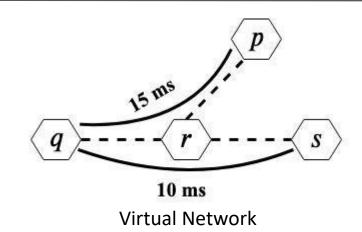
Virtual Network Embedding with Path-based Latency Guarantees in Elastic Optical Networks

Sepehr Taeb, Nashid Shahriar, Shihabur R. Chowdhury, Massimo Tornatore, Raouf Boutaba

Jeebak Mitra, Mahdi Hemmati



Outline

- Introduction
 - Elastic Optical Networks (EONs)
 - Key Contribution
 - Latency Model
- Problem Statement
- Integer Linear Program (ILP) Formulation
 - Constraints
 - o Objective
- Heuristic Algorithm
- Evaluation
- Conclusion & Future Work

Introduction

- Many emerging applications have diverse latency requirements
 - Intelligent transportation, Industry automation, Online gaming, High-frequency trading
- An enabling technology to support latency-sensitive applications is network virtualization
 - Facilitates deployment of multiple virtual networks (VNs) with varying latency requirements on the same substrate network
 - Virtual network embedding maps VN nodes and links to substrate resources while guaranteeing latency constraints
- We focus on transport network as our substrate that connects Point of Presence (PoP) nodes
 - Optical network is the dominant technology due to its highbandwidth and low-latency
 - Create lightpaths to embed virtual links

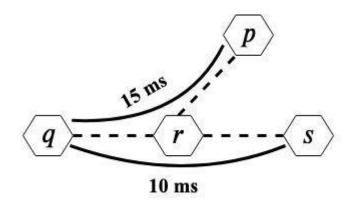
 $\begin{array}{c|c}
\hline
A \\
\hline
\end{array}$

Substrate Network

Elastic Optical Networks (EON)

- Traditional fixed-grid technology allocates spectrum in coarse-grained fashion
 - Inefficient supports only 50 or 100
 GHz wavelength grids
 - Rigid allows limited transmission configurations for each data rate
- Elastic Optical Networks (EONs) are emerging to overcome the limitations
 - Enables finer granularity (12.5GHz)
 with arbitrary number of spectrum
 slices based on customer demand
 - Facilitates tuning of transmission configurations as per the need

Transmission configurations


Data Rate (Gbps)	Modulation format	FEC (%)	Spectrum bandwidth (GHz)	Reach (km)
100	QPSK	25	50	2000
200	QPSK	25	100	1000

Traditional Optical Network

Data Rate (Gbps)	Modulation format	FEC (%)	Spectrum bandwidth (GHz)	Reach (km)
100	QPSK	25	50	2000
100	16QAM	20	25	1250
200	QPSK	25	75	1000
200	32QAM	20	37.5	400

Key contribution

- Existing literature represents latency requirements on virtual links (VLinks)
 - Cannot provide end-to-end latency guarantees
- We propose path-based latency requirements on virtual networks, called as VPath
 - Latency constraint is enforced along an entire path between PoPs
 - More flexibility in selecting substrate paths and transmission configurations for embedding VLinks
- How to distribute latency budgets to VLinks without violating path-based latency requirements?

VN request with path-based latency requirements

Latency model for a lightpath

- Node processing latency:
 - o Transponders: ≈ 30 ns
 - FEC processing: \approx 10 μ s (standard) or \approx 150 μ s (super)

$$L_{node} = 2 \times (L_{transponder} + L_{FEC})$$

- Path latency
 - O Fiber propagation: **4.9 μs/km**
 - o Amplifiers: 150 ns
 - ROADMs: O(nano seconds)

$$L_{path} = len(p) \times L_{prop} + n_{amp} \times L_{amp} + (|p| + 1) \times L_{roadm}$$

- Zero queueing delay
 - By allocating dedicated resource on source and destination nodes
 - On intermediate nodes, data is optically switched no queue buildup

Problem statement

Inputs:

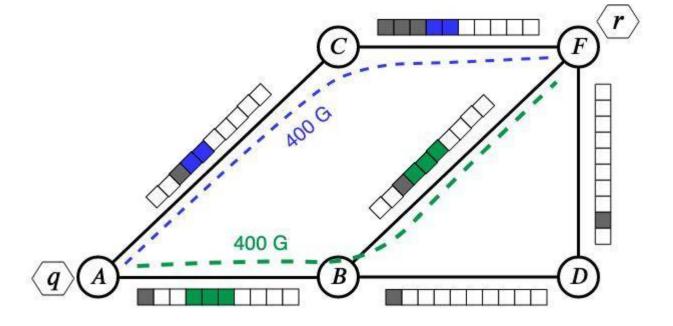
- EON substrate Network
 - K-shortest path between each pair of nodes
- A set of transmission configurations
- VN request:
 - VLinks have bandwidth demand in Gbps
 - Path-based latency constraints
 - Given node mapping

Approach:

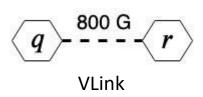
- Embedding a VLink by splitting its demand into multiple substrate paths
 - One path can be used more than once

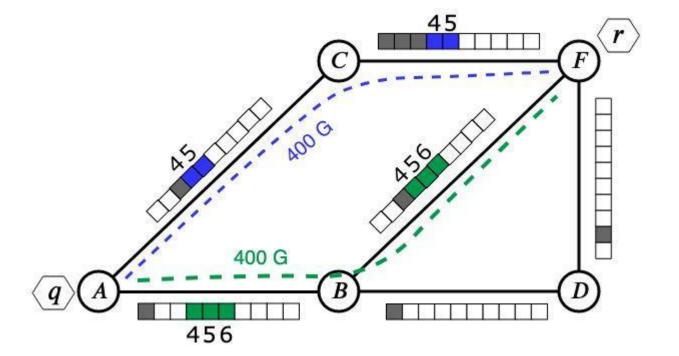
Outputs:

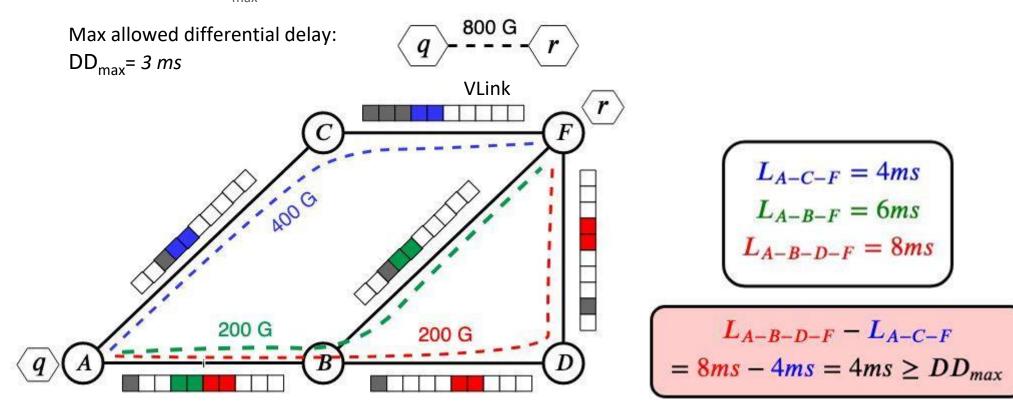
- To embed each VLink, select
 - A set of substrate paths and appropriate transmission configurations
 - Spectrum slice allocation


Objective:

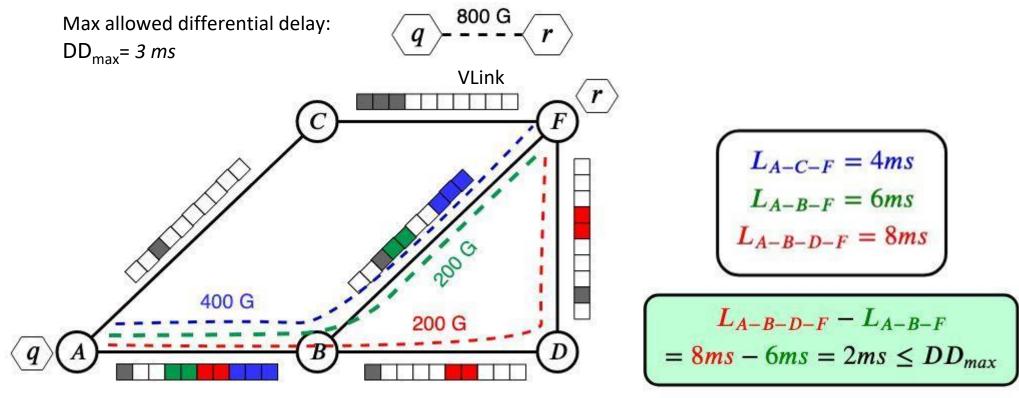
- Minimize total spectrum resource allocation for the VN embedding (Primary)
- Minimize the total number of splits, i.e., transponders (Secondary)

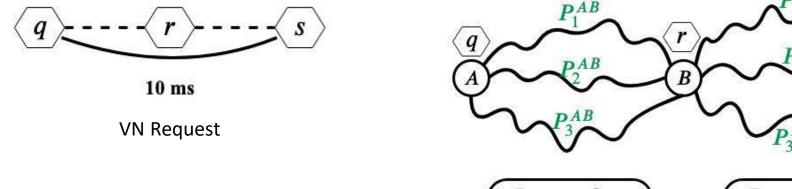

Problem Formulation: Constraints

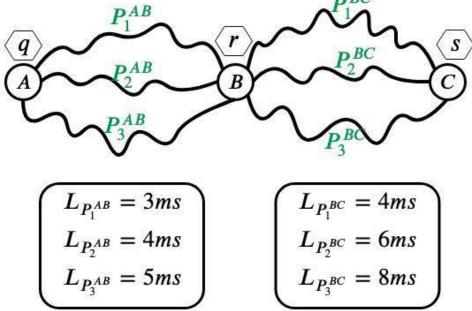

- An spectrum slice on a fiber link can be allocated to at most one split
- Each VLink demand is provisioned using up to a maximum (q) splits
 - Each split is realized using a transmission configuration satisfying its optical reach
 - Sum of the data rates carried by the splits is equal to the VLink demand



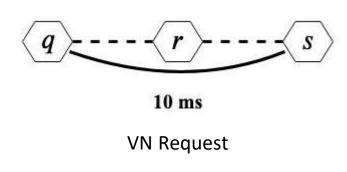
- Spectral contiguity and continuity:
 - Slices assigned to each split must be adjacent on each link of a substrate path (Contiguity)
 - O Same set of slices should be assigned to each split along all links of a substrate path (Continuity)

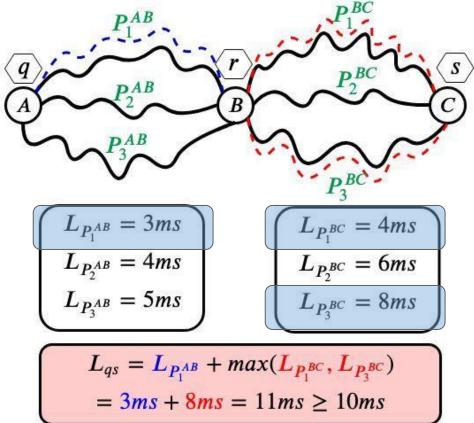


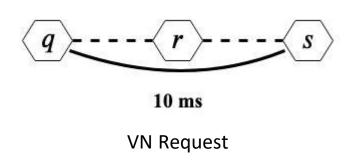

- Differential delay constraints:
 - \circ The difference between the maximum and minimum latency of the splits provisioning a VLink should be less than DD_{max}

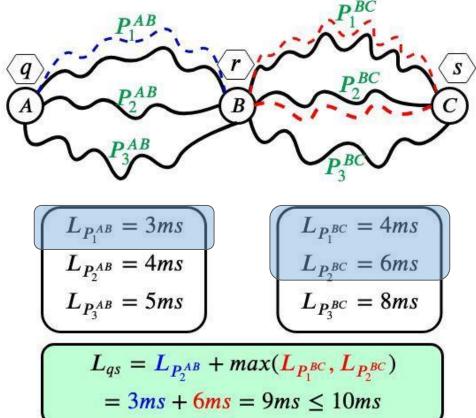


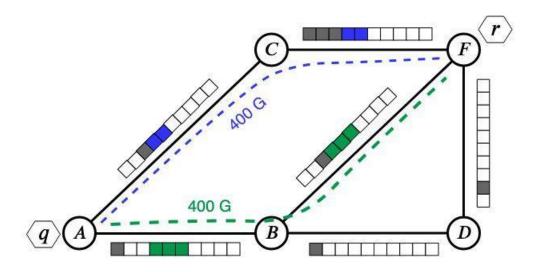
- Differential delay constraints:
 - \circ The difference between the maximum and minimum latency of the splits provisioning a VLink should be less than DD_{max}

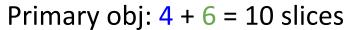


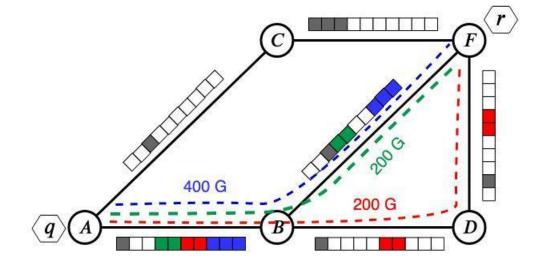

- Latency constraints for VPath:
 - The latency of each VLink embedding is equal to the maximum latency among its splits
 - The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint




- Latency constraints for VPath:
 - The latency of each VLink embedding is equal to the maximum latency among its splits
 - O The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint


- Latency constraints for VPath:
 - The latency of each VLink embedding is equal to the maximum latency among its splits
 - The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint




Objective

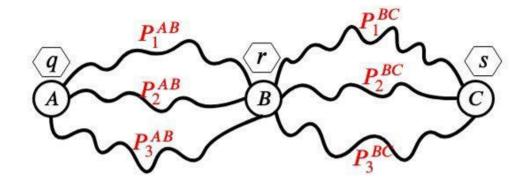
- Minimize total spectrum resource allocation for the VN embedding (Primary)
- Minimize the total number of splits (Secondary)

Secondary obj = 2 splits

Primary obj: 6 + 4 + 6 = 16 slices

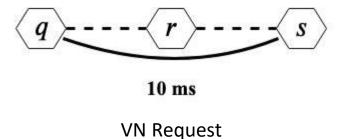
Secondary obj = 3 splits

Heuristic Algorithm

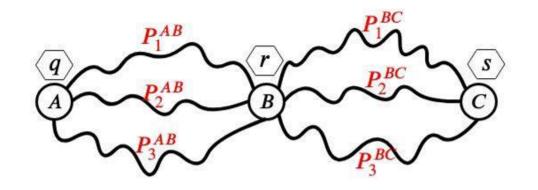

- Composed of 2 main steps
- Step 1: Choosing a VLink to be embedded next and computing an estimation of the latency budget for the VLink in terms of the candidate substrate paths
 - Most constrained VLink in terms of spectrum slice availability and latency
- Step 2: Finding an optimal embedding for the chosen VLink
 - O Splits the VLink demand among multiple candidate paths
 - O Uses the most spectrally efficient transmission configuration for each of the selected paths
 - Allocates spectrum slices on each link of the path
 - Finds the actual latency of the VLink based on the selected paths to help determine the latency of a
 VPath in step 1

Step 1: Finding Next VLink Algorithm

- Estimate latency budgets for all VLinks yet to be embedded
 - Assigned budgets do not violate any latency constraint
 - O Determines the number of candidate paths to use for the VLinks
- The number of available slices on the candidate paths satisfying the assigned latency budget is maximized for the most constrained VLink
 - Spectrum resource availability is the bottleneck
 - Compute using binary search on the number of available spectrum slices
 - Check if the number of slices can be used without violating any latency constraint
- Return the VLink with the **minimum number of available slices** that does not violate the assigned latency budget

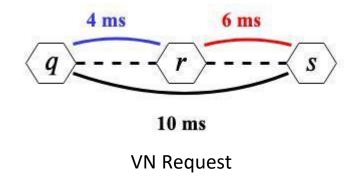

- Binary Search on the range of the number of available slices on the candidate paths
 - Finding the number of available slices on the candidate paths for each VLink
 - Get the minimum value of the number of available slices
 - Check if the number of slices can be used without violating any latency constraint
 - Do binary search
- Return the VLink with the minimum number of available slices that does not violate the assigned budget

Estimating a latency budget for each **VLink**



g	L	Available slices
P_1^{AB}	3ms	4
P_2^{AB}	4ms	3
P_3^{AB}	5ms	1

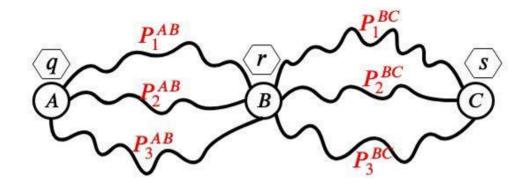
	L	Available slices
P_1^{BC}	4 <i>ms</i>	10
P_2^{BC}	6ms	4
P_3^{BC}	8ms	6



Estimating a latency budget for each **VLink**

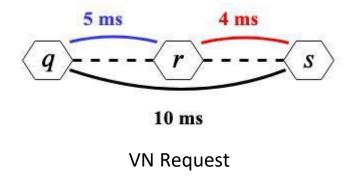
	L	Available slices	
P_1^{AB}	3ms	4	
P_2^{AB}	4ms	3	
P_3^{AB}	5ms	1	

	L	Available slices	
P_1^{BC}	4ms	10	
P_2^{BC}	6ms	4	
P_3^{BC}	8ms	6	



Goal: Maximize the number of slices for the VLink with minimum number of usable slices

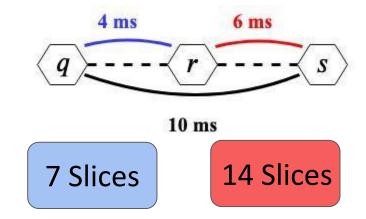
7 Slices

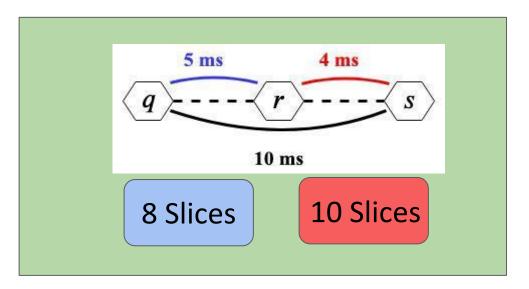

14 Slices

Estimating a latency budget for each **VLink**

	L	Available slices	L
P_1^{AB}	3ms	4	
P_2^{AB}	4ms	3	
P_3^{AB}	5ms	1	

	L	Available slices	
P_1^{BC}	4ms	10	
P_2^{BC}	6ms	4	
P_3^{BC}	8ms	6	




Goal: Maximize the number of slices for the VLink with minimum number of usable slices

8 Slices

10 Slices

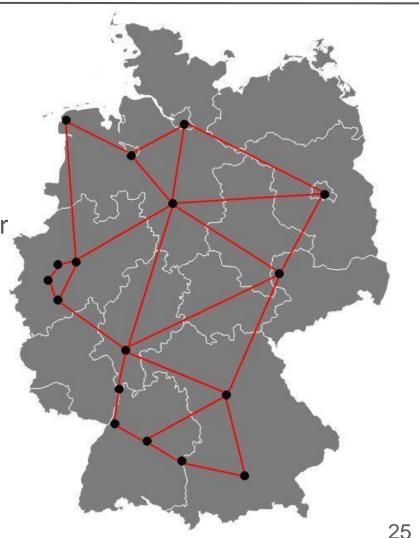
Estimating a latency budget for each **VLink**

Goal: Maximize the number of slices for the VLink with minimum number of usable slices

Step 2: Optimal embedding for a VLink

- Compute link embedding using an exhaustive search considering all possible
 - Path selection (considering splitting)

 - All **multiset** of candidate paths with size <= q
 Assigning **data rate** satisfying VLink demand
 - Transmission configuration selection
 - Choose a configuration supporting the **datarate** along the distance of a path in the multi-set
 - Spectrum slice assignment
 - First-fit slice allocation
- Select the combination of <path, transmission configuration, slice assignment> that minimizes the objective
 - Extends an algorithm published in [1]
- Additional pruning
 - Multi-sets of paths that violate differential delay constraint
 - Solutions requiring more slices than a lower bound computed using dynamic programming
- Shahriar, Nashid et al. "Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks." IEEE INFOCOM 2019 IEEE Conference on Computer Communications (2019): 1756-1764.

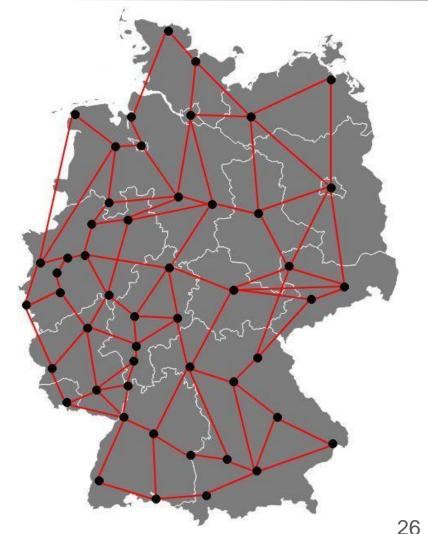

Step 2: Optimal embedding for a single VLink (Cont'd)

Optimization techniques:

- Pruning path multi-sets that violate differential delay constraint
- For a VLink with demand = D:
 - Solve the embedding for all d <= D and only one split
 - Find estimation for embedding using multiple splits (lower bound)
 - Only consider ones with better lower bound compared to best solution

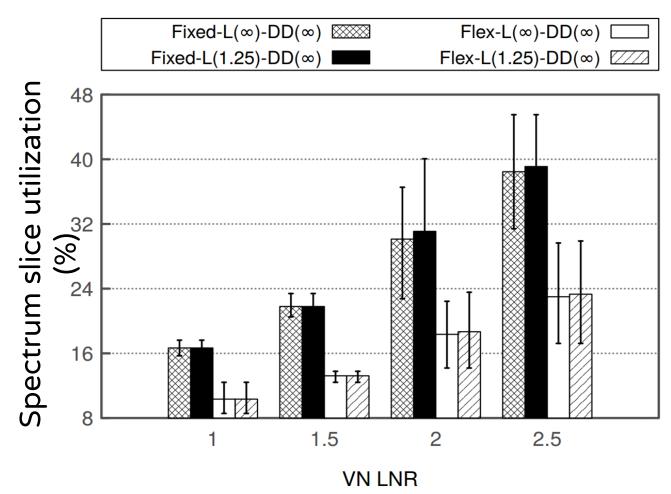
- Nobel Germany¹ EON
 - o 17 Nodes and 26 Links
- Number of spectrum slices per link
 - o Fixed grid: 12 slices of 50 GHz
 - o Flex grid: 48 slices of 12.5 GHz
- Possible configurations provided by industry partner
- Max number of splits (q) is 4
- VNs are generated synthetically
 - Fixed node mapping
 - o 8 VNodes
 - O Variable LNR: from 1 to 2.5 (8 to 20 VLinks)
 - Latencies: Latency of the shortest path * α ($\alpha >= 1$)

 $L(\alpha) = L(\text{path with lowest latency}) \times \alpha$

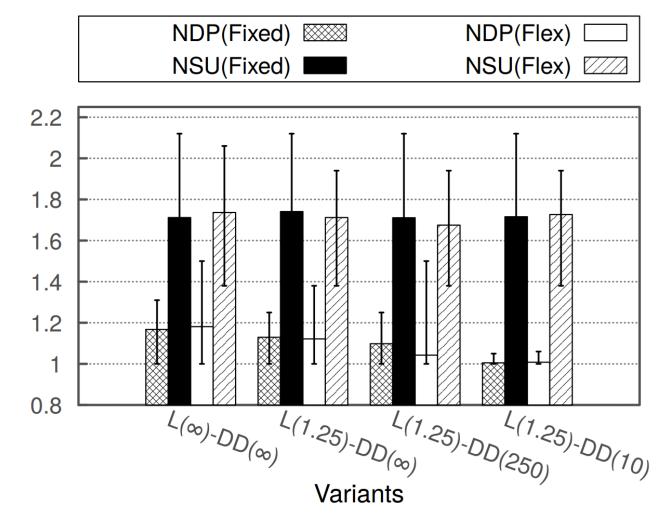


Evaluation - simulation settings

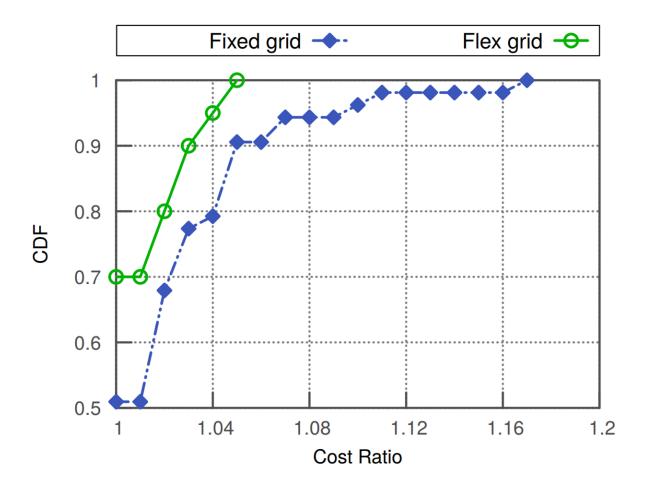
Large Scale:

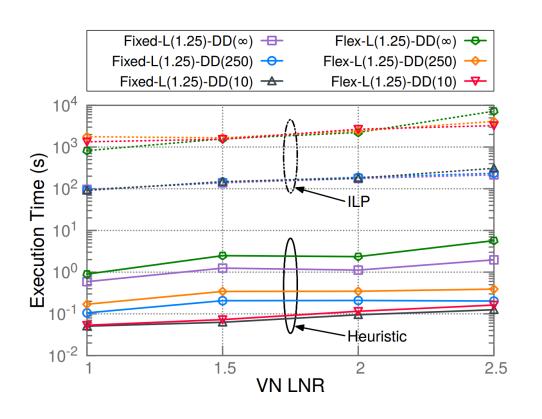

- EON: Germany50¹: 50 Nodes, 88 Links
- Number of spectrum slices per link:
 - Fixed grid: 80 slices of 50 GHz
 - Flex grid: 320 slices of 12.5 GHz
- VNs are generated synthetically
 - Fixed node mapping
 - 50 VNodes
 - Variable LNR: from 1 to 3.5 (50 to 175 VLinks)
 - Latencies: Latency of the shortest path * α ($\alpha >= 1$)

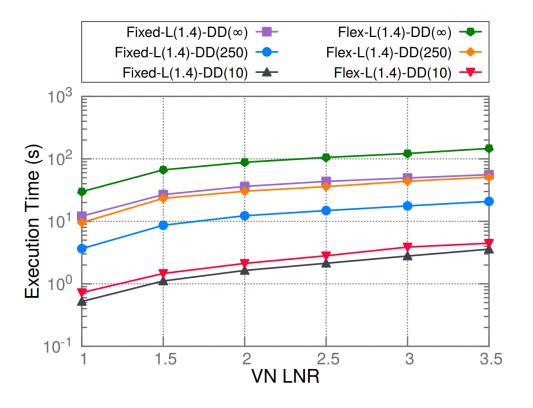
 $L(\alpha) = L(\text{path with lowest latency}) \times \alpha$



1. http://sndlib.zib.de/

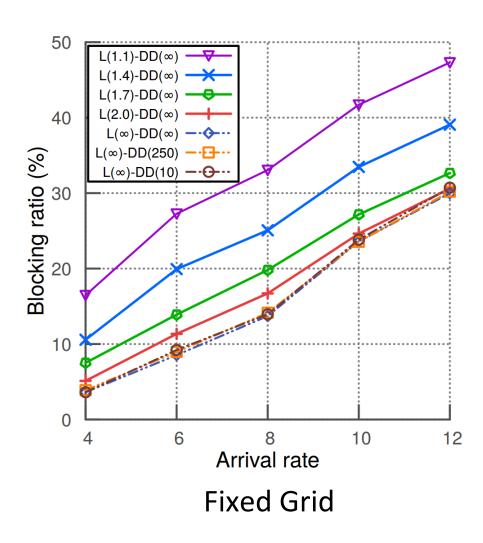

- Impact of the latency constraints on resource utilization
- Compared variants
 - o Fixed-L(α)-DD(β):
 - Fixed grid
 - lacktriangleright α : latency factor
 - \blacksquare β : max differential delay
 - o Flex- (α) -DD (β) :
 - Flex grid
 - lacktriangleright α : latency factor
 - lacksquare β : max differential delay

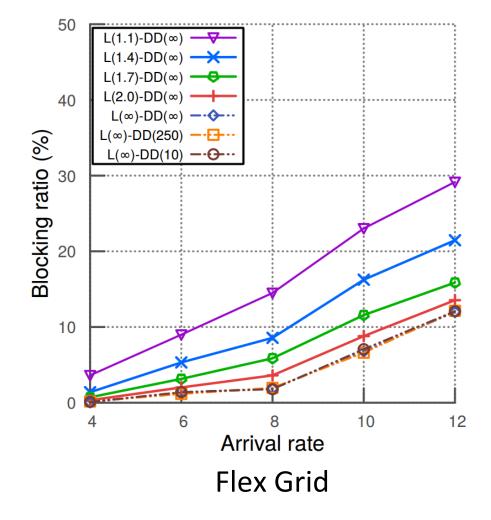

- Impact of differential delay on substrate path selection
- Metrics
 - O NDP (Fixed/Flex)
 - Avg. number of distinct path used to embed aVLink
 - NSU (Fixed/Flex)
 - Avg. number of splits used to embed a VLink



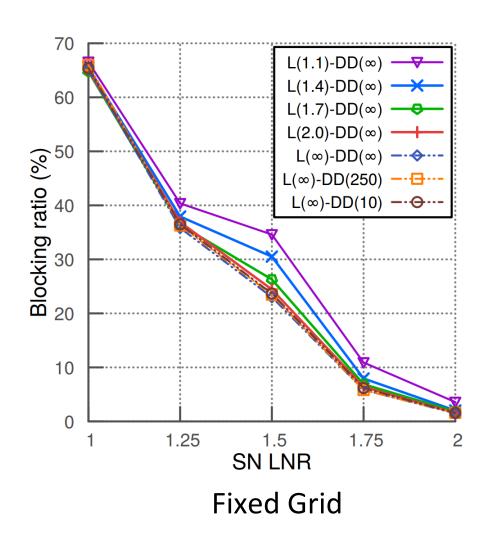
- Optimality of heuristic
- Compared variants
 - Fixed grid EON
 - o Flex grid EON
 - Varying latency and differential delay for both cases

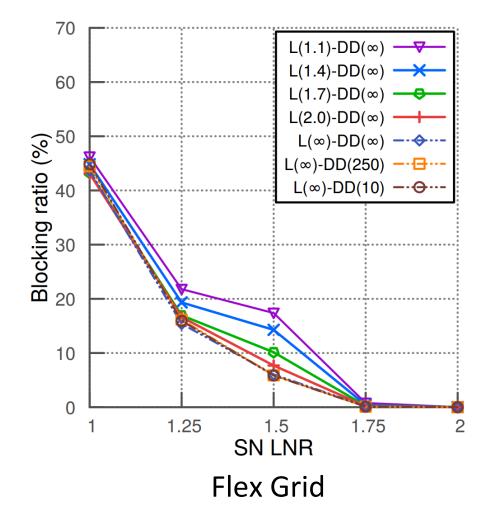
Evaluation - scalability





Evaluation - Steady State Analysis


- Arrival and departure time for VNs
 - Arrival rate: Poisson distribution
 - 4 to 12 VNs per 100 time units
 - VN life time: Exponential distribution
 - Mean of 100 time units
- VN and SN properties
 - o 8 VNodes
 - Random number of VLinks: 8 to 28
 - O Nobel Germany flex grid EON: 320 slices of 12.5 GHz
- Simulation time: **10000** time units
 - Excluding the first 1000 time units
- 5 different simulation scenarios
- Report VN blocking ratio
 - Percentage of VNs that could not be embedded


Evaluation - Steady State Analysis

Evaluation - Steady State Analysis

Conclusion & Future Work

- Virtual network embedding over EON
 - Path-based latency guarantees
 - Considering full flexibility in all transmission parameters of an EON
- An ILP based optimization model
- A faster heuristic algorithm that obtains near optimal solutions
- Key takeaways
 - Latency constraints has less impact on spectrum usage but profound impact on blocking
 - Flexibilities of an EON help reduce these impact
- Future work
 - Different cost function to decrease blocking probability
 - Design an admission control to maximize the revenue

Thank You!