Fully-Flexible Virtual Network Embedding in Elastic Optical Networks

Nashid Shahriar, Sepehr Taeb, Shihabur R. Chowdhury, Massimo Tornatore, Raouf Boutaba

Jeebak Mitra, Mahdi Hemmati

UNIVERSITY OF WATERLOO
FACULTY OF MATHEMATICS
David R. Cheriton School of Computer Science
Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks

Outline

- Introduction
 - Elastic optical networks (EONs)
 - Virtual network (VN) embedding
 - Related work and contribution

- Proposed solutions
 - Integer Linear Program (ILP) formulation
 - Heuristic algorithm for a VN
 - Dynamic programming (DP) algorithm for single virtual link

- Evaluation

- Summary and future work
Introduction

- Internet traffic is growing at a very fast rate
 - AT&T experienced 100000% increase in traffic between 2008 and 2016\(^1\)

- Optical backbone networks are evolving to keep pace
 - Fine-grained spectrum allocation using 12.5GHz slices as opposed to fixed 50 or 100GHz wavelength grids
 - Elasticity in tuning transmission parameters (e.g., data rate, modulation, and forward error correction (FEC))

- Network virtualization improves utilization
 - Virtual network embedding (VNE) is a fundamental problem

Elastic optical networks (EONs)

Traditional optical networks

<table>
<thead>
<tr>
<th>Data Rate (Gbps)</th>
<th>Modulation</th>
<th>FEC (%)</th>
<th>Spectrum bandwidth (GHz)</th>
<th>Reach (km)</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>QPSK</td>
<td>25%</td>
<td>50</td>
<td>2000</td>
<td>T1</td>
</tr>
<tr>
<td>200</td>
<td>QPSK</td>
<td>25%</td>
<td>100</td>
<td>1000</td>
<td>T2</td>
</tr>
</tbody>
</table>

Elastic optical networks

<table>
<thead>
<tr>
<th>Data Rate (Gbps)</th>
<th>Modulation</th>
<th>FEC (%)</th>
<th>Spectrum bandwidth (GHz)</th>
<th>Reach (km)</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>QPSK</td>
<td>25%</td>
<td>50</td>
<td>2000</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
<td>20%</td>
<td>25</td>
<td>1250</td>
<td>T2</td>
</tr>
<tr>
<td>200</td>
<td>QPSK</td>
<td>25%</td>
<td>75</td>
<td>1000</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>32QAM</td>
<td>20%</td>
<td>37.5</td>
<td>400</td>
<td>T4</td>
</tr>
</tbody>
</table>
Virtual network embedding (VNE)

- Embed a VN on an EON
 - A virtual node is hosted on a physical node
 - A virtual link is mapped to a non-empty set of lightpaths
 - Each lightpath is assigned a transmission configuration and required spectrum
 - Spectrum contiguity and continuity constraint

Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks
Related work and contribution

- [1] studied route, spectrum, and modulation level assignment with demand splitting

- We allow virtual link to be mapped over multiple spectrum segments on the same path

- We consider full fledged VN as opposed to demands

Proposed solutions

- VNE problem is NP-hard in general
 - Node and link mapping are difficult even when solved independently

- A path based ILP formulation to optimally solve the VNE over EON problem inspired by the formulation of [1]
 - k-shortest paths between pairs of physical nodes are precomputed and given as input
 - ILP formulation can find solutions for small problem instances

- A heuristic algorithm to scale to large problem instances
 - A DP based optimal algorithm to solve for a single virtual link

ILP formulation

- **Objectives**
 - Minimize total spectrum resource allocation for a VN (Primary)
 - Minimize total number of splits for all the virtual links of a VN (Secondary)

- **Link mapping constraints:**
 - The number of splits for a virtual link does not exceed an upper limit, q
 - The slices assigned to each split are adjacent to each other
 - One slice on a link can be allocated to only one lightpath
 - Cannot allocate more than the available number of slices on a link

- **Node mapping constraints**
 - A physical node can host at most one virtual node of a VN
 - A virtual node is mapped to at most one physical node satisfying location constraint

- **Coordination between link and node mapping**
 - A non-linear constraint that we linearize
Solves the link mapping problem for a single virtual link with given mappings of the two virtual nodes of the link

- Path selection
- Transmission configuration selection
- Spectrum slice allocation

A path, a transmission configuration, and a slice allocation can appear more than once in a solution

- $\langle P_1, P_1, P_3, P_3 \rangle, \langle T_1, T_2, T_2, T_3 \rangle, \langle S_2, S_4, S_3, S_4 \rangle$

Each of them is a multi-set which further increases complexity
Algorithm for single virtual link

A set of shortest paths, A and a set of data rates, D for virtual link E

Generate the set of all multi-sets, M from A with cardinality 1 to q

There is an unexplored multi-set P in M

Yes

Generate all multi-sets from D with cardinality of P and sum of data rates equals to demand of E

No

There is a multi-set of data rates, R not used in P

Yes

Generate all permutations, W of R

No

There is a permutation, J in W not used in P

Yes

$<T, S> = DP(P, J)$

No

Return $<P, T, S>$ minimizing spectrum

P and J

No

If $F[P, J]$ is empty

Yes

If cardinality of P is 1

No

$i = 1$

Yes

$<T[i], S[i]> = DP(P[i], J[i])$

$i = i + 1$

If $i >$ cardinality of P

No

Yes

Find Traffic table and Slice Free

Yes

If all $P[i]$ are disjoint

No

If $n >$ best solution

Yes

Generate all permutations W of the paths in P

No

There is a permutation, Y in W

Yes

Update slice assignment S using $T[i]$ and First-Fit to each path in the order of paths in Y

Yes

Valid slice assignment S found

No

Store and Return $F[P, J] = <T, S>$

Store and Return $F[P, J] = <T, S>$

Return $F[P, J]$
Heuristic algorithm for a VN

- The DP based algorithm solves the problem for a virtual link
 - How to extend it for VNs with more than one virtual link?

- Let’s assume, a VN has E virtual links
 - An optimal solution requires to explore $E!$ possible ordering
 - Computationally intractable for large VNs

- Our heuristic algorithm explores one of $E!$ orderings chosen according to a criteria (e.g., decreasing order of demand)
 - Apply look-ahead techniques so that selecting a solution for one virtual link does not block the spectrum for remaining links
Running time analysis

invokes Algorithm 2 \(\frac{c}{(|D_{P_k}^e| + q - 1)!} \times \frac{(|D_{P_k}^e| - 1)! \times \prod_{d_j \in D_{P_k}^e} m_4(d_j)!}{q! \prod_{p_j \in P_k^e} m_1(p_j)!}\) times to compute \(n(P_k^e)\). The most expensive step of Algorithm 2 is the exploration of all the permutations of the paths in \(P_k^e\) requiring \(q!\) possibilities in the worst case. Therefore, to find \(A_e\), Algorithm 1 enumerates \(\left(\sum_{i=1}^{q} \binom{k + i - 1}{i}\right) \times \frac{(|D_{P_k}^e| + q - 1)!}{(|D_{P_k}^e| - 1)! \times \prod_{d_j \in D_{P_k}^e} m_4(d_j)!} \times \frac{q!}{\prod_{p_j \in P_k^e} m_1(p_j)!}\) possibilities. Typical values of \(k\) and \(q\) are small, therefore, the running time is dominated by the size of \(D_{P_k}^e\).
Evaluation – compared approaches

- key questions
 - How jointly considering all the flexible transmission parameters impact VNE?
 - What is the gain of incrementally introducing flexibility?

<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>Fixed FEC</th>
<th>Variable FEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Modulation</td>
<td>Variable Modulation</td>
<td>Fixed Modulation</td>
</tr>
<tr>
<td>Fixed grid</td>
<td>Fixed-fixmod-fixfec (FM-FF)</td>
<td>Fixged-varmod-fixfec (VM-FF)</td>
</tr>
<tr>
<td>Flex grid</td>
<td>Flex-fixmod-fixfec (FM-FF)</td>
<td>Flex-varmod-fixfec (VM-FF)</td>
</tr>
</tbody>
</table>
Evaluation – simulation settings

- Small scale
 - EON: Nobel Germany (17 nodes, 26 links)\(^1\)

 - Number of spectrum grids/slices per physical link
 - Flex grid: 48 slices of 12.5GHz
 - Fixed grid: 12 grids of 50GHz

 - VNs are generated synthetically
 - 8 virtual nodes with varying number of virtual links
 - Node mapping is given

\(^1\) http://sndlib.zib.de/
Evaluation – simulation settings

- Large scale
 - EON: Germany50 network (50 nodes, 88 links)\(^1\)
 - Number of spectrum grids/slices per physical link
 - Flex grid: 320 slices of 12.5GHz
 - Fixed grid: 80 grids of 50GHz
 - VNs are generated synthetically
 - 50 virtual nodes with varying number of virtual links
 - Node mapping is given

1. http://sndlib.zib.de/
Evaluation – spectrum saving gain

Up to 60% spectrum saving
Evaluation – impact of varying q
Evaluation – impact of variable node mapping
Evaluation – running time
Evaluation – optimality of the heuristic
Evaluation – large scale results

[Bar charts showing the percentage of spectrum usage for different scenarios: Fixed-FM-FF, Fixed-VM-FF, Fixed-FM-VF, Fixed-VM-VF, Flex-FM-FF, Flex-VM-FF, Flex-FM-VF, Flex-VM-VF. The x-axis represents VN LNR (Virtual Network Load Ratio) ranging from 1 to 3.]
Evaluation – large scale running time

![Graph showing execution time vs VN LNR for different network embedding strategies: Fixed-FM-FF, Flex-FM-FF, Fixed-FM-VF, Flex-FM-VF, Fixed-VM-FF, Flex-VM-FF, Fixed-VM-VF, Flex-VM-VF.](image)
Conclusion and future work

- We study the VNE over EON problem with full flexibility of all transmission parameters of an EON
 - An ILP based optimization model
 - A heuristic algorithm that obtains near optimal solutions while executing several orders of magnitude faster than ILP
 - Saves up to 60% spectrum compared to VNE with no flexibility

- What’s next?
 - Extend the heuristic algorithm to compute node mappings
 - Analyze the performance of the heuristic
 - Explore alternate objective functions (e.g., load balancing)
Thank you