
Online based learning for predictive end-to-end
network slicing in 5G networks

EL Hocine Bouzidi∗‡, Abdelkader Outtagarts‡, Abdelkrim Hebbar‡, Rami Langar∗ and Raouf Boutaba§
‡ Nokia Bell Labs, Villarceaux Center - Route de Villejust 91620 Nozay, France

∗ University Paris-Est, LIGM-CNRS UMR 8049, UPEM, F-77420, Marne-la-Vallee, France
§ University of Waterloo, 200 University Ave. W., Waterloo, ON, Canada

E-mails: el hocine.bouzidi@nokia.com; {abdelkader.outtagarts, abdelkrim.hebbar}@nokia-bell-labs.com;
rami.langar@u-pem.fr; rboutaba@uwaterloo.ca

Abstract—5G networks are expected to provide a variety
of services over the same physical infrastructure equipped
with a combination of radio and wired transport networks
and leveraging network virtualization and Software Defined
Networking (SDN). In particular, network slicing is envisioned as
a promising solution to enable optimal support for heterogeneous
services sharing the same infrastructure. To this end, we design
and implement, in this paper, an SDN based architecture for
end-to-end network slicing which proactively and dynamically
adapts radio slices to the transport network slices. The developed
architecture enables the creation, modification and continuity
of radio and transport network slices while considering their
resource and Quality-of-Service (QoS) requirements. It leverages
Machine Learning for predicting radio slices capacities, im-
proving network resource utilization, and predicting congestion
within each network slice. We also formulate this network slicing
problem as a Linear Program (LP) aiming to minimize the
total network delay. Finally, we propose an efficient heuristic
algorithm with low time complexity and high estimation accuracy
to solve large problem instances. Experimental results using
the OpenAirInterface (OAI) platform, FlexRAN, ONOS SDN
Controllers and OpenvSwitch demonstrate the efficiency of our
approach in terms of guaranteeing low latency and high network
throughput.

Index Terms—SDN, Prediction, Cloud-RAN, QoS, ONOS,
FlexRAN, Network Slicing

I. INTRODUCTION

The fifth generation (5G) is envisioned to be a multi-service
network supporting a wide range of users needs and accommo-
date a multitude of services, with stringent and heterogeneous
requirements. These services require a programmable and
a flexible infrastructure, allowing them to share the same
Radio Access Network (RAN) and transport network, while
guaranteeing the QoS. Software-Defined Networking (SDN)
[1] is one of the key emerging technologies for the 5G
vision, allowing the providers to control and orchestrate their
resources and enable the sharing of the same physical network
infrastructure through the concept of Network slicing [2].

Network slicing enables optimal support for heterogeneous
services, by running them in an independent Virtual Networks
(VNs), on a common shared Physical Network Infrastructure
(PNI), such that each VN is allocated a fixed or dynamic
portion of the PNI resources. Network slicing is generally
applicable in both RAN referred to as radio slicing and
transport and Core Network domains, referred to as transport

network slicing. Radio slices share radio resources among di-
verse services (i.e., Internet of Things (IoT), enhanced Mobile
BroadBand (eMBB)) by reserving an appropriate portion of
bandwidth (i.e., a number of Radio Resource Blocks (RBs))
to be used from that slice for a specific time interval [3].
Transport network slicing consists in creating isolated Packet
Networks (PN) composed of physical or virtual switches
assigned to a tenant by the network provider that, in turn,
owns the corresponding physical resources [4].

Creating an isolated and efficient end-to-end network slice
remains challenging, particularly when considering the band-
width prediction of radio slices to scale in and out the PN
slices, as well as congestion inside each PN slice, while taking
into account the slices QoS.

To this end, we design and implement, in this paper,
an SDN based architecture for end-to-end network slicing
which proactively and dynamically adapts radio slices to the
transport network slices. The developed architecture enables
the creation, modification and continuity of radio and transport
network slices while considering their resource and QoS
requirements. It leverages Machine Learning for predicting
radio slices capacities, improving network resource utilization,
and predicting congestion within each network slice. We also
formulate this network slicing problem as a Linear Program
(LP) aiming to minimize the total network delay. Finally,
we propose an efficient heuristic algorithm with low time
complexity and high estimation accuracy to solve large prob-
lem instances. In addition, we validate our proposal using an
experimental Cloud-RAN (C-RAN) prototype, which makes
use of OpenAirInterface (OAI) [5], an open-source software
implementation of LTE Evolved Packet Core (EPC) [6], the
ONOS SDN controller [7], and the Software Defined-RAN
(SD-RAN) FlexRAN controller [8].

To the best of our knowledge, we are the first to propose
and validate such proactive end-to-end network slicing using
an experimental C-RAN and transport testbed.

The main contributions of our paper can be summarized as
follows:

• First, we design and implement a Northbound SDN
application on top of ONOS and FlexRAN controllers
to enable dynamic creation of end-to-end network slices
(i.e., eMBB, IoT).

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

• Second, we propose a Machine-Learning based algorithm
to predict the capacities of radio slices and adapt them
to the PN slices in order to improve network resource
utilization, and QoS requirements.

• Third, we formulate the end-to-end network slicing prob-
lem as a Linear Program (LP) aiming to minimize
the total network delay. We then propose an efficient
heuristic algorithm with low time complexity and high
estimation accuracy to solve large problem instances.

• Forth, we validate our proposal using an experimental
prototype.

The remainder of this paper is organized as follows. Section
II presents the related works. In Section III, we discuss the
architecture of our framework and the proposed rules place-
ment algorithm. Section IV evaluates the proposed method.
We finally conclude this paper in Section V.

II. RELATED WORKS

Recently, there has been a dense specific research interest
for network slicing on both RAN and Core Network (CN)
domains, and its impact on resource management [9] [10].

Most of the literature on Core Network converge towards
a common commitment, which consists in separating con-
trol plane and data plane of the Core Network EPC nodes
(i.e., Mobility Management Entity (MME), Serving Gateway
(S-GW), Packet Data Network Gateway (P-GW)). In [11],
authors propose new architecture in which they decouple
the control plane from the data plane of the S/P-GW by
using SDN controllers and GPRS Tunneling Protocol (GTP)
based OpenFlow switches to route User Equipment (UE) data.
Although using the SDN controller in the Core Network gives
more flexibility, the authors do not consider the forwarding of
the GTP packets in the S1-U interface, between the RAN and
S-GW, where a single path routes all UEs traffic.

In several works, the concept of radio slicing is considered
as a RAN sharing issue. Authors in [3] [12] proposed a
radio slicing solution for enabling efficient coexistence of
eMBB and IoT services, by implementing a northbound SD-
RAN application which enables the creation of IoT slices on
demand, while considering the QoS requirements.

On the other hand, Much researches leveraging Machine
Learning (ML) in QoS-aware routing problem specifically in
SDN based networks [13]. Authors in [14], showed the out-
performance of the ML technique Long Short-Term Memory
(LSTM) on (Auto-Regressive Integrated Moving Average)
ARIMA in terms of network routing optimization and con-
gestion prediction based on SDN.

To sum up, all the above works present the following short-
comings: i) the non-consideration of routing the UE packets
in S1-U interface based on GTP, ii) the non-consideration
of slicing continuity based on the UE connection and finally
iii) the non-consideration of traffic prediction when it comes
to end-to-end network slicing. Based on these observations,
we address in this paper the design and implementation of
a system capable of: i) forwarding the UE traffic in multi
paths in the S1-U interface, by patching OpenvSwitch [15]

to be able to handle GTP traffic, and ii) creating an end-to-
end network slices by considering the bandwidth prediction
of radio slices to scale in and out the PN slices, as well as
network congestion inside each PN slice, while taking into
account the flows QoS.

III. SDN-BASED DYNAMIC NETWORK SLICING
CONTINUITY AND TRAFFIC PREDICTION

In this section, we detail our approach for SDN-based
dynamic network slicing continuity and traffic prediction to
enable efficient end-to-end slicing. Firstly, we explain the
overall system architecture. Thereafter, radio slicing, packet
network slicing, end-to-end slicing and proactive end-to-end
slicing will be described.

A. SDN-based dynamic network slicing continuity and traffic
prediction Framework

Fig. 1. SDN-based dynamic network slicing continuity and traffic prediction
Framework

Fig. 1 presents the system architecture considered in this
paper, which consists of two interconnected technology do-
mains. The first is the Radio domain, which provides mobile
broadband and IoT services. According to the C-RAN concept
[16], the RAN functionalities are split between Remote Radio
Units (RRUs) and Radio Cloud Center (RCC). Moreover, we
deploy C-RAN following an SD-RAN architecture, in which
the RAN control and data planes are separated using a Radio
Controller.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

The second is the Transport domain, which provides con-
nectivity services to the Radio domain. This domain consists
of SDN switches, that we modified to handle the GTP traffic,
referred to us Packet Network (PN) that connects the RAN
to the Core Network. More specifically it connects the RCC
to: a) the MME through the S1-MME interface and b) the
S-GW through the S1-U interface, where the traffic can be
routed through multiple paths. Moreover, we centralize the
control plane using an SDN Controller on top of these devices.
The interface between the SDN Controller and the devices is
defined by the OpenFlow protocol [17].

On top of the SD-RAN and SDN Controllers an Orches-
tration layer is deployed, which automatically handles slicing
(i.e., creation, modification, continuity, etc.). In what follows,
we detail these properties.

B. Radio Slicing

The radio slicing is performed by the orchestration layer
module Radio Slicing as shown in Fig. 1. This module
communicates with the SD-RAN Controller through the north-
bound API and dynamically performs slicing based on statis-
tics collected and stored in the RAN Information Base (RIB)
in the SD-RAN Controller. The latter in turn sends slicing
decisions to the scheduler agent located in the RCC node. In
this architecture, the slice creation requests come from the
tenants for subscribers located in a specific area. Through the
northbound API, the Orchestrator can create radio slices by
setting a set of parameters, such as the fraction of RBs that
the corresponding slice is allowed to use, and the QoS.

C. Packet Network Slicing

In the current Evolved Packet System (EPS) architecture
[6], the traffic flowing from a RCC can be routed only through
one single path in the S1-U interface, even if there are multiple
paths. Since data are transported with GTP protocol, where the
same outer headers (Ethernet, IP and Transport) are added
to UE packets, SDN based routing of these packets using
the information encapsulated on these layers through different
paths is not possible. On the other hand, the UE connections
can be identified by a specific field Tunnel Endpoint Identifier
(TEID) of the GTP header encapsulated on top of these layers.
The idea is thus to deploy a set of bridges capable of routing
GTP traffic based on TEID identifiers. To this end, we have
extended the open source implementation of OpenvSwitch, to
support the GTP forwarding feature. Based on preinstalled
GTP rules, the GTP packets can be forwarded to a specific
switch ports (i.e., Datapath) and through multiple paths.

A PN slice is hence composed of OpenvSwitwh switches
and links capable of routing the traffic flow from a radio slice
and ensure continuity, as will be explained in the next section.

D. End-to-End network slicing

Fig. 2 illustrates our proposed procedures of End-to-End
network slicing according to the SDN paradigm. It is
composed of two main steps. The first one is Slices Creation,
in which the tenant starts by creating both radio and PN

slices, and associate their informations such as slice id,
the set of OpenvSwitch devices and their corresponding
links and ports, to the subscribers International Mobile
Subscriber Identity (IMSI) and save them in the centralized
Database (EPS DB). The second step happens when a new
connection is established (i.e., after UE Initial Attachment,
Bearer creation, exchange of UpLink and DownLink TEIDs
between RCC and S-GW). In this case, the SD-RAN triggers
the Orchestrator of the new connection event. The latter
then, associates the connection TEIDs to the already saved
informations such as slice id, and installs remotly through
the SDN Controller the corresponding GTP Flow Rules.
Then the UE data starts to flow between RCC and S-GW.

Fig. 2. End-to-End network slicing procedures

E. Proactive end-to-end Slicing

To meet the requested flow's QoS requirements, the sizes
of Radio slices must be adjusted proactively and dynamically.
To this end, we suppose that, initially, the number of resource
blocks that the tenant's radio slice is allowed to use is fixed as
a fraction of the whole bandwidth. However, we propose to
proactively allocate additional unused resource blocks from
other radio slices to the overloaded slice, which exceeds
its authorized capacity, by predicting the future evolution
of resource blocks requirement, using the Linear Regression
method (LR) [18]. On the other hand, these radio slices must
be adapted proactively and dynamically to the PN slices.
Furthermore, while scaling in/out the PN slices, we distribute
the traffic load over the same slice topology. Then, to avoid
congestion, we proactively route flows following the paths
with less delay and large capacity. To this end, we build on
our previous contributions [18] [19], in which we deployed
two main modules on the SDN Controller. The first module is
the Network Measurement that periodically collects statistics
(i.e., latency, throughput, etc.) from the PN slices and stores
them in a centralized Traffic Matrix. The second module is
the Proactive Forwarding in which we aim to balance the
traffic load over the slice topology and predict congestion by
rerouting flows to the less delayed paths. This problem can

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

be defined as a rules placement problem, where the objective
is to determine which link to route which flow in order to
minimize the total network delay and balance the network
load by minimizing link utilization while scaling in/out the PN
slice. We formulate this problem as a LP, written as follows:

• Inputs:
– Network topology: G(V i, Ei)
– Traffic matrix: TM i

– Predicted Traffic Matrix: T̂M i

– Matrix of link delay: Di = {d(u,v)}
– Matrix of predicted link delay: D̂i ={d̂(u,v)}
– Matrix of link delay thresholds: TSi = {TS(u,v)}
– Size of flow f allocated to (u, v): S(f ,u,v)

– Set of flows: F = {f1, f2, f3, ..., fl}
• Objective:

– Minimize
∑

(u,v)∈Ei

d(u,v) × LU(u,v)

• Constraints:
– Delay limitation:

∀(u, v) ∈ Ei : Max(d(u,v), d̂(u,v)) < TS(u,v)

– Link capacity limitation:
∀(u, v) ∈ Ei : LU(u,v) < MLU(u,v)

– Path capacity limitation: ∀(u, v) ∈ P :
MLU(u,v) − LU(u,v) ≤ Cap Av Path(P)

– Demand satisfaction:
∀(u, v) ∈ Ei, ∀f ∈ F :

∑
S(f ,u,v) ≤ RSDi

Scale Outi =

{
1 if R̂SDi > TSDi

0 Otherwise

Where MLU (u, v) (Maximum Link Utilization of link
(u, v)) denotes the adjusted maximum link capacity in order
to avoid congestion. It is defined as follows: MLU (u, v) =
c(u, v)∗θ(u, v), where c(u, v) denotes the link capacity, and 0 <
θ(u, v) < 1 is a constant depending on link characteristics.
Also, LU (u, v) determines the utilization of the link (u, v),
which is defined as follows: ∀f ∈ F : LU (u, v) =

∑
(E(f, u, v) × S(f, u, v)), where the symmetric Binary matrix
E = {e(f, u, v)} denotes whether the flow rule f is allocated
to the link (u, v) or not. The capacity and delay limitation
constraints force each link (u, v) to not exceed its threshold
MLU and to not be delayed. The demand satisfaction con-
straint ensures the PN slice to send or receive the same amount
of traffic from the Radio slice and proactively scale in/out
the PN slice if the predicted traffic exceeds certain threshold,
where TSDi and R̂SDi denote, respectively, the threshold
and predicted demand of Radio Slicei.

Solving the proposed LP in the Orchestrator for each
incoming flow could be time consuming, as the size of the
network and the number of flows increase. Consequently, the
computational complexity increases exponentially. Therefore,
such approach is not feasible in practice, since it generates
high overhead due to the frequent updates of the flow tables.

To cope with this problem, and reduce the computation time
and complexity, we propose a simple yet efficient heuristic
algorithm, called Congestion prediction and Load balancing

Rule placement algorithm (CLR). CLR can efficiently find a
feasible and near optimal solution, while minimizing the total
network latency and packet loss.

Algorithm 1: CLR Rule placement algorithm

1: procedure CONGEST REM(G(V i, Ei), TM i, T̂M i)
2: for all link (u, v) ∈ Ei do
3: t ← 0
4: while Max(d(u, v), d̂(u, v)) > TS(u, v)

or LU (u, v) > MLU (u, v) do
5: CP ← Get Congested Path(u, v)
6: F ← Sorted F lows(CP)
7: R ← F [t].f low
8: SP ← Sorted Backup Paths(R)
9: for each path p ∈ SP do

10: if p can route R then
11: Install Rule(p,R)
12: Remove Rule(CP,R)
13: Break
14: t ← t+ 1
15: end procedure
16: procedure LOAD BALANCING(G(V i, Ei),TM i, T̂M i)
17: for all f low f ∈ sorted F do
18: list P ← Paths that can route f in Slicei
19: for all P ∈ list P do
20: if Scale Outi then
21: if mp(P) + f.size < mt then
22: Assign f to P
23: mt ← Max(LU (u, v), ∀(u, v) ∈ E)
24: if Scale Ini then
25: if mp(P) + f.size < MLU(P) then
26: Assign f to P
27: end procedure

Algorithm 1 shows the detail of the proposed heuris-
tic. It consists of two procedures: CONGEST REM and
LOAD BALANCING that take as inputs the Network topol-
ogy G(V i, Ei) and the current and predicted Traffic Matrix
(TM i and T̂M i, respectively).

The CONGEST REM procedure is called to delete a con-
gestion and it works as follows. Upon measuring continuously
the current and predicted Traffic Matrix, if a congestion occurs
in the PN Slicei, in which the current or predicted link delay
is greater than a certain threshold or the link is overloaded,
our algorithm finds the flow rule R corresponding to the flow
with minimum size in the congested path CP . Then, it sorts
all other paths (denoted by SP) by the delay matching the
flow rule R (lines 5-8). In this case, the flow rule R must
be rerouted to a path in SP (line 9-13). If no path in SP
can accommodate the corresponding flow size, the flow is
discarded, and our algorithm goes to the next flow in the
CP (line 14). On the other hand, the LOAD BALANCING
procedure triggered periodically and when scaling in/out a
PN Slicei, and it works as follows. For each flow f in F
sorted in descending order, it evaluates possible paths list P

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

that can route the flow f . Among these considered paths, we
distinguish two situations. The first one, when scaling out the
PN Slicei, in which we distribute the flows over the new
paths, to this end we minimize the overall LU (line 23).
The second one happens when scaling in the PN Slicei, in
which we distribute the flows over the original paths while
avoiding overloading each link. Note that, mp(P) denotes
the maximum path utilization, it is determined as follows:
mp(P) = Max(LU (u, v), ∀(u, v) ∈ P). Whereas MLU(P)
denotes the maximum threshold determining the maximum
tolerable load of all links composing P . It is determined as
follows: MLU(P) = Max(MLU (u, v), ∀(u, v) ∈ P). Note
that, the action of scaling in/out the PN slice consists in adding
or removing a set of network paths.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposed
approach. We start by presenting our environmental setup.
Then, we present the experimental results.

A. Experimental setup

Fig. 3 illustrates the logical building blocks of our frame-
work. In the radio domain, the RCC and RRU nodes are
interconnected via a fronthaul interface (FH), and deployed
on separated servers by making use of OAI software [5] and
Docker container technology [20]. The server hosting the RRU
container is connected to an Ettus USRP B210 card [21] via
an USB 3.0 interface. The C-RAN infrastructure provides 4G
connectivity to two Nokia IoT Gateways, one 4G smartphone
and Bandluxe C501 LTE modem. The Nokia IoT Gateways in
turn provide Bluetooth connectivity to Bosch XDK110 sensor.
Note that, by making use of XDK-Workbench [22] tool, we
developed a software for XDK senor that periodically sends
Humidity, Pressure, through the IoT Gateway by the means of
MQTT protocol [23], to a remote IoT framework. The latter is
deployed based on Eclipse Kapua [24] on a remote machine
as a cluster of Docker containers. The Packet Network domain
consists of a set of OpenvSwitch devices, created by deploy-
ing, on a physical machine, a specific OpenvSwitch version
that we extended to support GTP traffic. This PN is connected
to the Core Network EPC, where the EPC nodes are deployed
as a cluster on two servers by the means of Docker technology.

We deployed the FlexRAN controller [8] on top of RCC
node, as well as the OpenFlow controller ONOS [7] to
control the Packet Network. On top of these two Controllers
the Orchestrator is deployed by using Docker. The Radio
Slicing, the Packet Network Slicing, the Slicing Continuity,
and the Traffic Prediction modules are developed based on
Python, which interact with SD-RAN and SDN controllers
through the FlexRAN and ONOS northbound APIs, respec-
tively. Furthermore, the statistics needed to enable automation
of slicing continuity such as GTP TEID, are extracted from the
MongoDB database [25]. It is worth noting that, we implement
the Network Measurement module (Latency Measurement and
Statistics) as well as the Proactive Forwarding module as

cooperating modules for the Java based OpenFlow controller
ONOS, based on our previous framework [18] [19].

Noting that, the main prediction method used in the pro-
posed solution is LSTM. In which, we built and trained
the LSTM model by using Keras Library [26], where the
number of dense layers is 2 and the number of nodes is 42.
Furthermore, we saved the trained LSTM model, in such a
way that only one step is needed to get the predicted traffic.

As for ONOS and FlexRAN controllers, the radio nodes
(i.e., RRU, RCC) and the Core Network nodes (i.e., S-GW, P-
GW, MME, Home Subscriber Server (HSS)) are Docker based
deployment. They are placed and managed by the containers
clustering and scheduling tool Docker Swarm [20].

Fig. 3. End-to-End Slicing Prototype

B. Experimental results

In order to evaluate the performance of the proactive and
dynamic radio slicing, we compare it to the radio slicing
without prediction. Specifically, as shown in Fig. 3, we created
two radio slices (i.e., IoT and eMBB). Then, we generated two
Iperf [27] traffics from two hosts. The first one is connected
to the Bandluxe C501 LTE modem and the second one is
connected to the IoT Gateway. Initially, we allocate 40% of
the total RBs to the IoT slice and 60% of the total RBs
to the eMBB slice. Thereafter, we generated an Iperf traffic
from the IoT slice characterized by periodical sessions which
can exceed the slice capacity. On the other hand, the traffic
generated in the eMBB slice is regular which takes regularly
70% of the RBs allocated to the eMBB slice. Fig. 4-a, shows
the amount of RB requested by the IoT slice when all the

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

bandwidth is allocated to this slice, and the maximum RB
that this slice is allowed to use (i.e., 10 RB), during a period
of 60 time intervals of 5 seconds. From Fig. 4-b, it can be
observed that the throughput is increased while predicting the
future behavior of the traffic, and allocating additional RB not
used from the other slice. However, the throughput remains
stable at certain threshold, by using fixed slices capacities,
since there is no dynamicity and the absence of future vision
of the traffic evolution, which causes service degradation.

Fig. 4. IoT traffic profile and fixed and dynamic proactive radio slicing

We plot in Fig. 5 the Mean Squared Error (MSE) [14] of
the prediction method (LR) used to predict the RB allocation.
We can see that LR achieves a good estimation accuracy since
the associated MSE values remain very low.

Fig. 5. MSE of LR used to predict RB requirements

In order to evaluate the proposed End-to-End network slic-
ing solution, we propose to run it under two main strategies:
i) Static, in which the amounts of resource blocks and the
capacities of PN slices are fixed and no scaling in/out, and
ii) Zero touch, where both Radio and PN slices capacities are
changed dynamically and proactively. In this latter strategy,
we distinguish between the following schemes:

• CLR, which corresponds to the proposed heuristic while
using LSTM for Traffic Prediction in PN slices and LR
in the corresponding Radio slices.

• CLRv1, which corresponds to CLR while using LSTM
for Traffic Prediction in PN slices and no prediction in
the corresponding Radio slices.

• CLRv2, which corresponds to CLR while using LR for
Traffic Prediction in both PN and Radio slices.

• Hop-count (HC), which is the default routing metric used
by ONOS, while using LR for Radio traffic prediction.

Note that, we have added an external emulated IoT and
eMBB traffics to inject more traffic to the PN part.

First, we compare in Fig. 6 the prediction accuracy of the
different methods used for traffic prediction inside a PN slice.
From that figure, we can see that LSTM achieves a good
prediction accuracy and performs better than LR, due to its
capacity to learn long-term dependencies.

Fig. 6. MSE of CLR using LR and LSTM prediction methods

Fig. 7 plots the end-to-end delay, packet loss and throughput
for all schemes (CLR, CLRv1, CLRv2, HC and Static). We
can see that the Static approach causes obviously considerable
packet loss and decreases the throughput, since the slices
capacities either in Radio or PN are fixed in advance. In
addition, there is no scaling in/out. On the other hand, the
Zero touch approaches outperform the Static one, since the
capacities associated to each slice are dynamic, based on
traffic prediction and PN scaling. Specifically, HC outperforms
the Static approach since the Radio slicing is dynamic. How-
ever, it still causes considerable packet loss and decreases the
throughput and latency, since all the flows are forwarded to
shortest paths which are not always the optimal ones. On the
other hand, the two approaches CLRv1 and CLRv2 improve
the network performances in terms of decreasing the packet
loss and increasing the throughput. However, a certain level
of packet loss is still observed in these two schemes due
to the incapacity of LR to predict the future evolution of
network traffic in CLRv2 and the absence of traffic prediction
in CLRv1. Finally, we can see that CLR outperforms all
other schemes, where both the delay and the packet loss are
decreased, and the throughput is increased. This is related to
the high accuracy of LSTM in predicting network congestion,
compared to LR prediction method.

Finally, Fig. 8 plots the maximum link utilization of our
scheme CLR under two prediction methods (LSTM and LR)
compared to HC. We can see that CLR outperforms HC, since
some links and devices are overloaded and experiencing con-
gestion while other are under-utilization in the HC approach.
However, when using CLR, the traffic load is balanced, which
minimizes the link utilization. Moreover, LSTM shows better
performances compared to LR.

V. CONCLUSION

In this paper, we have addressed the design and imple-
mentation of a novel architecture based on SDN and Ma-
chine Learning techniques for enabling creation, modification

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Delay, Packet Loss and Throughput under CLR based rule placement
algorithm with and without prediction

Fig. 8. Maximum link utilization under CLR based rule placement algorithm
with and without prediction

and continuity of radio and transport network slices, while
considering their performances and QoS requirements. To
do so, our solution relies on OAI tool FlexRAN, ONOS
and an extended version of OpenvSwitch that we patched to
handle GTP packets. Second, the proposed solution enables
efficient sharing of RAN and Packet Network resources by
proactively adjusting radio slices capacities and adapt them to
the corresponding Packet Network slices, then a balancing of
traffic load and congestion prevention have been proposed for
improving routing and avoiding congestion within each Packet
Network slice. To this end, we have formulated the problem
as a LP that aims to minimize the total network delay and
proposed a Congestion prediction and Load balancing Rule
(CLR) placement algorithm to solve it with low time complex-
ity and high estimation accuracy. Experimental results show
the feasibility of the proposed solution of handling end-to-end
slicing continuity in real-time. Specifically, results show the
outperformance of using Machine Learning techniques in real-

time on other schemes in terms of increasing throughput and
decreasing packet loss and latency. Future work will focus on
making use the slicing mechanism in the Core Network.

ACKNOWLEDGEMENT

This work was partially supported by the FUI SCORPION
project (Grant no. 17/00464).

REFERENCES

[1] ONF TR-521 Specification, “Sdn architecture,” Issue 1.1, Feb. 2016.
[2] A. Mayoral, R. Munoz, R. Vilalta, R. Casellas, R. Martinez, and

V. Lopez, “Need for a transport api in 5g for global orchestration of
cloud and networks through a virtualized infrastructure manager,” IEEE
J. Opt. Commun. Netw., vol. 9, no. 1, pp. A55–A62, Jan 2017.

[3] S. Costanzo, I. Fajjari, N. Aitsaadi, and R. Langar, “Dynamic network
slicing for 5g iot and embb services: A new design with prototype and
implementation results,” in 2018 3rd Cloudification of the Internet of
Things (CIoT), July 2018, pp. 1–7.

[4] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network
slices toward 5g communications: Slicing the lte network,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 146–154, Aug 2017.

[5] “Openairinterface simulator/emulator,” Tutorial, Jul 2015. [Online].
Available: http://www.openairinterface.org/

[6] “The evolved packet core,” Tech. Rep. [Online]. Avail-
able: https://www.3gpp.org/technologies/keywords-acronyms/100-the-
evolved-packet-core

[7] Onos. [Online]. Available: http://github.com/opennetworkinglab/onos
[8] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-

vasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” 11 2016, pp. 427–441.

[9] M. R. Raza, M. Fiorani, A. Rostami, P. Ohlen, L. Wosinska, and
P. Monti, “Dynamic slicing approach for multi-tenant 5g transport
networks,” IEEE J. Opt. Commun. Netw., vol. 10, no. 1, pp. A77–A90,
Jan 2018.

[10] M. Leconte, G. Paschos, P. Mertikopoulos, and U. Kozat, “A resource
allocation framework for network slicing,” in 2018 IEEE INFOCOM,
04 2018, pp. 2177–2185.

[11] A. Ksentini, M. Bagaa, and T. Taleb, “On using sdn in 5g: The controller
placement problem,” in 2016 IEEE GLOBECOM, Dec 2016, pp. 1–6.

[12] N. Salhab, R. Rahim, R. Langar, and R. Boutaba, “Machine learning
based resource orchestration for 5g network slices,” in 2019 IEEE
GLOBECOM, December 2019.

[13] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo Rendon, “A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,” JISIS, vol. 9, 05 2018.

[14] A. Azzouni and G. Pujolle, “A long short-term memory recurrent neural
network framework for network traffic matrix prediction,” 05 2017.

[15] OpenvSwitch. [Online]. Available: https://www.openvswitch.org/
[16] “How to connect cots ue toai enb via ngfi rru,” Tutorial. [Online].

Available: http://gitlab.eurecom.fr/oai/openairinterface5G/wikis/howto-
connect-cots-ue-to-oai-enb-via-ngfi-rru

[17] (2015, March) Openflow networking foundation. [Online]. Available:
https://www.opennetworking.org

[18] E. H. Bouzidi, D. Luong, A. Outtagarts, A. Hebbar, and R. Langar,
“Online-based learning for predictive network latency in software-
defined networks,” in 2018 IEEE GLOBECOM, Dec 2018, pp. 1–6.

[19] E. H. Bouzidi, A. Outtagarts, and R. Langar, “Deep reinforcement learn-
ing application for network latency management in software defined
networks,” in 2019 IEEE GLOBECOM, Dec 2019, pp. 1–6.

[20] Docker. [Online]. Available: https://www.docker.com/
[21] “Usrp b200/b210 specification sheet,” Tutorial. [Online]. Available:

https://www.ettus.com/product/details/UB200-KIT
[22] “Xdk bosch,” Tutorial. [Online]. Available: https://xdk.bosch-

connectivity.com/
[23] “Mqtt protocol,” Tech. Rep. [Online]. Available: http://mqtt.org/
[24] “Eclipse kapua,” Tutorial. [Online]. Available:

https://www.eclipse.org/kapua/
[25] “Mongodb,” Tutorial. [Online]. Available: https://www.mongodb.com/
[26] keras. [Online]. Available: https://keras.io/
[27] Iperf. [Online]. Available: https://iperf.fr/

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 03:03:21 UTC from IEEE Xplore. Restrictions apply.

