
TMAS: A Traffic Monitoring Analytics System
Leveraging Machine Learning

Elaheh Jalalpour∗, Milad Ghaznavi∗, Raouf Boutaba∗, Toufik Ahmed†
∗ Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

†CNRS-LaBRI (UMR5800), University of Bordeaux / Bordeaux INP, France
∗{ejalalpo | eghaznav | rboutaba}@uwaterloo.ca, †tad@labri.fr

Abstract—Content Delivery Networks (CDNs) provide high
quality of service by storing content in edge-servers close to users.
Attacks against CDN edge-servers can lead to loss in revenue
and reputation. Attacks are becoming more sophisticated, and
new attacks are being introduced constantly. In our previous
work, we developed a security orchestration system driven by
high-level security policies to dynamically deploy mitigation
services. In this system, security policies are triggered at the
occurrence of low-level alerts that correspond to misuse of an
edge-server’s resources. However, a network operator must know
the effects of any attack on resources to deploy an appropriate
mitigation service. Moreover, pin-pointing the actual cause (e.g.,
malicious IPs) of resource misuse is challenging. Also, edge-
server’s resources may not be affected by some attacks.

Leveraging advanced machine learning techniques, we extend
our system to detect new and sophisticated attacks. The goal is to
enable the network operator to specify higher-level security poli-
cies without worrying about analyzing low-level resource usage
alerts. Further, policy enforcement can trigger the deployment
of mitigation services only for malicious entities identified by
the alerts. In this perspective, we propose a Hybrid Classifi-
cation Clustering (HCC) method that not only detects known
sophisticated attacks accurately (with 99.9% detection recall)
but is capable of detecting new attacks (with 56.4% detection
recall). Further, to improve the detection rate of new attacks and
anomalies, we propose an Autoencoder-based Network Anomaly
Detection (ANAD) method using a fully-connected autoencoder
model. The evaluation results show that our model achieves
76.7% recall surpassing the isolation forest and the local outlier
factor methods.

Index Terms—attacks, machine learning, hybrid, anomaly
detection, autoencoder

I. INTRODUCTION

Content Delivery Networks (CDNs) provide high quality
of service by caching and delivering content in edge-servers
located at points of presence close to users. Successful attacks
on CDN edge-servers can result in loss of revenue and
reputation for the CDN providers. Disrupting the operation
of edge-servers can take down a CDN. With this goal in
mind, attackers launch DDoS attacks against the edge-servers.
Attackers also manipulate communication protocols to exhaust
the resources of CDNs. They craft HTTP requests to bypass
filters, poison and pollute the cache, hijack sessions, and
launch other attacks [1], [10], [12]. The protection system
should be able to dynamically mitigate sophisticated well-
known and new attacks.

In our recent work [13], we introduced a security orches-
tration system that is programmed by security policies to
dynamically handle attacks. An important component of this
system is the Security Monitoring Analytics System (SMAS)
that monitors the resources of the edge-server and generates
low-level resource misuse alerts triggering security policies. To
dynamically deploy appropriate mitigation services in response
to attacks, a network operator must know or investigate the
effects of attacks on the resources. Acquiring this knowledge
is not trivial. Specifying security policies using low-level
alerts is a time-consuming and error-prone process. Moreover,
identifying and mitigating the actual cause (e.g., malicious
IPs) of resource misuse is complicated. Handling real world
complex and new attacks requires much deeper analysis of
their effects that do not necessarily leave footprints on the
resource usage of an edge-server.

To address the above challenges, it is important to endow
the security orchestration system with the capability to detect
complex and new attacks. Traditionally, attack signatures are
used to detect intrusions. Human experts manually craft these
signatures based on their knowledge of the intrusions, which
requires substantial delay to recognize new attacks and identify
their signatures. This limitation motivates the application of
machine learning and data mining methods that automatically
devise models replacing manually crafted attack signatures
[4]. In the literature, misuse and anomaly detection have been
extensively used for intrusion detection. Misuse detection is
commonly done using supervised machine learning, which re-
quires training over a labeled dataset’s records [19]. Although
accurate in detecting known attack types, supervised learning
methods are weak in detecting new attacks not seen in their
training dataset. Unsupervised anomaly detection methods
model the normal behavior of a system and detect deviations
from it; they are capable of detecting new attacks. A number
of anomaly detection algorithms have been proposed before.
However, they often suffer from low accuracy rate and higher
false alarms compared to supervised methods [14].

In this paper, we extend SMAS by introducing a Traffic
Monitoring Analytics System (TMAS) capable of generating
high-level alerts for complex and new attacks. TMAS monitors
incoming traffic to the edge-server and analyzes it using two
proposed machine learning methods. To tackle the aforemen-
tioned limitation of supervised machine learning, we propose
a Hybrid Classification Clustering (HCC) method that not only978-3-903176-15-7 © 2019 IFIP

408

SMAS

VIM

SMAS

Orchestrator

Security
Policies

RMAS

TMAS

Resource
Alerts

Attack
Alerts

HCC

ANAD

Detection using
Machine Learning

Fig. 1: Security Orchestration System

achieves high accuracy in the detection of known attacks (with
99.9% detection recall), but it can recognize new attacks (with
56.4% detection recall). To address the limitations of tradi-
tional anomaly detection methods, we propose Autoencoder-
based Network Anomaly Detection method (ANAD). This
method improves the accuracy of HCC in detecting new
attacks. Our method achieves 76.7% recall for anomalies and
surpasses the isolation forest and Local Outlier Factor (LOF),
two commonly used anomaly detection methods.

The remainder of this paper is organized as follows. We
provide a brief background of our security orchestration sys-
tem and introduce TMAS in Section II. The proposed machine
learning methods are presented in Section III. We evaluate the
system in Section IV. We discuss the related work in Section V
and conclude this paper in Section VI.

II. SECURITY ORCHESTRATION SYSTEM

Our security orchestration system reported in [13] is com-
posed of three components as shown in Figure 1. A network
operator programs the orchestrator using security policies
dictating the system behavior. The enforcement of the policies
involves the orchestrator receiving security alerts, deploying,
modifying, and removing security services. Virtual Infrastruc-
ture Manager (VIM) provides an API for the orchestrator to
manage security chains. Security Monitoring Analytics System
(SMAS) monitors virtual edge-server’s resources (e.g., mem-
ory and processing resources) and generates resource misuse
alerts to the orchestrator (e.g., high_mem and high_cpu).

In our previous work, SMAS is a Resource Monitoring Ana-
lyics System (RMAS) that only generates low-level resource
alerts. These alerts are suitable in mitigating resource misuse
attacks. However, programming security policies using such
low-level alerts to mitigate complex attacks is challenging.
In this work, we augment SMAS by introducing TMAS, a
Traffic Monitoring Analytics System which leverages machine
learning (ML) for detecting complex attacks.

Traffic Monitoring Analytics System (TMAS): As illus-
trated in Figure 1, SMAS is extended with a new component
called TMAS. This component monitors the incoming traffic to
the edge-server, analyzes it using our proposed ML methods,
and fires attack alerts, such as app_ddos, port_scan, and

anomaly. Based on these alerts, appropriate security policies
are triggered to mitigate attacks.

III. TRAFFIC MONITORING ANALYTICS SYSTEM

TMAS periodically monitors the edge-server’s incoming
traffic and extracts features of traffic flows identified using
the five tuple (source and destination IP addresses, source
and destination ports, and protocol). Then, TMAS runs our
ML algorithms to analyze the features for attack and anomaly
detection. In the following, we describe our proposed ML
methods, namely Hybrid Classification Clustering (HCC) and
Autoencoder-based Network Anomaly Detection (ANAD).

A. Hybrid Classification Clustering (HCC)

Table I compares HCC with classification and clustering
methods. As shown, HCC provides the benefits of both classi-
fication and clustering. Similar to a classifier, HCC detects the
types of known attacks. Similar to a clustering method, HCC
identifies whether a flow is a new attack (though the type of
a new attack is not determined). HCC trains a classifier using
labeled training dataset to detect existing attacks in the dataset,
which we refer to as known attacks. HCC uses a clustering
method to discover clusters that contain new attacks, i.e.,
previously unseen attacks in the classifier’s training dataset.

Overview: As shown in Algorithm 1, HCC receives as
incoming traffic features f and the number of clusters C
(line 1). Note that C is always greater than the number
of classes. For each class there is a corresponding cluster.
Additional clusters correspond to new attacks. In addition to
known class labels, the algorithm predicts the new_attack
label. First, the algorithm runs a pre-trained classifier and a
clustering method (lines 2 and 3). Next, HCC recognizes the
clusters that most probably contain the data points of a class
and returns the rest of the clusters as new attacks (line 4).
Combining all results, HCC predicts new labels for the data
points (line 5). Still to clarify is how to find new attack clusters
and how to find a new prediction.

Algorithm 1 Hybrid Classification Clustering

1: procedure HCC(f, C)
2: y1 ← classification(f)
3: y2 ← clustering(f, C)
4: N ← NOVELS(y1, y2)
5: y3 ← PREDICT(y1, y2, N)
6: return y3
7: end procedure

Finding New Attack Clusters: Algorithm 2 receives the
predictions and finds clusters that contain new attacks. To do
so, it compares the classification and clustering predictions
and relates clusters to classes. A cluster is considered known,
if its intersection with at least one class is larger than other
clusters’. The algorithm finds known clusters and considers
the remaining clusters as new attacks.

The algorithm receives the results of the classifier and
clustering methods in the form of two lists with indices

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 409

Methods Known Attack Type New Attack New Attack Type Labeled Training Dataset
Classification 3 5 5 3
Clustering 5 3 5 5
HCC 3 3 5 3

TABLE I: A Comparison Between Machine Learning Methods

showing the data points and values showing the predictions.
Next, it creates two dictionaries d1 and d2 (line 2). The
former is a mapping of the classes to their corresponding
data points, and the latter is a dictionary from the clusters
to their corresponding data points. The algorithm initializes
a list K that is iteratively extended with known clusters
(lines 3-11). For each class l1, the algorithm finds the size
of the intersection of the members of l1 with all the clusters’
members (lines 6-9). The clusters with the biggest intersection
with each class are identified and added to K (line 10). Each
class can be mapped to one or multiple clusters. The algorithm
returns the clusters that are not in K (line 12).

Algorithm 2 Finding New Attack Clusters

1: procedure NOVELS(y1, y2)
2: d1, d2 ← map(y1),map(y2)
3: K ← ∅
4: for l1 in d1 do
5: c← array(|keys(d2)|)
6: for l2 in d2 do
7: s← |values(d1, l1) ∩ values(d2, l2)|
8: set value of c at l2 to s
9: end for

10: K ← K ∪ argmaxes(c)
11: end for
12: return keys(d2)−K
13: end procedure

Finding A New Prediction: Dictionary d2 maps clusters
to their corresponding data points (line 2). List L is initialized
and iteratively updated by the data points in the new attack
clusters (line 4-6). List y3 that stores the final results is ini-
tialized by the classification results, then updated by changing
the values of data points in L to new_attack (lines 7-9).

Algorithm 3 Finding a New Prediction

1: procedure PREDICT(y1, y2, N)
2: d2 ← map(y2)
3: L← ∅
4: for c in N do
5: L← L ∪ values(d2, c)
6: end for
7: y3 ← y1
8: set values of y3 at L to new_attack
9: return y3

10: end procedure

B. Autoencoder-based Network Anomaly Detection (ANAD):
Anomaly detection approaches are able to discover new

intrusions by modeling the normal behavior of the system
and detecting any deviation from it [6], [11], [20]. Several
factors, such as the difficulty of having a boundary around the
normal behavior, intelligent adversaries who adapt themselves
to new detection methods, and insufficient training/testing data
make anomaly detection a complex task. Anomaly detection
methods are categorized as supervised, semi-supervised, and
unsupervised. The first category classifies traffic into two
classes, normal and anomalous. As discussed before, the super-
vised methods are not adequate in detecting new attacks. Semi-
supervised approaches are trained based on normal traffic only.
Providing real traffic traces which only contain normal data
is a complex task. Unsupervised learning approaches detect
anomalies without any labeled training data with the assump-
tion that normal traffic instances are much more frequent
than anomaly instances [3], [6]. However, most unsupervised
anomaly detection methods suffer from low accuracies.

We propose an unsupervised network anomaly detection
method using autoencoder, a deep learning model.

Autoencoder: Autoencoders are deep neural networks
trained to learn efficient data coding. Figure 2 shows a sample
autoencoder. An autoencoder contains an input layer, one or
more hidden layers, and an output layer. The input and output
layers of an autoencoder have the same dimension, while the
number of neurons may vary in hidden layers. The first part of
this model, the encoder, transforms the high dimensional input
x into a lower dimensional representation z. Equation (1) is
the encoder function of a single encoder layer, where σ is the
activation function, W is the weight matrix, and b is the bias
vector of the hidden layer. The autoencoder decodes data in
what is called the latent space and learns to extract the most
important features in the decoding phase. The second part,
decoder, uses this lower representation to rebuild the input
in x′. Equation (2) presents the decoder function; W ′ is the
weight matrix, and b′ is the bias vector of the hidden layer. The
loss function of an autoencoder is based on the reconstruction
error, the difference between the input x and prediction x′.

z = σ(Wx+ b) (1)

x′ = σ(W ′z + b′) (2)

ANAD: Our method trains a fully-connected autoencoder
with unlabeled training dataset. Note that the training dataset
consists of mostly normal data points. The reconstruction
errors of anomalies are higher than those of the normal data
points, because the autoencoder tries to learn the encoding

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference410

Encoder Decoder

x x'

input output

z

Fig. 2: Autoencoder Neural Network

and decoding of the normal data points which constitute most
of the data. To compute the reconstruction error of a data
point, we use its Residual Sum of Square (RSS) as presented
in Equation (3), where x is the input, x′ is the prediction, and
n is the number of input features.

n∑
i=1

(xi − x′i)
2 (3)

ANAD analyzes incoming flows as shown in Algorithm 4. This
method receives the input data points x and contamination
parameter c stating the proportion of anomalies in the given
data points (line 1). ANAD runs the autoencoder and stores
the predictions in x′ (line 2). For each data point, this
method computes and stores its reconstruction error using RSS
(lines 3-6). The algorithm sorts the data points descendingly
based on their reconstruction errors and returns the top c
percent as anomalies (lines 7-8). For a constant number of
alerts, a network operator can set the contamination parameter
c based on the flow incoming rate.

Algorithm 4 Autoencoder-based Network Anomaly Detection

1: procedure ANAD(x, c)
2: x′ ← autoencoder(x)
3: e← ∅
4: for x1, x2 in x, x′ do
5: e← e ∪ RSS(x1, x2)
6: end for
7: sort x based on e descendingly
8: return top c% of x
9: end procedure

IV. EVALUATION

A. Experimental Platform
We use a server cluster (256 GB RAM, 32-cores 2.00 GHz

Xeon CPUs), equipped with NVIDIA Tesla K10 GPU
(320 GBps memory bandwidth, 3072 CUDA cores 745 MHz).
The server runs Ubuntu 16.04 with Linux kernel version 4.4.0.

B. Dataset
We leverage a labeled dataset CIC-2017 [22] to train and

test our models. This dataset consists of normal and multiple

Class Number of Flows Label

Normal 182491 0
DoS Hulk 230124 1
Port scan 158804 2

TABLE II: Data Points for HCC Evaluation

types of attack traffic. In addition to packet capture (pcap)
files, network flows, and their corresponding features have
been extracted using CICFlowMeter [2]. To simulate an edge-
server traffic, we use flows towards a victim server.

C. Training and Testing

We use 70% and 30% of the labeled data points as the
training dataset and testing dataset, respectively. These data
points are labeled as either normal or attack (e.g., DDoS and
port scan). There are 81 features for each flow from which
we extract 76 features. IP addresses and port numbers are 32-
bit and 16-bit numerical values, respectively. These numerical
features are commonly used to train machine learning algo-
rithms; however, flows from different classes might have close
numerical port numbers, and the machine learning algorithm
interprets the close numbers as similarity between data points.
The same argument applies to IP addresses. Thus, the source
and destination IPs, the source and destination ports, and the
flow identification are removed from our feature set.

Throughout this section, the performance of a machine
learning method is reported using the normalized confusion
matrix, where an element ij represents what percentage of
class i is classified under class j. In this way, the elements on
the diagonal show the recall or true positive rate values. The
sum of the non-diagonal elements of a row shows the false
negative rate for the corresponding class.

D. Attack Detection Performance

To evaluate the performance of HCC, we need to equip this
algorithm with a classifier and a clustering method. To do so,
we run and compare a number of classifiers and select the
one that achieves the highest performance. We do the same
for clustering methods. To show the effectiveness of HCC in
mitigating new attacks, we compare our hybrid method with
the best selected classifier. For training and testing purposes,
we use three classes of flows listed in Table II.

1) Classifiers and Clustering Methods Performance: We
trained a decision tree, a random forest, and a bagging classi-
fier. We also trained an ensemble voting, which uses a voting
mechanism between the above three classifiers. Although these
models have close recall values, the bagging classifier has a
recall of 100% for both normal and DoS Hulk classes and
99% for the port scan class which makes this classifier the
best among those tested.

We used K-means and Mini-batch K-means to divide flows
into 3 clusters. Their performance is shown in Figure 3. A
cluster with the most data points of a class c is mapped to c
and the recall of c is computed based on the data points in

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 411

0 1 2

0
1

2

78.8 2.91 18.3

37.8 56 6.19

0.0455 0.0152 99.9

KMeans

0

20

40

60

80

100

(a) K-means

0 1 2

0
1

2

18.3 2.91 78.8

6.19 56 37.8

99.9 0.0152 0.0455

MiniBatch KMeans

0

20

40

60

80

100

(b) Mini-batch K-means

Fig. 3: Performance of Clustering Methods

0 1 2

0
1

2

100 0 0.0259

97.7 0 2.3

0.0122 0 100

Bagging

0

20

40

60

80

100

(a) Bagging

0 1 2

0
1

2

96.7 3.28 0.0259

41.4 56.4 2.2

0.0122 0.0489 99.9

Enhanced Classification

0

20

40

60

80

100

(b) HCC

Fig. 4: Performance of Bagging and HCC

the mapped cluster. For example, in Figure 3b, the recall for
the normal class is 78.8% which is the percentage of normal
data points in cluster 2. The different mappings for the two
algorithms are due to the random initialization of the cluster
centroids. Figure 3 shows that these two algorithms have the
same recall values suggesting both of them as good candidates.

2) HCC Performance: We equip HCC with the best classifi-
cation method, the bagging classifier, and one of the clustering
candidates, K-means. Bagging classifier and HCC are trained
over two classes (normal and port scan), then they are tested
for all three classes shown in Table II. The goal is to evaluate
the performance of HCC in detecting the data points of the
unseen class (DoS Hulk). From the new attack data points,
the bagging classifier mis-classifies 97.7% and 2.3% under the
normal and port scan classes, respectively. Mis-classification
as the normal class can cause undesirable outcomes; no
mitigation service is deployed, and DoS attack can exhaust
the resources of the victim and take down its services. Mis-
classification as a wrong attack results in the deployment
of inappropriate mitigation services that not only does not
mitigate the threat, but contributes to the attack and consumes
more resources of the victim.

The performance of HCC is reported in Figure 4b. HCC
correctly detects 96.7% and 99.9% of the normal and port
scan data points, respectively. For the new attack data points,
HCC is able to detect 56.4%, while mis-classifies 41.4% and
2.2% as normal and port scan classes, respectively. The false
negative rate for the normal data points is 3.3% due to the
inaccuracy of the unsupervised clustering method, K-means.
We believe that a more advanced clustering algorithm can
improve HCC’s performance.

Class Number of Flows Label

Normal 438693 0
Anomaly 10293 1

TABLE III: Data Points for the ANAD Evaluation

Parameters Isolation Forest LOF
examined default chosen examined default chosen

n_jobs 1, 1 1 -1 1, 1 1 -1
contamination .1, .05, .022 .1 .1 .1, .05, .022 0.1 0.1
n_estimators 50, 100, 300, 500 100 300 - - -
max_samples autoa, .001, .01 auto 0.01 - - -
max_features .02, .05, 1.0 1.0 .02 - - -
n_neighbors - - - 20, 25, 30 20 30

amin(256, number of samples)

TABLE IV: Anomaly Detection Methods Parameters

E. Anomaly Detection Performance

We evaluate ANAD by comparing its accuracy with that
of LOF [5] and isolation forest [15], two commonly used
anomaly detection methods. All these methods, including
ANAD, receive several input parameters which affect their
detection performance. We tune the values of the parameters
to optimize their recalls for anomalies. To do so, we employ
an exhaustive grid search that examines all the combinations
of given values for all parameters. Finally, we use the data
points of the two classes provided in Table III.

1) Anomaly Detection Methods Performance: For each
data point, LOF computes the local density which is the
metric depicting how isolated this data point is compared
with its k neighbors. Isolation forest is an ensemble learning
method that combines the results of multiple decision trees
each of which produces an anomaly score. Both methods are
given contamination, an input parameter that identifies the
proportion of anomalies. Optimized using the grid search, the
default, examined, and chosen values of the input parameters
are shown in Table IV.

The performance of these two methods is shown in Fig-
ure 5a and Figure 5b, respectively. LOF’s recall for the
anomalies is 10.5%, and that of isolation forest is 68.3%. The
recall of the normal class is almost 90% for both methods,
and the false negative rate is almost 10%. LOF and isolation
forest produce respectively 98% and 86% false discovery
rates (i.e., the number of normal data points detected as
anomalies divided by the total number of data points detected
as anomalies). These poor results motivate the use of deep
learning based approaches for anomaly detection.

2) ANAD Performance: ANAD uses an autoencoder with
input and output layers of size 76 and two hidden layers.
The hyper parameters, examined values, and chosen ones are
reported in Table V.

Figure 5c reports ANAD performance. ANAD outperforms
LOF significantly. In comparison with isolation forest, the
recall values are improved by 0.4% and 8.4%. These re-
sults confirm that the autoencoder-based anomaly detection
achieves higher performance in the detection recalls of normal

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference412

0 1

0
1

90 9.99

89.5 10.5

LOF

0

20

40

60

80

100

(a) LOF

0 1

0
1

91.2 8.83

31.7 68.3

Isolation Forest

0

20

40

60

80

100

(b) Isolation Forest

0 1

0
1

91.6 8.4

23.3 76.7

Auto Encoder

0

20

40

60

80

100

(c) ANAD

Fig. 5: Performance of Anomaly Detection Methods

and anomaly data points compared to the two commonly used
anomaly detection methods.

Hyper-params examined chosen
contamination .1, .05, .022 .1
n_neurons 5, 35 5
activation_function relu, tanh, linear linear
epochs 100, 150 150
batch_size 100, 1000 100
dropout_rate 0.0, 0.2 0.0
weight_constraint 1, 5 5
kernel_initialization uniform, normal normal

TABLE V: ANAD’s Hyper Parameters

V. RELATED WORK

Recent attention has been given to hybrid supervised and
unsupervised learning. Some studies, surveyed in [17], use
unsupervised methods for dimensionality reduction/feature
extraction later used for supervised classification. In [24],
intrusion detection is performed by combining multi-layered
SVM with kernel principal component analysis to decrease the
training time. Other approaches use a combined supervised un-
supervised approach to enhance the mitigation of classification
methods. In [16], K-means and naive bayes classification are
used, and data-points are classified into two classes of attack
and benign traffic. Although achieving high accuracy this work
does not support unknown attack detection. In [8], random
forest is used to detect known attacks, and weighted K-means
is used to cluster the remaining traffic. The clusters are later
labeled as either normal or attack traffic. This solution has
a high false positive rate. To evaluate our proposed method,
we tested multiple classifiers and clustering techniques and
chose the best ones, namely bagging classifier and K-means
clustering. In our solution, we detect multiple attack types,
and our false positive rate is lower than that of the method
proposed in [8]. Further, we use a more recent dataset, CIC-
2017 [22] to train the models. The outdated datasets used
by other methods are not representative of a real network,
for instance they lack traffic diversity. The CIC-2017 dataset
contains a set of most up-to-date attacks collected from 2016
McAfee report.

Deep learning based anomaly detection recently received
significant attention in different fields, such as fraud detection,
medical diagnosis, and network intrusion detection [18], [23],
[25]. In [21], a generative adversarial network simultaneously

trains a generator to produce anomalous data which are
close to the normal data and trains a discriminator to detect
the anomalies. Unsupervised deep learning models are also
employed for learning a representation of the data in a lower
dimension than the input’s. Later, this representation is used
for supervised anomaly detection [9], [23], [25]. In [9], a one-
class SVM uses features extracted by a deep belief network
for classification. A stacked non-symmetric deep autoencoder
has been used in [23] to extract features for random forest
classifier. Unlike other methods, we use autoencoders to
design an unsupervised network anomaly detection method.
Our unsupervised method is not only capable of detecting
new attacks but achieves higher accuracy in comparison with
commonly used unsupervised anomaly detection methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we extend our previously developed policy-
based security orchestration system [13] using advanced ma-
chine learning. Our system operates based on security alerts
that trigger mitigation actions. The earlier system is capable
of detecting attacks and generating low-level security alerts.
We extend, in this work, our orchestration system with TMAS,
a Traffic Monitoring Analytics System that employs machine
learning to analyze traffic. We developed two machine learning
methods, HCC and ANAD. HCC not only detects known
attacks accurately (recall of 96.7% to 99.9%), but is also
able to detect new attacks. ANAD is a deep learning anomaly
detection method that surpasses two commonly used anomaly
detection methods, namely LOF and isolation forest.

As future work, we plan to enhance HCC. The performance
of HCC depends on that of the employed clustering method.
Variational Autoencoders (VAEs) are deep neural networks
used for unsupervised clustering [7]. A VAE model forces the
latent space to have a pre-defined distribution. For clustering
purposes, this distribution is a mixture of Gaussians so that
the latent space is divided into multiple clusters. We believe
that VAE can achieve higher performance is therefore a good
candidate for HCC clustering.

VII. ACKNOWLEDGEMENT

This work benefitted from the use of the CrySP RIPPLE
Facility at the University of Waterloo.

REFERENCES

[1] Akamai security advisory. https://goo.gl/VmzkpG.
[2] Flowmeter. http://www.unb.ca/cic/datasets/flowmeter.html.
[3] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly

detection: Methods, systems and tools. IEEE Communications Surveys
Tutorials, 16(1):303–336, First 2014.

[4] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities. Journal of Internet Services and Applications, 9(1):16,
Jun 2018.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. SIGMOD Rec., 29(2):93–104, May 2000.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 413

[7] N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee,
H. Salimbeni, K. Arulkumaran, and M. Shanahan. Deep unsupervised
clustering with gaussian mixture variational autoencoders. CoRR,
abs/1611.02648, 2016.

[8] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M. Fahmy. A
hybrid network intrusion detection framework based on random forests
and weighted k-means. Ain Shams Engineering Journal, 4(4):753 – 762,
2013.

[9] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie. High-
dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning. Pattern Recognition, 58:121 – 134, 2016.

[10] J. C. et al. Forwarding-loop attacks in content delivery networks. In
the 23st Annual Network and Distributed System Security Symposium,
2016.

[11] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and
E. Vazquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Computers and Security, 28(1):18–28, 2009.

[12] D. Gillman, Y. Lin, B. Maggs, and R. K. Sitaraman. Protecting websites
from attack with secure delivery networks. Computer, 48(4):26–34, Apr
2015.

[13] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and
R. Boutaba. A security orchestration system for cdn edge servers. In
2018 IEEE Conference on Network Softwarization (NetSoft), June 2018.

[14] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava. A
Comparative Study of Anomaly Detection Schemes in Network Intrusion
Detection. In Proceedings of the Third SIAM International Conference
on Data Mining, 2003.

[15] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based anomaly
detection. ACM Trans. Knowl. Discov. Data, 6(1):3:1–3:39, Mar. 2012.

[16] Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir. Intrusion detection
based on k-means clustering and naÃŕve bayes classification. In 2011
7th International Conference on Information Technology in Asia, pages
1–6, July 2011.

[17] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos. From intrusion de-
tection to attacker attribution: A comprehensive survey of unsupervised
methods. IEEE Communications Surveys Tutorials, pages 1–1, 2018.

[18] E. L. Paula, M. Ladeira, R. N. Carvalho, and T. MarzagÃčo. Deep
learning anomaly detection as support fraud investigation in brazilian
exports and anti-money laundering. In 2016 ICMLA 15, pages 954–
960, Dec 2016.

[19] J. Raiyn et al. A survey of cyber attack detection strategies. International
Journal of Security and Its Applications, 8(1):247–256, 2014.

[20] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In 2008 Third
International Conference on Systems and Networks Communications,
pages 23–26, Oct 2008.

[21] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs. Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery. In M. Niethammer, M. Styner,
S. Aylward, H. Zhu, I. Oguz, P.-T. Yap, and D. Shen, editors, Information
Processing in Medical Imaging, pages 146–157, Cham, 2017. Springer
International Publishing.

[22] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a
new intrusion detection dataset and intrusion traffic characterization. In
Proceedings of the 4th International Conference on Information Systems
Security and Privacy - Volume 1: ICISSP,, pages 108–116. INSTICC,
SciTePress, 2018.

[23] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A deep learning approach
to network intrusion detection. IEEE Transactions on Emerging Topics
in Computational Intelligence, 2(1):41–50, Feb 2018.

[24] I. S. Thaseen and C. A. Kumar. Intrusion detection model using fusion
of pca and optimized svm. In 2014 IC3I, pages 879–884, Nov 2014.

[25] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. Learning deep
representations of appearance and motion for anomalous event detection.
CoRR, abs/1510.01553, 2015.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference414

