
µNF: A Disaggregated Packet 
Processing Architecture
Shihabur Chowdhury, Anthony, Haibo Bian, Tim Bai, and Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo

IEEE NetSoft 2019, Paris, France, June 26, 2019



Transition from middleboxes to VNFs

2

Purpose-built hardware middlebox
Commodity computing, storage &

switching equipment

NFs are run as Virtual Network 

Functions (VNFs) on pool of 

(virtual) resources



NFs are run as Virtual Network 

Functions (VNFs) on pool of 

(virtual) resources

Transition from middleboxes to VNFs

3

Purpose-built hardware middlebox
Commodity computing, storage &

switching equipment

Current practice

One-to-one 

substitution of 

middleboxes with 

monolithic VNFs



Monolithic VNF 
Limitations

Functional decomposition of commonly found 

NFs in Data Centers1

1S.R. Chowdhury, et al. Re-architecting NFV Ecosystem with Microservices: State-of-the-art and 

Research Challenges. IEEE Network, 33(3): 168-176, May 2019
4



1S.R. Chowdhury, et al. Re-architecting NFV Ecosystem with Microservices: State-of-the-art and 

Research Challenges. IEEE Network, 33(3): 168-176, May 2019

Monolithic VNF 
Limitations

Functional decomposition of commonly found 

NFs in Data Centers1

Coarse-grained resource 
allocation & scaling 2

Redundant development 
of common tasks

1

5



1S.R. Chowdhury, et al. Re-architecting NFV Ecosystem with Microservices: State-of-the-art and 

Research Challenges. IEEE Network, 33(3): 168-176, May 2019

Monolithic VNF 
Limitations

Functional decomposition of commonly found 

NFs in Data Centers1

Coarse-grained resource 
allocation & scaling

Wasted CPU cycles when 
VNFs are chained

2

3

Redundant development 
of common tasks

1

6

Service Function Chain



Monolithic VNFs: Impact on CPU usage

7

Edge Fw. →Monitoring →App. Fw

(C1)Click-based monolithic

VNFs chained with veth pairs

(C2) Optimized Click pipeline

Traffic

HTTP trace derived from a web-

service (~15k hits/mo)



Monolithic VNFs: Impact on CPU usage

8

Click Element CPU Cycles/packet 

saved in C2

Element weight 

in C1

FromDevice 71.9% 0.22%

ToDevice 67.1% 0.25%

CheckIPHeader 65.1% 0.44%

HTTPClassifier 48.28% 47.8%

Overall 29.5% -



How can we engineer VNFs to better 

consolidate functions on the same hardware, 

enabling finer-grained resource allocation while 

maintaining the same level of performance as 

the state-of-the-art approaches?

9



Microservices approach: Decompose VNFs into independently 

deployable and loosely-coupled packet processing entities.

How can we engineer VNFs to better 

consolidate functions on the same hardware, 

enabling finer-grained resource allocation while 

maintaining the same level of performance as 

the state-of-the-art approaches?

10



Micro Network Functions (µNFs)

11

VNF

µNF

µNF

µNF

µNF

µNF Processing Graph:

Pipelined execution of µNFs

Disaggregate

µNFs are:

reusable, loosely-coupled, 

independently deployable



Micro Network Functions (µNFs)

12

VNF

µNF

SFC

µNF

µNF

µNF

VNF templates (µNF Processing Graph):

Pipelined execution of µNFs

VNF0 VNF1 VNFp

µNF

µNF

µNF

µNF

µNF

µNF

Repeated µNFs removed

Similar µNFs consolidated

µNF processing graphs merged

…Disaggregate

µNFs are:

reusable, loosely-coupled, 

independently deployable Optimized µNF Processing Graph



System Overview

13

O
rc

h
es

tr
a
ti
on

 A
ge

n
t Rx

Service

Tx

Service

Mgmt

NIC
NIC(s)

µNF Orchestrator

Southbound API (e.g., DeployChain)

…

µNF-0

µNF-1

µNF-n

SFC + VNF templates + µNF

configuration generators + µNF

descriptors



µNF Components

14

O
rc

h
es

tr
a
ti
on

 A
ge

n
t Rx

Service

Tx

Service

Mgmt

NIC
NIC(s)

µNF Orchestrator

Southbound API (e.g., DeployChain)

…

PacketProcessor

Ctrl/Mgmt. API

iport to eport

mapping table

iport-0

iport-1

iport-k

…

eport-0

eport-1

eport-m

…

In
gr

es
s 

Po
rt

s

E
gr

es
s 

Po
rt

s

µNF-0

µNF-1

µNF-n

SFC + VNF templates + µNF 

configuration generators + µNF 

descriptors



Implementation

15

Rx/

Tx

µNF

Port

Implemented using DPDK Poll Mode Driver 

to bypass kernel. Implements packet classifier 

to distribute packets to µNFs

Secondary DPDK processes. Obtains pre-

allocated memory objects from the agent; 

works in polling mode.

Implemented using lockless multi-producer 

multi-consumer circular queue. Holds packet 

references for zero-copy packet exchange.

Agent
Primary DPDK process. Responsible for 

bootstrapping (initialize NIC, pre-allocate 

objects in memory, etc.)



Point-to-Point Ingress/Egress Ports

16



Experiment

Setup

17

2x6 core 2.1 GHz Intel Xeon E5 CPUs, 
32GB RAM, Intel 10G NIC

Two machines connected back-to-back 
without a switch

Hyper-threading disabled; All but cpu-0 
isolated from kernel scheduler ; µNFs 
pinned to CPU cores

Traffic generators: pktgen-dpdk
(throughput) and Moongen (latency) 



Microbenchmark: Throughput

18

core-1

Rx

Service

Tx

Service

core-2 core-3

MACSwapper



Microbenchmark: Latency

19

Longer chain ➔ Higher Latency

Can we improve latency?



Optimization: 
Parallel execution 
of µNFs

20

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2



Optimization: 
Parallel execution 
of µNFs

21

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0 µNF-1 µNF-2 µNF-3

µNF-0
µNF-1

µNF-3

µNF-2



Optimization: 
Parallel execution 
of µNFs

22

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0 µNF-1 µNF-2 µNF-3

µNF-0
µNF-1

µNF-3

µNF-2

BranchEgressPort

Embeds an atomic

counter in packets



Optimization: 
Parallel execution 
of µNFs

23

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0 µNF-1 µNF-2 µNF-3

µNF-0
µNF-1

µNF-3

µNF-2

BranchEgressPort MarkerEgressPort

Embeds an atomic

counter in packets

Increases atomic

counter in packets



Optimization: 
Parallel execution 
of µNFs

24

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0 µNF-1 µNF-2 µNF-3

µNF-0
µNF-1

µNF-3

µNF-2

BranchEgressPort MarkerEgressPort SyncIngressPort

Embeds an atomic

counter in packets

Increases atomic

counter in packets

Releases packets 

after all the µNFs 

have incremented 

the atomic counter



Optimization: 
Parallel execution 
of µNFs

25

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0
µNF-1

µNF-3

µNF-2



Optimization: 
Parallel execution 
of µNFs

26

The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0
µNF-1

µNF-3

µNF-2

More gainNot so significant gain



Impact of NUMA configuration

27

PCIe
NIC

core-1

Rx

Service

Tx

Service

core-2

MACSwapper

core-6

MACSwapper

core-7



Impact of NUMA configuration

28

PCIe
NIC

core-1

Rx

Service

Tx

Service

core-2

MACSwapper

core-6

MACSwapper

core-7

~3x drop in 

throughput 



Optimization: 
Pipelined Cache-
prefetching

29



Optimization: 
Pipelined Cache-
prefetching

30

Before processing starts: 
Prefetch a cacheline from 

first k packets

1



Optimization: 
Pipelined Cache-
prefetching

31

While processing packet i:

Prefetch a cacheline from 
packet (i + k)

2

Before processing starts: 
Prefetch a cacheline from 

first k packets

1



Optimization: 
Pipelined Cache-
prefetching

32

Prefetching ~20% packets in a batch improves 

throughput by ~3x

Before processing starts: 
Prefetch a cacheline from 

first k packets

1

While processing packet i:

Prefetch a cacheline from 
packet (i + k)

2



Performance of µNF-based SFC

33

Edge Fw. →Monitoring → App. Fw

RxService CheckIPHeader L3L4Filter

HTTPClassifier CountUrl ValidateUrl RxService

Drop
Deny

HTTP Safe

Allow

Other

Click Element
Saved

cycles/packet

Element 

weight in C1

CheckIPHeader 27.8% 0.44%

HTTPClassifier 28.9% 47.8%

Overall 16.8% -



What’s 
Next?

34

End-to-end aspects of the system: e.g., 
optimized µNF processing pipeline 
deployment with specific SLOs

Disaggregated & pipelined-packet 
processing for 25/40/100G line rate



35

https://github.com/micronf

Questions?


