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Abstract—Machine Learning has revolutionized many fields of
computer science. Reinforcement Learning (RL), in particular,
stands out as a solution to sequential decision making problems.
With the growing complexity of computer networks in the face of
new emerging technologies, such as the Internet of Things and the
growing complexity of threat vectors, there is a dire need for au-
tonomous network systems. RL is a viable solution for achieving
this autonomy. Software-defined Networking (SDN) provides a
global network view and programmability of network behaviour,
which can be employed for security management. Previous works
in RL-based threat mitigation have mostly focused on very
specific problems, mostly non-sequential, with ad-hoc solutions.
In this paper, we propose ATMoS, a general framework designed
to facilitate the rapid design of RL applications for network
security management using SDN. We evaluate our framework
for implementing RL applications for threat mitigation, by
showcasing the use of ATMoS with a Neural Fitted Q-learning
agent to mitigate an Advanced Persistent Threat. We present the
RL model’s convergence results showing the feasibility of our
solution for active threat mitigation.

I. INTRODUCTION

Threat actors are constantly evolving their arsenals,
weaponizing new technologies to design more sophisticated
attacks for exploiting their targets. Mitigating these attacks
has become extremely challenging in today’s increasingly
complex networks with many vulnerable layers, ever-expanding
attack surfaces and advanced threat vectors. Software-defined
Networking (SDN) is a new paradigm to networking, rapidly
adopted in recent years by large enterprises, which decouples
the control and data planes in a network. Its logically centralized
control benefits from the network global view, and opens new
opportunities for enhanced defences against network intrusions.

The autonomy of network security management is motivated
by the high cost and inaccuracies of manual human inspection
of network data. The detection of attacks is of paramount im-
portance, but some attack vectors, such as Advanced Persistent
Threats (APTs), are built for stealthiness. APTs change their
behaviour depending on the environment to deceive human
analysts, as they take small steps over extended periods of time,
and act benign under scrutiny. This grants the threat actors
a significant amount of time to go through the attack cycle,
propagate and achieve their objectives on the victim’s network.

Machine Learning (ML) has recently had a large impact
on many areas of computer science, including automation of
network management and cyber security [1], [2]. On the other
hand, Reinforcement Learning (RL), as a well studied area

of ML, has grown in importance in the past few years, after
showing promising results in achieving human-level control
in video games [3]. Therefore, it is natural to investigate the
feasibility of RL in autonomous defence of SDN networks.
RL deals with problems that require discrete-time sequential
decision-making based on the notion of learning a good
behaviour. As illustrated in Fig. 1, at each iteration, an RL
agent follows a trial-and-error strategy by interacting with its
environment, and modifying its behaviour based on the reward
it receives from the environment.
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Fig. 1: A standard reinforcement learning model

In a standard RL model, an agent observes the environment
via perception. It also takes actions inside the environment,
through an actuator, which may change the state of the envi-
ronment. At each time step, the agent receives an observational
input reflecting the state s of the environment. In turn, it can
take an action a that transfers the state of the network into a new
state s′. This is communicated to the agent, along with a scalar
reinforcement signal r, indicating the value and desirability of
the taken action [4].

Recent efforts in applying RL to network threat mitigation
[5]–[8] have been limited in their scope and applicability. In
most cases, the defined states and action-sets are constrained
to a certain kind of attack or a particular setup in a network,
making it difficult to generalize their approaches to arbitrary
attacks, mitigation tasks, and network topologies. The results of
these ad-hoc solutions can not be compared easily. Furthermore,
they are mostly evaluated on simple threat vectors that do not
take full advantage of RL’s sequential decision-making. Thus,
the use of RL, as opposed to typical supervised learning, is
not really justified.

In this paper, we present our framework, ATMoS, which
provides a unified general scheme for designing complex RL
agents for the network threat mitigation task. We provide con-
crete definitions of how threat mitigation should be formulated
as an RL problem, which is one of the primary challenges in RL
for network security. We showcase the use of our framework
in a setup where ATMoS is successfully used to mitigate an
APT attack. We envision that this will facilitate future efforts978-1-7281-4973-8/20/$31.00 c© 2020 IEEE



in the application of RL to threat mitigation, in a way that the
results of the consequent solutions can be easily compared.

ATMoS is a step towards autonomous networks [1] that
have proven to be necessary due to the enormous scale and
stealthiness of threat vectors, and degrees of uncertainty in
future networks. Our main contributions are:
• The ATMoS framework that enables the rapid design of

RL applications for network security, along with a concrete
formulation of threat mitigation as an RL problem

• An open source implementation1 of ATMoS on Mininet
using state-of-the-art industry tools, such as OpenDaylight,
Open vSwitch, Docker, Snort, etc.

• A set of experiments with ATMoS using Neural Fitted
Q-learning (NFQ) to mitigate an APT attack against a
number of benign hosts

• An insightful discussion of the related literature, high-
lighting their shortcoming in the design of RL problems
with respect to reward functions and action-sets

The rest of the paper is structured as follows. We provide a
review of the related literature in Section II. The architecture
and design of ATMoS are delineated in Section III. In
Section IV, we present our implementation and experimental
results. Finally, we instigate opportunities for future research
in Section V and conclude with a brief summary of our work
in Section VI.

II. RELATED WORK

A large body of work in the literature has been dedicated
to ML-assisted intrusion detection [2]. However, acting upon
the detected potential threats with the help of ML remains
quite obscure. Mitigating network attacks, in general, can be
a very tricky task, especially when the attacker deliberately
tries to keep a low profile and evade detection (e.g., APT).
Intrusion detection systems and traffic classifiers are highly
prone to false positives. Thus, simply dropping the traffic that
is suspected to be malicious can have severe consequences for
the availability and functionality of the network.

In the past, there has been limited work in leveraging RL
techniques for threat mitigation. Vishnupriya et al. [7] have
theorized using SDN and RL’s Direct Learning strategy to set
a dynamic threshold for packets per port based on the network
state to mitigate Denial of Service (DoS) attacks. However, in
their evaluations the authors implemented a constant threshold
and did not report the effectiveness or the feasibility of the
proposed method.

Liu et al. [6] propose the use of Deep Deterministic Policy
Gradient (DDPG) [9] to mitigate DoS attacks in SDN. The
authors define the state as a vector of different statistical
features of the traffic. The action-set is defined as the maximum
bandwidth allowed for each host on the network, and the reward
as a function of three variables: victim server CPU usage,
benign traffic throughput and malicious traffic throughput. In
real world scenarios, CPU usage will not be a reliable metric
as it is subject to drastic changes due to a wide range of

1https://github.com/ATMoS-Waterloo

factors (e.g., seasonality of workload bursts). This undermines
the feasibility of the proposed method in many environments.
Furthermore, this approach can hardly be generalized to attack
types other than DoS, since the damage of most attacks is not
proportionate to the volume of malicious traffic reaching the
victim host.

It is important to highlight that evaluating such strategies
against a simple attack where the correct policy can be inferred
from the current state alone and sequential decision-making is
not required, is fundamentally flawed. From an ML perspective,
in such scenarios a supervised learning problem is being
incorrectly rephrased as an RL problem. Most attacks assumed
in the literature we surveyed are problems that do not require
sequential logic to mitigate. Another shortcoming in the related
literature is that reward functions are usually either over-
simplified or based on highly unstable features. In Section
III we define a more complex attack that needs a sequential
approach to be mitigated and for our RL reward we select
reliable indicators of compromise.

Han et al. [5] use the RL algorithms Double Deep Q-network
(DDQN) [10] and Asynchronous Advantage Actor Critic (A3C)
[11] to migrate critical resources and rewire the network to
mitigate a DoS attack against a local server. They define a
state to hold two insights about each node: whether the node is
hacked and whether it is powered on. The implementation of
the data retrieval is not mentioned and might not be trivial in
practical deployments. The actions are defined to be isolating
a node, patching a node, reconnecting a node to its links, or
migrating a critical resource to a destination on the network,
or no action. Reward is defined based on whether the critical
resources are compromised, number of nodes accessible from
critical resources, number of compromised nodes, whether the
action taken is valid in current environment, and the migration
cost. The authors focus on experimenting with attacking the RL
using adversarial tactics, but fail to showcase their experiments
with RL successfully protecting the servers and converging.

Malialis and Kudenko [12] ran multiple RL agents on
a number of routers, and the agents were trained to rate-
limit the traffic sent to a node that is under attack in the
simulated environment. It is important to outline that each
agent can not see the whole space, and finding an optimal
solution is much harder in such a setup. The proposed model
makes the continuous action-space discrete and might lead to
combinatorial explosion. In contrast, we leverage the global
view that SDN provides and hence, facilitate reaching an
optimal policy compared to a distributed multi-agent model.

DoS mitigation has been thoroughly explored in the past
and the area has been systematically surveyed over the years
[13]. Researchers have used the powerful monitoring that SDN
brings to deliver insightful ideas in DoS mitigation [14]–[18].
Many researchers experimented with various ML techniques
combined with SDN to mitigate attacks and build a NIDS.
Shin et al. [19] propose FRESCO, a scripting language that
enables flow constraints and implements actuators to work
with legacy security systems. Their framework is used to build
an application to entrap malicious bot scanners as well as



other applications. Few authors have used SDN and Deep
Learning for anomaly detection. Mehdi et al. [20] used rate
limiting, TRW-CB, NETAD, and maximum entropy detectors
to predict anomalies in a Small Office/Home Office network
at the network edge, while authors in [21] and [22] used Self
Organizing Maps to detect Distributed DoS (DDoS) and U2R
with DPI, respectively. More deep learning techniques later
emerged in the literature but were mostly unrealistic in terms
of scalability or had bottleneck problems [23]–[25].

III. SYSTEM DESIGN

In this section, we begin by explaining the high-level
functional architecture of ATMoS. We then elaborate the design
with a concrete example of a system that can be implemented
based on this architecture. We also explore the formulation of
the corresponding problem as a classic RL control problem
and address numerous obstacles in this regard.

A. Problem

We hypothesize a scenario where a network is infiltrated
by one or more malicious hosts (MH). The network also has
legitimate benign hosts (BH) that need to run undisturbed.
Furthermore, it is important to note that a MH is not running an
overly-simplistic model of a DoS flooder, but more realistically,
it is running an APT vector. APT is a stealthy attack that uses
multiple attack vectors, tools, and tactics to avoid detection,
with the primary goal of retaining access to the unauthorized
network and system for an extended period of time [26]. In our
scenario, we expect the APT to evade detection, and deliver
attacks only when a vulnerable attack surface is in range.

We need to protect the convenience and functionality of the
BHs, while identifying suspicious activity by the MH based
on subtle observations taken over multiple steps. We want
our action-set to be proportional to host maliciousness, in
order to apply preventive actions in a strategic and systematic
manner, while preserving the convenience to benign users. We
start by gradually adding security constraints and tools against
malicious actions, until our suspicions are confirmed and the
threat actor is quarantined. This problem is sequential as the
threat actor changes its behaviour based on the network state
and our policies. RL is suitable to solve this problem, as it
interacts with the environment in real-time and measures online
metrics.

B. ATMoS Overview

Although ML-assisted network threat and anomaly detection
is a well-explored area of research, the effort in ML-assisted
threat mitigation remains limited (cf., Section II). False positives
are very common in intrusion detection systems and an alert
by itself does not justify immediate ramifications for the
host triggering it. Rather, active interaction with the host,
testing against different environments and using different levels
of analytic network functions are required to confirm its
maliciousness.

As depicted in Fig. 2, our proposed system model is
comprised of three components: SDN Infrastructure, Host

Malicious Host
Simulation

Benign Host
Simulation

Host Behavior Profiling

SDN Infrastructure

Autonomous Management

SDN Controller

InsightsNetwork
Observer

Software-defined Network

Policies

Reinforcement
Learning Agent

Performace 
Feedback

Fig. 2: The high-level system model — The RL agent in the
Autonomous Management component operates by observing (i) a
feed from the Network Observer installed in the SDN infrastructure,
and (ii) the performance feedback from the simulated hosts inside the
Host behaviour Profiling component

Behaviour Profiling, and Autonomous Management where the
RL agent resides. This design directly reflects the typical RL
model depicted in Fig. 1. The RL agent, observes the network
state provided by a module called Network Observer, which
is installed inside the SDN, and aggregates information and
insights about network state.

For the training, a set of simulations are deployed to the
network. The malicious simulations mimic the behaviour of
attackers, posing the same kind of threats we want to mitigate.
The benign simulations imitate the low-profile user behaviour
allowing the model to establish a semblance of what normal
network usage should look like. These simulations report
quantitative metrics about their performance to inform the
RL agent that the current network policies affect their quality
of experience. The main idea is that the mitigation task can be
boiled down to maximizing the quality of experience for the
benign hosts, while minimizing the success rate of the attacks
by malicious hosts.

More specifically, the three components are as follows:

(I) SDN Infrastructure—For an RL agent to deploy poli-
cies in real-time, we assume the existence of an SDN
controller that takes commands from the agent through
a northbound API. The nature of these commands
(i.e., policies) are further discussed in Sections III-E1
and III-G. SDN acts as an enabler to our proposed
approach for threat mitigation. A key element in our SDN
infrastructure is the Network Observer that monitors the
network traffic and provides insight into the network
status. This can include the output of a traditional IDS,
flow-meters, or any other network function that can
provide useful real-time information relevant to network
security. In our proof-of-concept, we leverage IDS/IPS,
as they provide an overview of the network status and
the potential threats.

(II) Host behaviour Profiling—Two sets of hosts pro-
grammed to behave as benign hosts (BHs) and malicious
hosts (MHs) are deployed at training time, to provide a
feedback loop for the RL agent. The MHs conduct the



same kinds of attacks that we hope to prevent in our
network and BHs help the system to characterize the sorts
of network traffic it should allow and not interfere with.
The idea is that by looking at how network configurations
at each point in time affect the performance of MHs and
BHs, we can construct a reward signal for the RL model.
This is the equivalent of establishing the ground truth.
For instance, a BH can simply be an agent browsing
the web mimicking human behaviour and an MH can
be a host conducting known attacks against internal or
external targets using the Metasploit framework [27]. The
profiling can be updated frequently or even automated to
mirror new benign behaviour, attack signatures, zero-day
tactics, tools, and know-hows based on a threat database.
The BHs constantly report a quantitative metric to reflect
their quality of experience and the MHs report on how
successful their attacks have been. Thus, the reward
function can be a normalized mean of these values.

(III) Autonomous Management—The agent observes the
network through the network observer feeds (e.g., IDS
alerts, traffic stats, etc.), and enforces policies on the
network via the SDN controller. The deployed configura-
tion will affect the performance of MHs and BHs, which
would in turn be reflected in their reported performance
metrics. The agent then receives this feedback from
the simulations and is able to modify its strategy in
a way that would maximize its expected cumulative
reward through time. Thus, the agent can correct network
policies through trial-and-error during training time.

C. Establishing Ground Truth (Reward) via Simulations

The design of the reward function is one of the biggest
challenges in RL-based threat mitigation, one that has been
rather over-simplified or avoided in most previous works in
this area (cf., Section II). For example, Sampaio et al. [8] use
RL for DDoS mitigation with the following reward function:
R = 1, if there is a congested network link, and R = 0,
otherwise. With such an extreme simplification, the reward
function will not only be unable to capture the dimensions and
insights of the network condition, it can hardly generalize to
other use-cases and different kind of attacks.

In our proposal, the reward function is based on the feedback
from a set of simulations, which are designed to maintain a
resemblance in behaviour of normal users and attackers inside
the network. The principal idea is that an optimal mitigation
strategy would ideally hinder the activity of MHs, without
affecting the experience of BHs. Hence, the RL agent can assess
the fitness of its configurations at any point, by looking at the
performance feedback from these simulations. For instance, a
combination of QoS metrics from BHs and attack success rate
from MHs can be used to constitute the reward function.

Using simulations, we have a general way to train models
that are able to perform mitigation against arbitrary attacks.
Intuitively, as long as the simulations are chosen to fit the
desired mitigation task and the RL model has enough capacity,
the agent will be able to handle a wide range of attacks that

are similar to the ones performed by MHs. The notion of
similarity here is with respect to the attack class and not the
exact fingerprint. Therefore, it is possible that even zero-day
attacks that belong to a known attack class would be mitigated,
as they will be classified in the same category by the RL model.
Furthermore, since the agent benefits from BHs to characterize
a normal behaviour, it is theoretically possible for it to tag and
eliminate new unseen threats based on their deviation from the
norm.

D. Network Observer

An integral part of our high-level model is the network
observer, which provides the state observation to the RL agent.
In essence, the network observer should provide a digest of
the network state at different points in time. This contains
useful raw information that can be processed to perform threat
mitigation. While our model does not place any restrictions on
the nature of the network observer, it is expected to be a system
whose output can distinguish attackers from benign users, if
analyzed properly. For instance, IDSs and flow-meters are good
candidates, as they are highly likely to provide information
that can help the agent single out the attackers.

Even with proper rules, IDSs are highly prone to false
positives. This makes it hard for a traditional mitigation system
to impose restrictions on a host that is deemed suspicious,
solely based on the IDS alerts. Using the information from
the IDS, ATMoS can carefully setup, as a counter measure,
mitigation rules. For example, migrating hosts across Virtual
Networks that are created specifically with different security
architectures and policies, while monitoring the feedback from
the simulations to ensure that these rules only affect MHs and
not the BHs.

E. RL in Networking Problem Formulation Challenges

When applying RL to any real-world problem, the main
objective is to define the states, actions, and reward to
effectively solve the problem. We start with corresponding
challenges and lead the discussion into our solution.

1) Action-set and State-set Design Challenges: It is difficult
to imagine a set of countermeasures against all network attacks,
let alone parameterize it as a finite discrete set of actions to
be used as the set of possible actions for the agent in RL
algorithms. This is one of the primary barriers of designing an
RL agent for threat mitigation. Traditionally, attack counter-
measures are defined specifically for each category of threat.
For example, countermeasures against DDoS attacks include
egress filtering, load balancing, deployment of honeypots, and
traffic throttling [28].

One approach is to design a formal framework for these
threat-specific defence methods, as done by Yau et al. [29]
where the authors define the action-set as deploying traffic
throttlers on routers to handle DDoS attacks. At each step,
the agent might increase or decrease the throttling rate by 5%.
However, there are a few major drawbacks to this approach:
• The action-set should be designed separately for each

different type of attack. This would require an enormous



amount of effort from domain experts to come up with
an all-encompassing action-set for the general use-case.

• The experience and learned know-hows from an RL
solution can hardly be transferred to another, since the
RL formulation of the threat mitigation problem can be
so vastly different for various solutions.

• The size of the action-set can explode really fast based
on the complexity of the defence method. Since RL is
based on trial-and-error, a large action-set will cause the
algorithm to take an extremely long time to converge,
making it impractical for any real-world deployment.

Another intuitive approach, is to define the elements of
the action-set as deploying a certain OpenFlow [30] rule.
Although this might be thought of as the ultimate action-set, as
it encompasses almost everything that the SDN controller can
do, the size of the action-set will be immense. Finding well-
generalized solutions in such a gigantic action-space would
require a very complex model, along with very expensive and
time-consuming training. This issue is further discussed in
III-E2.

2) State-set & Action-set Size Challenges: In RL, the high
dimensionality of states and the large number of actions can
both be problematic. RL algorithms based on neural networks,
such as DQN [3], allow the model to ingest a high-dimensional
state while maintaining reasonable complexity. For example, to
train models for playing video games, the state is often defined
as the color value of all the screen pixels from every Kth

frame of the game, but the value function is estimated using a
neural network that takes this large state as an input and returns
the estimated cumulative reward of taking each action from
the given input as its output [31]. The use of Convolutional
Neural Networks is also prevalent due to their effectiveness in
finding patterns in visual input.

On the other hand, large action-sets are more complicated
to manage. Current techniques in ML literature for managing
large discrete action-sets, such as [32], rely on the action-set
being in some sense continuous i.e., the actions that are close
to each other in the action-space domain would perform a
similar thing in reality. This way, function approximation can
be used to pick a close-to-perfect action. Unfortunately, the
continuity property does not apply to standard representations
of OpenFlow rules or anything involving network addresses.
For example, a rule for dropping traffic coming from IP address
10.0.0.1, is likely to be close to the rule for dropping those
of 10.0.0.2 in the action-space. Nevertheless, these actions are
vastly different in the effect they have in reality. Finding a
better representation of IP addresses and OpenFlow rules, is
one possible approach to overcome this. For instance, Li et al.
[33] have used the number of network hops between nodes
to learn a more meaningful representation of IP addresses.
However, coming up with one such method for the RL threat
mitigation task is very challenging as it should reflect similar
behaviour in network hosts.

F. State-space in ATMoS
The RL module in ATMoS makes use of the NFQ algorithm

[34], which uses neural networks (NN) for estimating the
expected cumulative reward from taking each action at each
state, following Q-learning as a base algorithm. The regular Q-
learning relies on a value-function Q that signifies the estimated
expected reward of taking an action in a given state. The Q-
learning update rule is:

Q(s′, a)← (1−α) ·Q(s, a)+α · (r+ γ ·max
a′

Q(s′, a′)) (1)

Where α is the learning rate, γ is the discount factor
indicating the trade-off between immediate and long-term
reward. r, s, s′ and a represent the reward, the previous state,
the new state, and the action taken, respectively. NFQ extends
the same concept to neural networks with the following update
rule:

Y Qk = r + γmax
a′∈A

Q(s′, a′ : θk)

θk+1 = θk + α
(
Y Qk −Q(s, a; θk)

)
∇θkQ(s, a; θk)

(2)

The idea is that the Q-function can be implemented using a
neural network. θk marks the weights of the network at step
k. Y Qk indicates the target value of the Q-function, which is
also used for calculating the MSE loss [35]. As mentioned in
Section III-E2, using a neural network can help handle the large
size of the state-space, allowing highly detailed information to
be consumed by the RL agent for choosing actions. Hence, in
ATMoS we are free to use a very large state-space.

To constitute the state, observations from the network
observer are fetched periodically and aggregated. Later, they
are ingested by the RL model as an N1×N2×N3 3-D tensor,
as depicted in Fig. 3. N1 is the number of tracked hosts, N2

is an adjustable hyper-parameter that signifies the number of
samples taken from the network observer at each training step,
and N3 is the dimensionality of the vector to encode each
observation of a host. For example, in our proof-of-concept
where the network observer is a traditional IDS, N3 is the size
of the vector used to represent each IDS alert that is simply a
one-hot encoding of the alert type, while N2 is the maximum
number of alerts under consideration from each host at each
step. Notice that due to the use of neural nets, N1, N2 and N3

should be fixed throughout the training.

N1

N3
N2 Ai : Expected cumulative reward for action i 

 A0 
 A1 
 A2 
 A3 
 A4

Fig. 3: Tensor representation of network observations at each step is
fed into the neural network

This formulation, keeps a uniform style of representing
network state, while remaining generalizable to different
approaches in what this information should be. This state
is fed as the input to the RL model’s NN.



G. Action-space in ATMoS

In ATMoS, Virtual Networks (VNs) are leveraged to build
a framework for mitigation, which can be controlled through
a minimal action-set. As shown in Fig. 4, multiple VNs are
deployed on top of the underlying SDN, which is convenient
and has a low overhead using modern controllers, such as
OpenDaylight. Each VN, embodies a different security level.
This can be implemented using different network policies
and functions (e.g., different IDS/IPS systems, deep packet
inspection engines, honeypots, traffic throttlers, etc.) in a way
such that VNs with higher security levels would have more
rigorous security measures.

Malicious / Benign
Simulations

SDN Controller

Light 
Security 
Function

Network 
Observation 

Database

Virtual Network 1 Virtual Network 2

API

Network Infrastructure

Performance
Feedback

Orchestrates

Observations
Commands

Orchestrates

Heavy 
Security 
Function

Fig. 4: The sample implementation of ATMoS architecture. Hosts are
moved between two VNs while being oblivious to these changes. The
API provides a unified gateway for interacting with the architecture.

The hosts are initially placed in the lowest security VN.
The agent constantly monitors the network observations on
all the hosts, and based on its trained model decides to move
the hosts to a higher security level VN, if necessary. This
migration is transparent to the host itself, as the VNs are
only a logical view on top of the underlying network and the
migration happens almost instantly.2 Hence, the action-set can
be defined as migrating each host to a VN with higher or lower
security level. We also consider a no-op i.e., a no operation
action, for the case when nothing shall be done. Thus, for
a network of K hosts, the size of the action-set is 2K + 1.
The simulations are deployed to the network as regular users,
with the difference that they are capable of reporting their
performance metrics. The network observer is orthogonal to
the VNs i.e., it monitors all hosts regardless of their VN.

2Our VN framework is very close to what can be achieved through traditional
VLANs. However, VTNs enabled by SDN controllers allow for much higher
flexibility than simple VLANs i.e., virtual topologies

Fetching the observations, receiving the performance feed-
back from simulations to calculate the reward, and invoking
the actions are all done through API calls, ensuring that the
management module and the infrastructure are fully decoupled.
The RL agent uses this API as its single point of contact with
the rest of the network. Based on this architecture, we are able
to provide a unified framework for developing a wide range
of RL applications. We transfer the complexity and domain-
specific nuances of designing the mitigation actions, to the
network functions installed in the VNs and simplify the RL
action-space. On the other hand, the network observer is a
general scheme for incorporating arbitrary information and
insights as the input of the RL model. Hence, our solution
addresses the complexities of formulating threat mitigation as
an RL problem (cf., Sections III-E1 and III-E2), while not
limiting its scope to a specific kind of threat. The results and
experiences from one RL agent can thus be extrapolated to
other cases, addressing the obstacles discussed in Section II.

IV. EVALUATION

In this section, we demonstrate an implemented sample
proof-of-concept, explain the technologies used, and present
the evaluation results.

A. Technology Stack

We ran our experiments on Google Compute Engine on
a Linux machine with 16 Intel Xeon 2.30 GHz cores and
60GB RAM. The SDN infrastructure was implemented using
Containernet [36], a fork of Mininet [37], which allows using
Docker containers as hosts on the network. For the network
controller, OpenDaylight (ODL) was used since it is one of
the most popular choices in the industry, and also its Virtual
Tenant Network (VTN) plugin is a feature-rich addition that
grants us the implementation of our virtual networks, described
in Section III-G. Open vSwitch was used as the underlying
software switch inside Mininet. We found that the operations
using this stack are quite fast. The start-up of ODL with all the
necessary plugins takes about 20.45 seconds on our hardware,
with an extra 3.14 seconds for the VTN daemon. The latency
for reassignment of a host’s VN is in the tenth of a second
time-scale, varying between 0.11s and 0.46s on our Python
Flask API. This latency can be easily reduced in the future by
optimizing the API code, if necessary.

MHs were implemented using a Python script, which in
turn triggers hping3, a packet assembling tool that can also
be used as a flooder. BHs were implemented using Google’s
Puppeteer library in NodeJS, which operates a headless Google
Chrome instance for emulating a human user’s behaviour. These
simulations are explained in more detail in Section IV-B. The
network observer, explained in Section III-D, in our experiment
is a standard Snort IDS/IPS [38], which is piped to a MySQL
database. Finally, a RESTful API is implemented in Python
to act as the single gateway for the RL agent to interact with
the SDN infrastructure. On the ML side, for convenience, an
OpenAI Gym [39] environment is implemented, which wraps
the calls to the REST API mentioned above, hence making the



RL code fully decoupled from the engineering aspects of the
project and closer to standard RL problems. The agent itself
uses an instance of the NFQ algorithm implemented using
Tensorflow [40] and Keras.

B. Proof-of-Concept Setup

In our sample implementation of ATMoS there are only two
VNs for two different security levels, as depicted in Fig. 4. In
the low-security VN, Snort is running in passive mode acting
as IDS, while in the high-security VN, Snort is deployed in-line
and acts as an IPS that intercepts all the VN’s traffic. Snort
was chosen over Suricata and Bro as it is more fit for small
to medium sized networks. To get the Snort alerts into our
MySQL database efficiently, a spooler called Barnyard2, was
used. Using an in-line IPS can be infeasible and unscalable for
many networks as it can reduce the bandwidth and increase the
latency. However, the RL agent learns to only place the most
suspicious hosts in the high-security VN, to avoid degrading the
performance of BHs, which is reflected in the reward function.
Hence, the benign user’s traffic will not go through the IPS
and their QoS will not be affected.

In our experiments, we deployed nb BHs referred to as
BH k, for k in range 1 to nb, in the rest of the paper. These
hosts were built to mimic human benign web surfing, running
a headless Chrome Browser that queries the Google Search
Engine with random sentences generated from a dictionary.
We also designed two kinds of MHs, one of which constantly
performs a simple DoS attack, while the other one uses APT
techniques. Although the APT MH runs the benign behaviour
by default in the background, it is capable of adapting to
the environment changes, sensing reachable local targets, and
launching crafted attacks against vulnerable targets when in
range. If no such target exists, the MH resorts to its normal
benign behaviour.

Our proof-of-concept APT imitates human benign behaviour
while periodically scanning the network and looking for
vulnerable hosts. Only when certain target hosts are found,
the APT launches tailored attacks against them, such as ICMP
and SYN flooding attacks which were chosen for the sake
of simplicity. In the presence of certain vulnerable hosts (i.e.,
those who answer to ICMP or TCP pings), the MH starts
attacking them with SYN or ICMP floods. All hosts constantly
register their performance metrics (e.g., attack success rate,
page load time, etc.) by hosting a tiny RESTful API.

The NN used in our experiment receives the 3-D state tensor
(network observation), in Section III-G, as the input and returns
the expected cumulative reward of taking each action as its
output. For 2 and 3 host experiments, the neural net has only
one dense hidden layer of 4 neurons. For the other experiments,
it has two such layers of 8 neurons. Learning rate is set to
0.01 at the beginning and decimated every thousand steps. The
reward function in our experiments is a factor of the number
of hosts placed in the correct VN, which allows for faster
convergence. We also make use of the ε-greedy policy, which
performs random actions with the probability ε at each step,
setting the trade-off between exploration and exploitation. ε is

set to ten percent at the beginning and lowered by an epsilon
decay factor of 0.9 at the end of each episode. MSE and ReLU
have been used as cost and activation functions, respectively.
The hyper-parameter γ that sets the trade-off between valuing
immediate or future rewards is set to 0.8.

C. Results

In our first experiment, we deployed our network with 1
BH and 1 MH. We compare two different scenarios when the
malicious host runs an APT attack versus the case where a
simple TCP SYN-flood attack is performed. We argue that the
latter does not need sequential decision-making and hence it
is an inherently simpler problem. As depicted in Fig. 5, we
observe that both models converge although the model in SYN-
flood experiment converges much faster, in only 150 iterations
as opposed to 1400 iterations for APT. The vertical bars in
all the figures signify epochs when random actions are taken
for exploration purposes. In epochs where the vertical bar is
not present, the RL acts on what it already learned, in other
words exploiting its previous knowledge acquired during the
experiment so far. All convergence diagrams show reward on
y-axis against time and iterations on x-axis.

We run our second experiment with 2 BHs and 1 MH, acting
like an APT attacker. As shown in Fig. 6, the convergence
is seen around 1800 epochs and demonstrate to keep its
knowledge afterwards. The y-axis ranges from -3 to 0 showing
better rewards when closer to 0, and worse rewards, signifying
failed mitigation of attack, on the more negative values. By
design the epsilon decay allows us to exploit more and explore
less, as we run more epochs with no change.

We investigate optimizing our convergence by teaching the
model that sometimes it looses the round, reaching terminal
state. By reaching terminal state a highly negative reward is
given to the agent, stressing it to learn that its decisions took
a really wrong turn. We observe that this gives us slightly
better experimental results, as it converges in 1000 steps, with
loosing state, rather than 1400, with non-loosing state, in the 1
MH (APT) and 1 BH experiment, as depicted in Fig. 7. Table I
shows a summary of our experiments.

No. Hosts Attack Loss State Iters. to Convergence

2 SYN No 150
2 APT No 1400
2 APT Yes 1000
3 APT No 1800

TABLE I: Summary of results (iterations to convergence) in our
experiments

V. FUTURE WORK

Our work lays the foundation for many new opportunities,
which could be used to adapt ATMoS to handle more compli-
cated attacks. In this section, we list a few research directions
that are worth pursuing.
• Refined Network Observation—In our evaluations, we

used an IDS/IPS for the network observer as a proof-of-
concept. We urge the use of a more sophisticated network



Fig. 5: Convergence diagram for the experiment with 1 BH and 1 MH running TCP SYN Flooder (on left) and running APT (on right)

Fig. 6: Convergence diagram for the experiment with 1 MH running
APT and 2 BHs

Fig. 7: Convergence diagram for the experiment with 1 MH running
APT and 1 BH, where actions with no consequence cause a losing
terminal state

observer, especially one that would make use of graph-
based features, such as those proposed in [41]. Such data
sources can provide better insights to the RL agent.

• Applicability to Unseen Attacks—Another direction
worth exploring, is the potential of an RL system to
mitigate zero-day attacks. For instance, having the model
trained for defence against a set of attacks and evaluating
its performance against one that has not been present
in training. Theoretically, the model is capable to grasp
the patterns, which constitute “normal” and “malicious”
behaviour, and extrapolate them to unseen attacks, given
the network observer is thoroughly designed and the model
has enough capacity.

• VN Design Based on Domain-specific Knowledge—
There is room for expanding the design of VNs. Multiple

VNs can be used with different VNFs placed inside them
e.g., Sniffers, Honeypots, SSL DPI engines. Another
possible approach is to have VNs with different bandwidth
throttling rates so that moving a host to a certain VN would
mean limiting its bandwidth. This encompass approaches
already seen in the surveyed literature [6], [8].

• Behaviour Profiling Enhancement—The feedback from
the simulated hosts could be normalized to reduce the
high variance of the reward signal. It is also worthwhile
to make the MHs run a more complicated variant of
APT, with higher logical complexity. For instance, the
MH could detect security mechanisms in place, and lie
dormant when they are activated, even if a vulnerable host
is seen in range making it harder to detect.

• RL Algorithms—We believe that experimenting with
different RL algorithms (e.g., NFQ, DDQN, A3C, etc.),
tweaking the hyper parameters in NFQ (e.g., neural
network architecture) and comparing the results is worth
exploring. Training the RL agent on ATMoS in an
adversarial setting is also of paramount importance for
the robustness of the model in real networks.

VI. CONCLUSION

In this paper, we defined a framework to implement RL-
based solutions for threat mitigation in SDN. We also publicly
released an open-source implementation of the framework, to
promote reproducible research. To evaluate the applicability
of our techniques, we put ATMoS against an APT attack and
analyze how it detects and mitigates the actors. Our results
show promising potential using this architecture and framework
to mitigate APT attacks. Cyber-attacks have advanced in
the recent years, to the extent where traditional signature
and heuristic based detectors paired with manual human
administered mitigation are not catching up. We hope research
efforts in automating threat mitigation would be facilitated and
accelerated with the help of ATMoS.
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