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Purpose-built hardware middlebox
Commodity computing, storage &

switching equipment

Current practice

One-to-one 

substitution of 

middleboxes with 

monolithic VNFs
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Monolithic VNF 
Limitations

Functional decomposition of commonly found 

NFs in Data Centers1

Coarse-grained resource 
allocation & scaling

Wasted CPU cycles when 
VNFs are chained

2

3

Redundant development 
of common tasks

1
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Monolithic VNFs: Impact on CPU usage
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Edge Fw. →Monitoring →App. Fw

(C1)Click-based monolithic

VNFs chained with veth pairs

(C2) Optimized Click pipeline

Traffic

HTTP trace derived from a web-

service (~15k hits/mo)



Monolithic VNFs: Impact on CPU usage
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Click Element CPU Cycles/packet 

saved in C2

Element weight 

in C1

FromDevice 71.9% 0.22%

ToDevice 67.1% 0.25%

CheckIPHeader 65.1% 0.44%

HTTPClassifier 48.28% 47.8%

Overall 29.5% -
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the state-of-the-art approaches?
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Microservices approach: Decompose VNFs into independently 

deployable and loosely-coupled packet processing entities.
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Micro Network Functions (µNFs)
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VNF

µNF

SFC

µNF

µNF

µNF

VNF templates (µNF Processing Graph):

Pipelined execution of µNFs

VNF0 VNF1 VNFp

µNF

µNF

µNF

µNF

µNF

µNF

Repeated µNFs removed

Similar µNFs consolidated

µNF processing graphs merged

…Disaggregate

µNFs are:

reusable, loosely-coupled, 

independently deployable Optimized µNF Processing Graph
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µNF Components
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Implementation
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Rx/

Tx

µNF

Port

Implemented using DPDK Poll Mode Driver 

to bypass kernel. Implements packet classifier 

to distribute packets to µNFs

Secondary DPDK processes. Obtains pre-

allocated memory objects from the agent; 

works in polling mode.

Implemented using lockless multi-producer 

multi-consumer circular queue. Holds packet 

references for zero-copy packet exchange.

Agent
Primary DPDK process. Responsible for 

bootstrapping (initialize NIC, pre-allocate 

objects in memory, etc.)



Point-to-Point Ingress/Egress Ports
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Experiment

Setup
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2x6 core 2.1 GHz Intel Xeon E5 CPUs, 
32GB RAM, Intel 10G NIC

Two machines connected back-to-back 
without a switch

Hyper-threading disabled; All but cpu-0 
isolated from kernel scheduler ; µNFs 
pinned to CPU cores

Traffic generators: pktgen-dpdk
(throughput) and Moongen (latency) 



Microbenchmark: Throughput
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Microbenchmark: Latency
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Longer chain ➔ Higher Latency

Can we improve latency?
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The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0 µNF-1 µNF-2 µNF-3

µNF-0
µNF-1

µNF-3

µNF-2

BranchEgressPort MarkerEgressPort SyncIngressPort

Embeds an atomic

counter in packets

Increases atomic

counter in packets

Releases packets 

after all the µNFs 

have incremented 

the atomic counter
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The µNFs do not modify 
the same headers

1

Parallelize sequential 
blocks of µNFs if:

The µNFs do not modify 
the packet stream

2

µNF-0
µNF-1

µNF-3

µNF-2

More gainNot so significant gain
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Impact of NUMA configuration
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PCIe
NIC

core-1

Rx

Service

Tx

Service

core-2

MACSwapper

core-6

MACSwapper

core-7

~3x drop in 

throughput 
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packet (i + k)
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Optimization: 
Pipelined Cache-
prefetching
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Prefetching ~20% packets in a batch improves 

throughput by ~3x

Before processing starts: 
Prefetch a cacheline from 

first k packets

1

While processing packet i:

Prefetch a cacheline from 
packet (i + k)

2



Performance of µNF-based SFC
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Edge Fw. →Monitoring → App. Fw

RxService CheckIPHeader L3L4Filter

HTTPClassifier CountUrl ValidateUrl RxService

Drop
Deny

HTTP Safe

Allow

Other

Click Element
Saved

cycles/packet

Element 

weight in C1

CheckIPHeader 27.8% 0.44%

HTTPClassifier 28.9% 47.8%

Overall 16.8% -



What’s 
Next?
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End-to-end aspects of the system: e.g., 
optimized µNF processing pipeline 
deployment with specific SLOs

Disaggregated & pipelined-packet 
processing for 25/40/100G line rate
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https://github.com/micronf

Questions?


