2) Flow Migration: When a scale-up conflict occurs, we

try to use a flow migration algorithm to migrate some flows

to avoid scaling out a new VNF instance as the priority

analysis of hybrid scaling. Procedures Migrate(.) and Place(.)
determine which flows should be migrated and where the

flows should be migrated to. At the same time, the algorithm

minimizes the number of migrated flows, and then also

minimize the aggregated cost of host allocation and bandwidth

resources as equation 19.

38

Algorithm 3 Procedure Migrate(.)

1: find flow set F allocated to vik which process f
2: sort F in ascending order by average resource demand
3: for m = 1 to size(F) do
4: for j = 1 to size(F)-m+1 do
5: if vik is enough after migrating Fj , · · · , Fj+m−1 then
6: if Place(Fj , Fj+1, · · · , Fj+m−1, vi) == success then
7: return true
8: return false

Algorithm 4 Procedure Place(.)

1: for j = 1 to SHUFFLE TIMES do
2: shuffle(F)
3: for each flow f in F do
4: choose vik for f that meets min(H(x) + β ·B(Y))

5: if all f in F have been placed then
6: return true
7: return false

This flow migration problem is also an NP-hard prob-

lem. Correspondingly, the flow migration algorithm is also

a heuristic solution. Procedure Migrate(.) is shown in Alg.

3. Firstly, the algorithm finds a flow set F allocated to VNF

instance vik which processes flow f and then sorts flow set

F in ascending order by average resource demand (lines 1-

2). Then it iteratively add the number of migrated flows. If

the PM of VNF instance vik has sufficient resources after

migrating the adjacent flows Fj , Fj+1, · · · , Fj+m−1, it then

migrates these flows using the procedure Place(.) (lines 3-8).

Procedure Place(.) is shown in Alg. 4. The procedure shuffles

the migrated flow (line 2). For each flow f in F , it chooses

a VNF instance vik for flow f that meets the requirement in

equation 19 (lines 3-4). If all f in F have been placed, the

flow migration is successful (5-6). Otherwise, the process is

repeated.

3) Scaling Out New VNF Instances: If the flow migration

can not solve the scaling conflict, we use procedure Scale-
Out(.) to create a new VNF instance to accommodate the

flows. Procedure ScaleOut(.) determines where a new VNF

instance should be created and which flows should be migrated

to the new VNF instance; It minimizes the number of new

VNF instances, and then the number of migrated flows, in

order to meet the requirement specified in equation 19.

Algorithm 5 Procedure ScaleOut(.)
1: for each PM p in P do
2: if p is enough for f and meets min(H(x) + β ·B(Y)) then
3: create a new VNF instance vik+1 on p
4: choose vik+1 for f
5: return true
6: return false

The scaling out problem is also NP-hard. Therefore, the

scaling out algorithm is a heuristic solution. Procedure Sca-
leOut(.) is shown in Alg. 5. Let P denote all the PMs in

cloud datacenter. For each PM p in P (line 1), if PM p has

sufficient resource for flow f and satisfy equation 19 (line 2),

we create a new VNF instance vik+1 on PM p and choose

this VNF instance vik+1 to process flow f (lines 3-4).

The time complexity of Rubik algorithm is bounded by

O(L · (F 2 · V + S · logS)) in the worst-case, where L is the

size of flow, F is the number of flows on a service chain, V
is the max number of VNF instances of a particular function

of a service chain, S is the number of PM. More specifically,

the Route algorithm is O(L · V), the Migrate algorithm is

O(L · F 2 · V), the ScaleOut algorithm is O(L · S · logS).
IV. EVALUATION

In this section, we use a simulation approach to evaluate the

performance of ENSC. Specifically, our experiments evaluate

the acceptance ratio and resource utilization of ENS, and we

compare ENSC with horizontal scaling method and vertical

scaling method respectively.

A. Experimental Setup

1) Simulated Cloud Datacenter: We developed a simulator

of a cloud datacenter. We used a 3-level tree topology to

simulate the datacenter network. The cloud datacenter has

one core switch, four aggregation switches, 80 ToR switches

and 1600 servers. The oversubscription rate of the physical

network is 2. For simplicity, we used a homogenous PM

type with identical CPU (12 vCPUs), memory (32GB), and

bandwidth capacity (1Gbps). It is straightforward to extend

the model to a heterogeneous environment. The upper-bound

bandwidth of PM, ToR switches, and aggregation switches are

1Gbps, 10Gbps, and 100Gbps, respectively.

2) Service Chain and Parameters: We selected the firewall

(Level 1 [24]), IDS (Suricata [13]), IPSec (Click [15]), and

WAN-opt (CCX770M [25]) as VNFs and interconnected the

four VNFs to achieve a service chain. We assessed ENSC in

respect to the size of flows and the length of chains. In each

experiment, the size of flows was selected from the set {5,

10, 20, 50, 100} Mbps, and one of the following chains was

selected as experimental scenarios.

• Chain-1: {firewall},
• Chain-2: {firewall → IDS},
• Chain-3: {firewall → IDS → IPSec}, and

• Chain-4: {firewall → IDS → IPSec → WAN-opt}.
We measured the CPU, memory and bandwidth demand

of the above four VNF chains under the five flow sizes. The

Poisson distribution with an average inter-arrival rate (λ) of

1-request per 5-milliseconds was used to simulate the arrival

process. The request lifetime followed an exponential distri-

bution with an average of one hour, which also determines the

departure process with departure rate μ. We did not consider

the bandwidth usage from sources to the first VNFs and from

the last VNFs to the targets.

3) Evaluation Method: To understand the performance of

ENSC, we compared ENSC with some horizontal scaling

methods such as FreeFlow [4] and some vertical scaling

methods such as ElasticNFV [8]. For each parameters setting,

we repeated the experiment 20 times for every 50000 requests

generated, and reported the average afterwards. Two types of

requests are considered in our experiments: the arrival of new

flows and the update of existing flows.

39

0 20 40 60 80 100

Flow size (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

ra
tio

Chain-1
Chain-2
Chain-3
Chain-4

(a) FreeFlow.

0 20 40 60 80 100

Flow size (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

ra
tio Chain-1

Chain-2
Chain-3
Chain-4

(b) ElasticNFV.

0 20 40 60 80 100

Flow size (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

ra
tio

Chain-1
Chain-2
Chain-3
Chain-4

(c) ENSC.

Fig. 4: Acceptance ratio: horizontal scaling vs. vertical scaling vs. hybrid scaling.

B. Acceptance Ratio

Fig. 4 depicts the acceptance ratios of FreeFlow, Elastic-

NFV and ENSC, respectively. The values are the average

of acceptance ratios from the 20 experiments. As we have

expected, the larger flows in longer chains are less likely to

be accepted. The low acceptance ratio for Chain-4 is due to the

resource starvation from those chains, especially from WAN-

opt which has a high demand of CPU and memory resources.

Fig. 4(a) demonstrates the range of the numbers of requests

accepted by FreeFlow: 72%-87% for Chain-1, 29%-74% for

Chain-2, 21%-55% for Chain-3, and 19%-26% for Chain-4.

As shown in Fig. 4(b), the acceptance ratios for ElasticNFV

are 81%-100% for Chain-1, 33%-95% for Chain-2, 25%-

73% for Chain-3 and 24%-42% for Chain-4. The results of

ENSC are shown in Fig. 4(c). The acceptance ratios are: 87%-

100%, 40%-98%, 32%-81% and 31%-52% for the four type

of chains respectively. We can see that ENSC has similar

acceptance ratio as ElasticNFV in terms of small flow sizes

and short chains. In both cases very few scaling up conflicts

occurred in this situation. As the length of the chains and the

size of flows increases, ElasticNFV has a higher acceptance

ratio than FreeFlow, and ENSC has a higher acceptance

ratio than ElasticNFV. Recalling from Section II, the goal

of ENSC is to improve the efficiency and scalability on top

of horizontal scaling and vertical scaling methods. Overall,

ENSC has a more competitive acceptance ratio than FreeFlow

and ElasticNFV.

C. Resource Utilization

Fig. 5 shows the comparison results of CPU, memory and

bandwidth utilization of ENSC and FreeFlow. The resource

utilization is the ratio of allocated and used resource over

physical resource capacities in the cloud datacenter. For

ENSC, we provided a fine-grained hybrid scaling for resource

provisioning. Therefore, the used resource is equalalent to the

allocated resource.

The CPU utilization ratios for ENSC/FreeFlow, as de-

picted in Fig. 5(a), are 112%-141% for Chain-1, 106%-130%

for Chain-2, 100%-127% for Chain-3, and 163%-272% for

Chain-4. The memory utilization ratios for ENSC / FreeFlow

are 121%-135% for Chain-1, 106%-134% for Chain-2, 100%-

157% for Chain-3, and 169%-274% for Chain-4 (Fig. 5(b)).

Fig. 5(c) shows that the bandwidth utilization ratios for

ENSC / FreeFlow are 100%-100% for Chain-1, 122%-151%

for Chain-2, 101%-132% for Chain-3, and 163%-429% for

Chain-4. Fig. 5 shows that ENSC efficiently utilizes the CPU,

memory and bandwidth resources for all chains under various

throughput demands. Regarding Chain-4, ENSC’s efficiency

in utilizing CPU and memory resources increases due to the

high CPU/memory demand from WAN-opt. Regarding Chain-

1, there is only one VNF without bandwidth cost between

VNFs. Therefore, the bandwidth utilization of ENSC is 0,

which is the same as FreeFlow in this situation.

Fig. 6 shows the comparison results of CPU, memory

and bandwidth utilization of ENSC with ElasticNFV. As we

know, ElasticNFV provides a fine-grained vertical scaling

for resource provisioning. Therefore, the used resource from

ElasticNFV is also the same as the allocated resource.

The CPU utilization ratios for ENSC / ElasticNFV, as

shown in Fig. 6(a), are 99%-108% for Chain-1, 99%-107%

for Chain-2, 101%-105% for Chain-3, and 102%-110% for

Chain-4. The memory utilization ratios for ENSC / Elas-

ticNFV are 99%-107% for Chain-1, 99%-106% for Chain-

2, 101%-106% for Chain-3, and 103%-109% for Chain-4

(Fig. 6(b)). As shown in Fig. 6(c), the bandwidth utilization

ratios for ENSC / ElasticNFV are 100%-100% for Chain-1,

104%-156% for Chain-2, 108%-116% for Chain-3, and 139%-

169% for Chain-4. Fig. 6 shows that ENSC has a higher

CPU, memory and bandwidth resources utilization for all

chains under various throughput-demands than ElasitcNFV.

In terms of Chain-2, Chain-3 and Chain-4, ENSC’s efficiency

in utilizing bandwidth resources is higher than ElasticNFV.

V. CONCLUSION

In this paper, we present ENSC - an elastic network service

chain solution that exploits fine-grained hybrid scaling to

achieve NFV efficiency and scalability. We analyzed the

priority within hybrid scaling to improve the performance

of ENSC. For resource allocation in cloud datacenter, we

formulated the ENSC deployment in cloud datacenter using an

ILP model. We proposed and evaluated a heuristic algorithm

called Rubik for larger scale networks. The experimental

40

0 20 40 60 80 100

Flow size (Mbps)

1

1.5

2

2.5

3

3.5

4

4.5

E
N

S
C

 /
F

re
eF

lo
w

Chain-1
Chain-2
Chain-3
Chain-4

(a) Average CPU utilization.

0 20 40 60 80 100

Flow size (Mbps)

1

1.5

2

2.5

3

3.5

4

4.5

E
N

S
C

 /
F

re
eF

lo
w

Chain-1
Chain-2
Chain-3
Chain-4

(b) Average memory utilization.

0 20 40 60 80 100

Flow size (Mbps)

1

1.5

2

2.5

3

3.5

4

4.5

E
N

S
C

 /
F

re
eF

lo
w

Chain-1
Chain-2
Chain-3
Chain-4

(c) Average bandwidth utilization.

Fig. 5: Average utilization: hybrid scaling vs. horizontal scaling.

0 20 40 60 80 100

Flow size (Mbps)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
N

S
C

 /
E

la
st

ic
N

F
V

Chain-1
Chain-2
Chain-3
Chain-4

(a) Average CPU utilization.

0 20 40 60 80 100

Flow size (Mbps)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
N

S
C

 /
E

la
st

ic
N

F
V

Chain-1
Chain-2
Chain-3
Chain-4

(b) Average memory utilization.

0 20 40 60 80 100

Flow size (Mbps)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E
N

S
C

 /
E

la
st

ic
N

F
V

Chain-1
Chain-2
Chain-3
Chain-4

(c) Average bandwidth utilization.

Fig. 6: Average utilization: hybrid scaling vs. vertical scaling.

results under various chain lengths and throughput demands

demonstrate that ENSC achieves higher acceptance ratios and

resource utilization than horizontal scaling and vertical scaling

methods.

VI. ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China (No.61432009).

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. Turck, and R. Boutaba,
“Network function virtualization state-of-the-art and research chal-
lenges,” in IEEE COMMUNICATIONS SURVEYS & TUTORIAL, 2016.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone elses problem: network pro-
cessing as a cloud service,” in ACM SIGCOMM Computer Communi-
cation Review, 2012.

[3] C. Matsumoto, “Leading lights 2017 finalists: Most innovative nfv
product strategy (vendor),” 2017. http://www.lightreading.com/nfv/nfv-
strategies/leading-lights-2017-finalists-most-innovative-nfv-product-
strategy-(vendor)-/d/d-id/732749.

[4] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in USENIX NSDI, 2013.

[5] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for nfv applications,” in ACM SOSP,
2015.

[6] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in ACM SIGCOMM, 2015.

[7] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in IEEE International Conference on Cloud Com-
puting, 2012.

[8] H. Yu, J. Yang, and C. Fung, “Elastic network service chain with fine-
grained vertical scaling,” in IEEE IWQoS, 2018.

[9] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
IEEE NFV-SDN, 2017.

[10] “Snort,” 2017. https://www.snort.org/.
[11] H. Dreger, A. Feldman, V. Paxson, and R. Sommer, “Predicing the

resource consumption of network intrusion detection systems,” in RAID,
2008.

[12] A. Anand, V. Sekar, and A. Akella, “Smartre: An architecture for co-
ordinated network-wide redundancy elimination,” in ACM SIGCOMM,
2016.

[13] “Suricata,” 2016. https://suricata-ids.org/.
[14] “Varnish,” 2009. https://varnish-cache.org/.
[15] “Click,” 2009. http://read.cs.ucla.edu/click/.
[16] “Wind river,” 2017. https://www.windriver.com/.
[17] L. Popa, P. Yalagandula, S. Banerjee, and J. Mogul, “Elasticswitch:

Practical work-conserving bandwidth guarantees for cloud computing,”
in ACM SIGCOMM, 2013.

[18] A. Jacobson, R. Viswanathan, C. Prakash, and R. Grandl, “Opennf:
Enabling innovation in network function control,” in ACM SIGCOMM,
2014.

[19] N. Farrington and A. Andreyev, “Facebooks data center network archi-
tecture,” in IEEE Optical Interconnects Conf, 2013.

[20] Z. Ren, Z. Feng, and A. Zhang, “Fusing ant colony optimization with
lagrangian relaxation for the multiple-choice multidimentional knapsack
problem,” in Information Sciences, 2012.

[21] A. Sbihi, “A best first search exact algorithm for the multiple-choice
multidimensional knapsack problem,” in Journal of Combinatorial
Optimization, 2007.

[22] M. Hifi, M. Michrafy, and A. Sbihi, “Heuristic algorithm for the
multiple-choice multidimensional knapsack problem,” in JORS, 2004.

[23] R. Hernandez, D. Jokanovic, and N. Shiratori, “A new heuristic for
solving the multichoice multidimensional knapsack problem,” in IEEE
Transactions on System, 2005.

[24] “Barracuda wap,” 2017. https://www.barracuda.com/.
[25] “Steelhead product family,” 2017. https://www.riverbed.com/.

41

