
Time-based Anomaly Detection using Autoencoder
Mohammad A. Salahuddin1, Md. Faizul Bari1, Hyame Assem Alameddine1,2,

Vahid Pourahmadi1, and Raouf Boutaba1
1David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

2Ericsson Security Research, Montreal, Canada
{mohammad.salahuddin, faizul.bari, halamedd, v2pourah, rboutaba}@uwaterloo.ca

Abstract—Distributed Denial of Service (DDoS) attacks con-
tinue to draw significant attention, especially with the recent
surge in cyber attacks that targeted the healthcare, education and
financial sectors, during the COVID-19 pandemic. The expansion
of virtualization and softwarization technologies, and the surge
in Internet of Things (IoT) devices, increase the attack surface
and the impact of attacks on networks. In this paper, we present
a novel time-based anomaly detection system that leverages an
Autoencoder. We explore the impact of different time-windows
on detecting multiple DDoS attacks that are difficult to detect
via the widely used flow-based features. We train and evaluate
our Autoencoder on the recent CICDDoS2019 dataset, and show
that our approach achieves an anomaly detection F1-score of
over 99% for most attacks and greater than 95% for all attacks.

Index Terms—Security management, distributed denial of
service, anomaly detection, autoencoder

I. INTRODUCTION

A number of unique cyber-crimes recently took place
following the unprecedented COVID-19 pandemic, which
impacted society and businesses [1]. Cyber-criminals took
advantage of the pandemic to expand upon their arsenal,
in the light of an increased reliance on telecommunication
networks. Multiple Distributed Denial of Service (DDoS)
attacks took place recently, which targetted the healthcare,
financial, government sectors, food services industry and the
general public [1], [2]. An example is the DDoS attack on
OKEx and Bitfinex financial institutions.

DDoS attacks can deplete network resources by increasing
network traffic and prevent legitimate users from accessing
the network [3], [4]. DDoS attacks take advantage of existing
vulnerabilities in virtualization technologies (e.g., virtual ma-
chines, containers, etc.) and Internet of Things (IoT) devices,
which can be harnessed as part of a botnet to launch attacks
[4], [5]. DDoS attack detection techniques can be broadly
classified into: (i) signature-based approaches for detecting
known attacks [5]–[10], and (ii) anomaly-based approaches
that can detect both one-day, as well as zero-day attacks [11].

Anomaly detection consists of establishing a baseline of
normal behavior of the protected system and identifying any
deviations from the norm [11]. Machine Learning (ML) has
been widely adopted in the literature to address anomaly
detection [12]. Supervised learning has been employed in [13],
[14] to detect anomalies. While supervised learning techniques

provide high accuracy [15], they depend on the availability of
a labeled dataset that distinguishes normal from anomalous
instances. As anomalous instances are usually fewer than
normal, these methods face challenges related to dataset
imbalance. In addition, obtaining labeled anomalous traffic
is difficult, given that attack training data is very rare [11],
[16]. In contrast, unsupervised learning techniques [6], [15]–
[18] do not require labeled data and assume that benign data
adopts similar behavior. Deviation from the profiled behavior
is then detected as anomalous [11], [16]. Neural networks have
been used for anomaly detection, due to their ability to learn
complex and non-linear relationships in input data, resulting
in high detection rates. In contrast, traditional ML approaches
suffer from high false alarms on large datasets and require
experts for proper feature selection [4], [6].

We present a time-based anomaly detection system that
leverages an Autoencoder, a neural network with two
components—encoder and decoder. It compresses the input
data into a latent low-dimensional space through the en-
coder, and decompresses the compressed data to reconstruct
the original input using the decoder, while minimizing the
reconstruction error [16], [17]. An Autoencoder learns the
data representation in an unsupervised manner, and can be
efficiently used to profile benign network traffic [16]. While
most works employ flow-based statistical features with ML
models to detect anomalies, we highlight the shortcomings of
flow-based features in detecting specific DDoS attacks. We
evaluate the impact of time-windows in detecting numerous
DDoS attacks by leveraging time-based features. Time-based
features depict statistical information of a subset of packets
collected over a specific period or time-window. We evaluate
our proposed approach using the CICDDoS2019 dataset [19].
The major contributions of this paper are:

• We develop a novel time-based anomaly detection system
that leverages an Autoencoder for efficient DDoS detection.

• We explore the impact of multiple time-windows and their
aggregation on the performance of detecting anomalous
DDoS traffic.

• We showcase the robustness of our anomaly detection
system to zero-day attacks, which is primarily attributed to
time-based features.

• Our system achieves high F1-scores in detecting TCP SYN,
UDPLag, NetBIOS, and PortMap attacks, which are difficult
to detect via flow-based features.978-3-903176-31-7 © 2020 IFIP

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows. Section II
provides a literature review. Section III presents our time-
based anomaly detection system, while Section IV exposes the
CICDDoS2019 dataset. Our experimental results and analysis
are discussed in Section V. In Section VI, we conclude with
a brief summary and instigate future research directions.

II. LITERATURE REVIEW

A. Machine learning for anomaly detection
Doshi et al. [13] study DDoS attack detection in an IoT

environment. They test 5 different classification algorithms, in-
cluding K-nearest neighbors (KNN), Support Vector Machine
with linear kernel (L-SVM), Decision Tree (DT), Random
Forest (RF) and Neural Network (NN). The authors show
that these algorithms achieve an accuracy of over 99%. They
employ stateless features derived from flow characteristics
for individual packets, along with stateful statistical features
collected over a time-window of 10 seconds. Their work is
limited to detecting only three types of DDoS attacks i.e.,
TCP SYN, UDP flood and HTTP GET flood attacks. Sarraf
et al. [14] use the CICIDS2017 dataset to train a DT and a L-
SVM for DDoS attack detection. They achieve an accuracy of
close to 100%. The above works consider supervised learning
techniques, which require labeled anomalous traffic that is
difficult to obtain [11], [16].

To overcome the supervised learning shortcomings, un-
supervised learning has been employed. Sharafaldin et al.
[19] generate the CICDDoS2019 dataset that encompasses
13 different DDoS attacks. They evaluate the performance
of 4 different classical ML techniques, including ID3, RF,
Naı̈ve Bayes, and logistic regression, in detecting the different
attacks. The authors employ flow-based statistical features
extracted using CICFlowMeter [20]. However, their reported
results show poor detection performance (i.e., low F1 score).
Elsayed et al. [4] develop an intrusion detection system against
DDoS attacks in a SDN environment, based on Recurrent
Neural Network (RNN) with an autoencoder. The authors
argue that deep learning algorithms with sequential traffic
cause loss in data information. Hence, they employ RNN to
address this shortcoming, and use flow-based features from
CICFlowMeter using the CICDDoS2019 dataset.

Choi et al. [17] leverage the NSL-KDD dataset to train
and test different architectures of Autoencoder. They develop
a heuristic to determine a threshold of reconstruction error
and report that their unsupervised anomaly detection technique
outperforms other clustering algorithms. The authors in [16]
develop an Autoencoder for DDoS attack detection, which
is trained and tested on public and synthetic datasets. They
consider sub-flow features to reduce the response time of
DDoS. They show that their model achieves 82% detection rate
based on their reconstruction error threshold selection, which
is tailored to achieve zero false positives. Their Autoencoder
performs better than other traditional ML algorithms. Most of
the above works leverage flow-based features, which are only
able to detect a subset of network attacks as they are oblivious
to packet-level information [7], [21], [22].

Mirsky et al. [6] propose Kitsune, that leverages statistical
temporal features for different time-windows to capture the
behavior of a packet’s channel (i.e., conversation). Kitsune is
a plug-and-play network intrusion detection system designed
to be light weight, for deployment on any low memory and
processing capacity network device, such as a router. It adopts
an online, unsupervised intrusion detection approach based on
an ensemble of Autoencoders that consist of training a set
of Autoencoders on clustered statistical features of a defined
size. The authors show that Kitsune performs better than other
ML algorithms, such as Gaussian Mixture Models (GMM) and
PcStream2. Nonetheless, designing Kitsune to be light weight
limits Autoencoder size and the exploration of more complex
architectures. Furthermore, the authors consider aggregated
features for different time-windows without detailing their
choice of the time-windows.

B. Novelty of our work in comparison to the literature

Motivated by the above works, we first analyze the impact of
flow-based features on the detection of multiple DDoS attacks
using an Autoencoder. We show that a flow-based Autoencoder
fails to provide satisfactory detection performance for TCP
SYN, UDPLag, NetBIOS, and PortMap attacks. Therefore,
we explore the impact of time-based features on detecting
these attacks. Unlike [6] that considers an ensemble of three-
layer Autoencoders, each trained on a subset of features over
aggregated time-windows, we evaluate the performance of
a time-based Autoencoder in detecting anomalies in a non-
constrained environment. We employ more complex Autoen-
coders to support correlation between a larger set of features.

We perform a fine-grained analysis on the impact of differ-
ent time-windows on the detection of multiple DDoS attacks.
In contrast, Kitsune only shows the impact of aggregated time-
windows. Based on the results of each time-window on the
detection rate, we choose and evaluate the performance of
aggregated time-windows. Furthermore, we study the impact
of threshold selection for the reconstruction error provided by
the Autoencoder. We design a heuristic for threshold selection
that maximizes the F1 score for single and aggregated time-
based feature enabled Autoencoders. Finally, we showcase that
our proposed time-based anomaly detection approach provides
high detection rate in comparison to its flow-based counterpart.

III. TIME-BASED ANOMALY DETECTION SYSTEM

A. Overview

We develop an anomaly detection system that considers
monitoring network traffic and detecting any deviation from
the normal behavior as an anomaly. The detection is done
through a neural network, primarily an Autoencoder. Our
system accounts for training and execution modes. During
the training mode, the Autoencoder learns normal network
behavior. When in execution mode, the trained Autoencoder
applies its learning to detect anomalies. To better explain our
time-based anomaly detection system, Fig. 1 presents a flow
diagram detailing its different building blocks.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Time-based anomaly detection system

The presented system is composed of a network monitoring
tool, such as Wireshark [23], which monitors network traffic
and collects raw packet data during normal network operation.
When in training mode, the collected packets represent benign
data summarized in a PCAP file (cf., Fig. 1). The PCAP file
is then parsed by TShark [24], a network protocol analyzer.
The TShark packet parser receives raw binary, parses the
packets and extracts meta information (e.g., source/destination
IP, port numbers, frame length, etc.) into a TSV file. The meta
information is fed to a feature extractor [6], to extract time-
based features, based on a set of provided time-windows. The
extracted features are generated in a CSV file and provided as
input to the Autoencoder. Hence, the Autoencoder is trained
on benign data expressed by the provided time-based features.

Once trained, the Autoencoder can be used to detect
anomalies during the operation of the network. Similar to
the training phase, raw packets are collected, parsed and pre-
processed to extract time-based features, while considering the
same time-windows used during the training phase. During
the execution phase, the trained Autoencoder provides a low
reconstruction error when received data is similar to what it has
been trained on (i.e., benign data). However, the Autoencoder
will fail to accurately reconstruct anomalous data that it has
not been trained on. This will lead to a high reconstruction
error indicating the detection of an anomaly. More details on
feature extraction and the Autoencoder will be provided in the
following subsections.
B. Feature selection and extraction

As our anomaly detection system is highly dependant on
learning network traffic patterns, it is crucial to represent these
patterns accurately to enhance the detection accuracy of our
system. This translates into selecting and extracting a set of
features that depict the observed traffic [6]. Many schemes
have been used to represent network traffic, including:
• Flow-based features represent statistical values that describe

the set of packets within a flow. Examples of such features
include, but are not limited to, packet count, average packet
size, inter-packet arrival times, etc. CICFlowMeter is one of
the well-known tools for generating flow-based features. It
generates 84 features per flow.

• Packet-based features are more fine-grained than flow-based
features as they describe each packet in the network. Exam-
ples of such features include, but are not limited to, packet
size, source IP, destination IP, etc.

Flow-based features have been widely used in the literature,

as discussed in Section II. However, they fail to assist ML
models in providing satisfactory anomaly detection rate for
some DDoS attacks (e.g., TCP SYN, UDPLag, NetBIOS),
as shown in Section V. Packet-based features describe each
packet. However, they fail to capture the context and the
packet’s relationship with other packets in the network.

For this purpose, the authors of Kitsune [6] discuss the im-
portance of temporal statistical features in detecting anomalies.
They explain that a sudden increase in jitter may indicate
that the traffic, which seems legitimate, is generated by a
man-in-the-middle attack. Such increase can not be reflected
by flow-based features nor non-temporal ones. Hence, the
authors develop a feature extraction tool for statistical time-
based features from packets exchanged during a time-window.
A time-window is defined as a specific time period.

For each arriving packet, Kitsune’s feature extractor gen-
erates 20 traffic statistics for the input time-windows. For
instance, considering a time-window of 10 ms, for a packet P
captured at time t, Kitsune’s feature extractor first constructs
the following sets using the packets captured from time t to
t+ 10:

• All packets originating from the same IP and MAC of P
• All packets originating from the same IP of P
• All packets with the same source and destination IPs of P
• All packets with the same source and destination sockets of
P

For each of these aggregation levels, the feature extractor
computes a few statistics, such as mean, standard error, and
correlations of bandwidth of the outbound traffic, bandwidth
of the outbound and inbound traffic together, packet rate of
the outbound traffic, and inter-packet delays of the outbound
traffic. Having the features for packet P , the feature extractor
considers the next captured packet and repeats the above
steps to generate the corresponding features for that packet.
The feature extractor of Kitsune uses incremental statistics
maintained over a damped window i.e., an incremental statistic
can be deleted when its dampening weight becomes zero, to
save additional memory [6].

We adopt Kitsune’s feature extractor to evaluate the im-
pact of different time-windows along with aggregated time-
based features (i.e., features from multiple time-windows e.g.,
10sec and 1sec, denoted w=10sec,1sec), to detect anomalies
corresponding to DDoS attacks. It is worth mentioning that
time-based features can be generated under different network
conditions in an online or offline scenario either, using PCAP

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Autoencoder with 3 hidden layers and 7 input/output neurons

files (as in this work) or through network probes. They
represent statistical information over a subset of packets,
similar to flow-based features that account for all the packets
in a flow [25], [26]. In Section V, we showcase the efficacy
of temporal features in detecting anomalies for TCP SYN,
UDPLag, NetBIOS and PortMap DDoS attacks, which are
hardly detected by flow-based features.
C. Autoencoder for anomaly detection

We leverage the extracted time-based features to train a
neural network, primarily an Autoencoder, to learn the benign
network traffic behavior.

1) Overview

As briefly discussed in Section I, an Autoencoder tries to
map the input data to a lower dimension, such that the resulting
lower order representation remains rich enough to reproduce
the input data. More specifically, an Autoencoder is composed
of different layers [4]:
• An input layer with size (i.e., number of neurons) equal to

the number of input features.
• One or multiple hidden layers of different sizes that encode

and decode the input features. Typically, the encoding hid-
den layers have smaller dimensions than the number of input
features. The encoded features are reconstructed in reverse
through the decoding hidden layers with dimensions that are
typically the reverse of the encoding layers.

• An output layer with the same size as the input layer,
representing the reconstructed features.

The size and the number of layers of an Autoencoder define its
architecture. Fig. 2 represents an Autoencoder with 3 hidden
layers and 7 input neurons.

2) Architecture

The number of hidden layers and the number of neurons
in each hidden layer, play a crucial role in the performance
of an Autoencoder. A deeper Autoencoder may not neces-
sarily be better, as a higher number of parameters could
negatively impact convergence time. Furthermore, too many
parameters increase network complexity and can introduce
high randomness in the learning process, preventing the model
from converging to the optimal minimum. On the contrary,
too few neurons in the bottleneck layer, may not capture the
characteristics of the input features. Hence, it is important to
select the appropriate architecture for our time-based anomaly
detector that can realize an acceptable convergence time, while
providing acceptable detection performance.

3) Reconstruction error and anomaly detection

To better explain the functionality of our time-based
anomaly detector, we consider an Autoencoder with a bot-
tleneck layer (i.e., code) of size z. The input data of x ∈ RN

passes through the encoder part with weights We to produce
its corresponding mapping y ∈ Rz , which is then used to re-
construct the input data. The reconstructed data is represented
by x̂. Having the training data of size M , in each training step,
the Autoencoder tries to minimize the reconstruction error i.e.,
the Mean Squared Error (MSE) in our case, between x and
x̂. The MSE is given as:

MSE =
1

MN

M∑
i=1

N∑
j=1

(xi[j]− x̂i[j])
2 (1)

where, N is the size of the input features and xi[j] represents
the jth element of sample xi.

With the reconstruction error loss function, the Autoencoder
learns a good lower order mapping that can be used to
reconstruct the input data [27]. By observing the samples in
the training dataset over numerous epochs, the Autoencoder
provides a low MSE when tested using a data similar to the
one it was trained on. In contrast, if the test data expresses
different behavior from the training data, there is a high chance
that the Autoencoder will provide a large MSE between x and
x̂. Thus, considering this behavior, we feed the Autoencoder
with benign traffic, to train it to efficiently detect anomalies.

D. Reconstruction error threshold selection

Recall that our time-based anomaly detector, trained in
an unsupervised manner (i.e., using unlabeled data), aims
at minimizing the reconstruction error (i.e., MSE). A high
value of the reconstruction error depicts a divergence from
the normal behavior. To identify such divergence, a thresh-
old must be selected, such that, if the reconstruction error
for an input instance is above the threshold, the input is
deemed anomalous. However, it is non-trivial to select this
threshold. A naı̈ve approach may select the largest training
reconstruction error as the threshold. However, the training
dataset may contain benign outliers that result in abnormally
high reconstruction losses. A very high threshold would result
in high false negatives (i.e., low recall) and missing attacks.
In contrast, a very low threshold would cause a lot of false
alarms, negatively impacting precision. In both cases, the
performance of the Autoencoder is significantly degraded. F1-
score, ideally 1, takes both false negatives and false positives
into consideration. Hence, in our approach, we select the
threshold that maximizes the F1-score.

To select the threshold, we reserve a small portion of the
test dataset, called optimization dataset (cf., Section IV). Then,
we take the benign instances in the optimization dataset and
generate their reconstruction errors. Note that there may be
outliers with abnormally high reconstruction errors, as before.
Therefore, naı̈vely selecting the highest reconstruction error as
the threshold could jeopardize the Autoencoder performance.
Instead, we sort the reconstruction errors in descending order,

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE TIMING OF ATTACKS IN THE CICDDOS2019 DATASET

Type Attack Time

Reflection-based

PortMap March 11th, 9:43 - 9:51
LDAP March 11th, 10:21 - 10:30
MSSQL January 12th, 11:36 - 11:45
NetBIOS January 12th, 11:50 - 12:00
SNMP January 12th, 12:12 - 12:23
SSDP January 12th, 12:27 - 12:37
WebDDoS January 12th, 13:18 - 13:29
TFTP January 12th, 13:35 - 17:15

Exploitation-based
UDP January 12th, 12:45 - 13:09
UDPLag January 12th, 13:11 - 13:15
SYN January 12th, 13:29 - 13:34

and iterate over the highest α% of the reconstruction errors in
steps of α/β, selecting the corresponding reconstruction error
as the current threshold and predicting on the optimization
dataset. At each iteration, we compute the F1-score for the
predictions. After exhausting all the thresholds, we select the
one that results in the highest F1-score as the optimal thresh-
old for the Autoencoder. The pseudo-code for our threshold
selection heuristic is shown in Algorithm 1.

Algorithm 1 Reconstruction error threshold selection
Input: α, β, model, dataset, labels
Output: optimal threshold

1: optimal threshold← optimal f1← −∞
2: mse← model.predict(dataset).mse()
3: benign mse← mse.get benign mse().sort()
4: for each i in range(0, β, α/β) do
5: threshold← benign mse[benign mse.len()− i]
6: predicted labels← get labels(mse, threshold)
7: f1← get f1(labels, predicted labels)
8: if optimal f1 < f1 then
9: optimal threshold← threshold

10: optimal f1← f1
11: end if
12: end for
13: return optimal threshold

IV. DATASET PREPARATION

A. CICDDoS2019 dataset
We leverage the CICDDoS2019 dataset, which includes 13

different DDoS attacks, carried out via application layer pro-
tocols over TCP/UDP. The dataset contains both raw packets
of network traffic in PCAP format and flow-based features
in CSV format, extracted using CICFlowMeter. The data is
captured during two days, on January 12th between 10:30 and
17:15 and on March 13th between 09:40 and 17:35. Multiple
reflection- and exploitation-based DDoS attacks are performed
at different times, with ones we evaluate shown in Table I.
B. Data pre-processing

Our time-based anomaly detection Autoencoder is trained
on benign traffic and tested on attacks. For this reason, we
pre-process the CICDDoS2019 dataset’s PCAP files. We first
create a training dataset of benign packets, by extracting the

TABLE II
TEST DATASET STATISTICS

Attacks Benign Packets Attack Packets
PortMap 130249 380815
LDAP 889 463928
MSSQL 2186 4997914
NetBIOS 14291 1582576
SNMP 1910 4998090
SSDP 12993 4987006
WebDDoS 784 4999216
TFTP 13447 4986553
UDP 15390 4984610
UDPLag 3166 3123705
SYN 4863 3775195

data collected between 10:30 and 11:36 on January 12th and
disregarding all the attack packets collected during this period.
We further add to the created benign dataset, all benign packets
collected during different time frames when no attacks were
performed (e.g., January 12th from 11:46 till 11:49). There are
a total of 243,709 packets in the benign dataset. In order to test
the detection performance of our Autoencoder, we construct a
separate test dataset for each of the 11 attacks that are shown
in Table I. The test files, that we refer to as attack files, contain
both benign and attack packets.

In CICDDoS2019, all attacks originate from a single node.
We have used this property to label the packets. Any packet
that has the source or destination IP of the attacker is con-
sidered an attack packet, while others are benign. We have
limited the size of each attack file to 5 million packets. The
number of packets considered in each test file are presented in
Table II. Furthermore, we randomly extract 1% of the packets
from each attack file for the optimization dataset to select
the reconstruction error threshold (cf., Section III-D). From
Table II, we note an imbalance between the benign and attack
packets in the test files. This is primarily because these files
are based on the attack time frames i.e., when the attack is
performed. Therefore, the number of captured attack packets
are larger than the number of benign ones.

V. EXPERIMENTS

We carry out extensive experiments to evaluate the perfor-
mance of our time-based anomaly detection system against a
flow-based approach. Both solutions leverage an Autoencoder
that is trained and tested on the CICDDoS2019 dataset. The
presented Autoencoders learn from different features reflecting
statistical information about benign flows and packets for the
flow-based and time-based anomaly detection, respectively.
However, in an operational network, access to exclusively
benign data for training the Autoencoder is non-trivial. We
assume that the benign data will be much greater than attack
data. Hence, without loss of generality, the Autoencoder can
be trained on a mix of unlabeled benign and attack (i.e.,
in much smaller proportion) traffic. The Autoencoder must
be re-trained whenever a performance degradation is noticed
(e.g., uncovering a high number of false positives). Note that
identified anomalies must be further investigated by either a
security expert, or other methods that can identify the attack

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

type or confirm the anomaly.

A. Environmental setup

We perform our evaluation on a virtual machine deployed
in an OpenStack [28] environment. The virtual machine runs
Ubuntu 18.04 and is managed by a KVM hypervisor. It
includes 4 vCPUs, running on top of a server featuring 4 x 64
bit intel core processor CPUs. The virtual machine also uses
a GPU and features 28GB of RAM. Our anomaly detection is
implemented using Python 3.7.6. The presented Autoencoders
leverage the Keras library of Tensorflow 2.2.0 [29].

B. Evaluation metrics

We use the Autoencoder as a binary classifier to predict
input instances (i.e., flows or packets) belonging to the benign
or the attack class. Accuracy is a widely used metric to
evaluate classification performance. It is the proportion of true
predictions among the total number of predictions. However, it
suffers in the face of dataset imbalance. For example, consider
a classification problem with 95% and 5% instances belonging
to the attack and benign classes, respectively. Even if the
classifier predicts all input instances as attack, the accuracy
would still be 95%, which is misleading. Therefore, we rely on
the following metrics to evaluate the prediction performance
of the Autoencoder.

Precision =
True Positive

True Positive+ False Positive
(2)

Recall =
True Positive

True Positive+ False Negative
(3)

F1− score = 2× Precision×Recall
Precision+Recall

(4)

We define the attacks as positive instances. Precision is the
proportion of attack predictions corresponding to the attack
class. In contrast, recall is the proportion of correct predictions
for the attack class. A higher precision suggests lower false
alarms i.e., benign instances being predicted as attack, while a
high recall implies that more attack instances are not missed.
The F1-score is a harmonic mean of precision and recall,
depicting the trade-off between these metrics. Our primary
objective is to maximize the F1-score.

C. Anomaly detection using flow-based features

The evaluation of the Autoencoder with flow-based features
is performed on Kaggle [30], using features from CICFlowMe-
ter. These flow features are provided in CSV files as part of the
dataset. We exclude features, such as source and destination
IP addresses and ports, as they can introduce a bias in model
behavior. We employ Autoencoders with different number
of hidden layers and neurons per layer, and tune various
hyper-parameters to detect anomalies. We achieve reasonable
performance in anomaly detection, with F1-scores greater than
90% using flow-based features, in the face of most attacks in
the CICDDoS2019 dataset.

However, the Autoencoder is unable to accurately model
the benign behavior using flow-based features. Therefore,
for NetBIOS, PortMap, TCP SYN and UDPLag attacks, the

Autoencoder shows a lackluster performance. For example,
consider the SYN attack that abuses the TCP three-way
handshake procedure, and floods the server with repetitive
SYN packets. Though the flow-based features employed in
our evaluation include the flow’s SYN flag count, among other
flow statistics, the Autoencoder performs poorly in detecting
anomalies pertaining to the SYN flooding attack.

Clearly, the flow-based features are not discriminative
enough to distinguish between benign and anomalous behav-
ior. Table III highlights the performance of the Autoencoder
with flow-based features. We only show the attacks that
result in poor performance. These results are generated using
[79, 50, 25, 10, 25, 50, 79] as the Autoencoder architecture with
a batch size of 32. ReLU and Linear activation functions are
used for the hidden layers and the output layer, respectively.
Note that the choice of the Autoencoder architecture does not
have a significant impact on anomaly detection performance.

TABLE III
ANOMALY DETECTION USING FLOW-BASED FEATURES

Attack Precision Recall F1-score

NetBIOS 0.54794 0.09378 0.16016
PortMap 0.43317 0.07944 0.13426
SYN 0.43803 0.10201 0.16548
UDPLag 0.59978 0.15091 0.24115

D. Anomaly detection using time-based features
1) Autoencoder selection

Before we experiment with the time-based features to detect
anomalies, we select the appropriate Autoencoder architecture
and hyper-parameters. We evaluate four different architectures,
starting from a very shallow network (i.e., one hidden layer),
and increase it to seven hidden layers. Consider k = number of
input and output neurons, the architectures are: (i) Arch. A =
[k, k×30%, k], Arch. B = [k, k×70%, k×30%, k×70%, k],
Arch. C = [k, k × 80%, k × 50%, k × 30%, k × 50%, k ×
80%, k], and Arch. D = [k, k× 80%, k× 60%, k× 40%, k×
30%, k×40%, k×60%, k×80%, k]. Note that we do not hard-
code the number of neurons in the hidden layers. Rather, we
specify them as a percentage of the neurons in the input and
output layers. For example, in Arch. A, there is one hidden
layer, with the number of neurons equal to 30% of the number
of input neurons i.e., for k = 20, the number of neurons in the
singleton hidden layer is 6. We leverage k = 80 by aggregating
time-based features from different window sizes, denoted w
(cf., Section V-D3), including 10sec, 1sec, 100ms, and 10ms,
and observe the average reconstruction loss i.e., the average
MSE across the different training epochs. The Autoencoder
hyper-parameters are depicted in Table IV. Note that during
our experiments, the batch sizes affect training time, without
significant impact on anomaly detection performance. Given
the space limitation, we do not report on corresponding results.

All architectures, except Arch. D depict reasonable con-
vergence within the first 50 epochs, as shown in Fig. 3. In
contrast, Arch. D takes the longest to converge, and continues
to reduce the average MSE upto 200 epochs. Indeed, it is pos-

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
AUTOENCODER SETTINGS

Hyper-parameter Value

Number of epochs 200
Patience 20
Learning rate 0.001
Batch size 1024
Validation split 0.2
Optimizer Adam
Hidden activation ReLU
Output activation Linear

sible for Arch. D to converge further to smaller average MSE.
However, this comes with the largest number of parameters,
with no guarantee on convergence. Arch. A is the leanest
architecture with the smallest degree of freedom, limiting its
performance. On the other hand, Arch. B and Arch. C show
comparable performance. However, Arch. C, with its higher
degree of freedom, further minimizes the average MSE over
the training epochs, resulting in the smallest average MSE
across all architectures. Hence, we choose Arch. C for the
remaining of our experiments.

0 50 100 150 200

0.1

0.15

0.2

0.25

0.3

Epoch

A
ve

ra
ge

M
SE

Arch. A
Arch. B
Arch. C
Arch. D

Fig. 3. Average MSE over training epochs with w = 10sec,1sec,100ms,10ms

2) Reconstruction error threshold selection

Recall that the Autoencoder is primarily trained on benign
data in an unsupervised manner (i.e., using unlabeled data), to
minimize the reconstruction loss (i.e., MSE). After training,
the Autoencoder flags any divergence from the norm as an
anomaly. We randomly extract 1% of the packets from each
attack file for the optimization dataset, while preserving the
same proportion of attack and benign packets existing in that
file. We observe that the outliers in the benign portion of the
optimization dataset are minimal. Hence, the optimal threshold
is typically amongst the first few reconstruction errors, as
depicted in Fig. 4 (i.e., the first in this case, highlighted in
yellow). We employ α = 20% and β = 20 in our selection
of the threshold. Increasing β (i.e., the granularity) allows for
further exploration, without significant impact on Autoencoder
performance (cf., Section V-D3). Nevertheless, both α and β
can be adjusted depending on optimization dataset quality.

3) Impact of window sizes

In the previous subsections, we use aggregated window sizes
(i.e., w=10sec,1sec,100ms,10ms) to evaluate the impact of Au-
toencoder architectures on training performance and showcase

010203040

0.92

0.94

0.96

0.98

1

Threshold

F1
-s

co
re

0.85

0.9

0.95

1

Pr
ec

is
io

n
/

R
ec

al
l

F1-score
Precision

Recall

Fig. 4. Maximizing F1-score during threshold selection with α = 20%, β =
20, and w = 10sec,1sec,100ms,10ms, and the optimal F1-score highlighted

our threshold selection heuristic. The CICDDoS2019 dataset
has traces for numerous reflection- and exploitation-based
attacks, as shown in Table I. Indeed, these attacks, within
and across categories, can evolve differently. For example, a
flooding attack can evolve quickly over time. Hence, a smaller
time-window can potentially flag corresponding packets as
anomalous, facilitating early detection. In contrast, a slow
and low attack will be more stealthy with malicious activity
spanning across a larger time-window. In this subsection,
we start by evaluating the impact of different window sizes
(i.e., w=10sec, w=1sec, w=100ms, and w=10ms) on anomaly
detection, with respect to the different attacks.

Time-based features facilitate the Autoencoder in capturing
the true characteristics of the benign traffic. This is also
supported by the lower average reconstruction loss, as depicted
in Fig. 3. As shown in Table V, the Autoencoder is able
to achieve significantly higher F1-scores for the NetBIOS,
PortMap, SYN and UDPLag attacks, in comparison to Ta-
ble III. The Autoencoder with time-based features is less
sensitive to the remaining attacks, and performs equally well
in comparison to its flow-based counterpart. However, the
window size impacts the performance of the Autoencoder for
some attacks (examples are highlighted in yellow in Table V).
Evidently, Autoencoder performance in anomaly detection for
LDAP and PortMap decreases as the window size is reduced,
from w=10sec through w=10ms. In contrast, for NetBIOS,
the Autoencoder performance increases as the window size
is reduced, from w=10sec through w=10ms. Clearly, the
Autoencoder is susceptible to window sizes, primarily in the
face of reflection-based attacks.

Choosing a window size that allows to detect anomalies
pertaining to the various attacks, specifically unknown attacks,
is non-trivial. We show that aggregating time-based features
across multiple window sizes achieves superior performance
in anomaly detection across all attacks in the CICDDoS2019
dataset. Note that the higher the number of aggregated window
sizes, the more complex the Autoencoder with a higher number
of parameters to tune for convergence. Therefore, although
aggregating time-based features across a large number of
window sizes may seem plausible, it is not a recommended
solution. We experiment with two aggregation levels i.e.,
w=10sec, 1sec, 100ms, 10ms, and w=10sec, 10ms, respec-
tively. As shown in Fig. 5, the smaller aggregation across only

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

TABLE V
ANOMALY DETECTION USING TIME-BASED FEATURES AND INDIVIDUAL WINDOW SIZES OF 10SEC, 1SEC, 100MS AND 10MS

w = 10sec w = 1sec w = 100ms w = 10ms
Attack Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LDAP 1.00000 0.99749 0.99875 1.00000 0.98747 0.99369 1.00000 0.93985 0.96899 1.00000 0.90100 0.94792
MSSQL 1.00000 1.00000 1.00000 1.00000 0.99840 0.99920 1.00000 0.99467 0.99733 1.00000 0.99360 0.99679
NetBIOS 1.00000 0.36730 0.53727 1.00000 0.40628 0.57781 1.00000 0.83115 0.90779 1.00000 0.97425 0.98696
PortMap 0.99988 0.97332 0.98642 0.99984 0.95073 0.97466 0.99997 0.90411 0.94963 0.99994 0.85394 0.92119
SNMP 1.00000 0.99942 0.99971 1.00000 0.99884 0.99942 1.00000 0.99476 0.99737 1.00000 0.99126 0.99561
SSDP 1.00000 0.99791 0.99895 1.00000 0.99693 0.99846 1.00000 0.99104 0.99550 1.00000 0.99221 0.99609
SYN 1.00000 0.99954 0.99977 1.00000 0.99886 0.99943 1.00000 0.99520 0.99759 1.00000 0.98263 0.99124
TFTP 1.00000 0.99058 0.99527 1.00000 0.99083 0.99539 1.00000 0.98694 0.99343 1.00000 0.97066 0.98511
UDP 1.00000 0.99827 0.99913 1.00000 0.99581 0.99790 1.00000 0.98960 0.99477 1.00000 0.98650 0.99320
UDPLag 1.00000 0.99965 0.99982 1.00000 0.99860 0.99930 1.00000 0.99227 0.99612 1.00000 0.98244 0.99114
WebDDoS 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99574 0.99786 1.00000 0.98864 0.99429

two window sizes (i.e., w=10sec, 10ms) achieves anomaly
detection F1-score over 99% for most attacks and greater than
95% for all attacks, while outperforming aggregation across
all window sizes. The training time for this aggregation level,
with GPU acceleration, is 798 seconds.

L
D

A
P

M
SS

Q
L

N
et

B
IO

S

Po
rt

M
ap

SN
M

P

SS
D

P

SY
N

T
FT

P

U
D

P

U
D

PL
ag

W
eb

D
D

oS

0.96

0.97

0.98

0.99

1

Attack

F1
-s

co
re

w=10sec, 1sec, 100ms, 10ms
w=10sec, 10ms

Fig. 5. Time-based anomaly detection using aggregated window sizes

4) Robustness to zero-day attacks

Sophisticated adversaries often randomize malicious activi-
ties or leverage polymorphic attacks to avoid detection. There-
fore, anomaly detection should be robust against unknown
attacks or variations of known attacks. To evaluate the robust-
ness of the Autoencoder, we modify threshold selection, such
that, we exclude some attacks (i.e., NetBIOS, PortMap, and
SYN) from the optimization dataset. Hence, during threshold
selection, the reconstruction errors depicting the characteristics
of these unknown attacks do not influence the selection of the
optimal threshold. As shown in Table VI, anomaly detection
in the face of NetBIOS and TCP SYN attacks achieve an F1-
score of over 99%. The performance against PortMap is just
over 83%, which is primarily attributed to a high number of
false alarms. Nevertheless, the Autoencoder with time-based
features, significantly outperforms its flow-based counterpart
in anomaly detection, even in the face of unknown attacks.

TABLE VI
ROBUSTNESS TO UNKNOWN ATTACKS USING TIME-BASED FEATURES AND

AGGREGATED WINDOW SIZES OF 10SEC AND 10MS

w = 10sec, 10ms
Attack Precision Recall F1-score

LDAP 1.00000 0.99875 0.99937
MSSQL 1.00000 1.00000 1.00000
NetBIOS 1.00000 0.99603 0.99801
PortMap 0.73421 0.97541 0.83780
SNMP 1.00000 1.00000 1.00000
SSDP 1.00000 0.99935 0.99967
SYN 1.00000 0.99959 0.99979
TFTP 0.99967 0.99802 0.99884
UDP 1.00000 0.99913 0.99957
UDPLag 1.00000 0.99965 0.99982
WebDDoS 1.00000 1.00000 1.00000

VI. CONCLUSION

We propose a novel time-based anomaly detection system,
that leverages an Autoencoder to detect anomalous DDoS
traffic. We evaluate the impact of different window sizes in
detecting anomalies pertaining to different DDoS attacks, and
show that aggregating features across just two time-windows
can achieve a detection F1-score of over 99% for most attacks
and greater than 95% for all attacks. We also show the
robustness of our approach to unknown attacks with an F1-
score of over 99% for TCP SYN and NetBIOS, and just over
83% for PortMap. In the future, we will explore other window
sizes and their impact on PortMap, to harden Autoencoder
robustness to unknown or polymorphic attacks. We will also
investigate the performance of our time-based Autoencoder
using more sophisticated threshold selection techniques, and
compare with state-of-the-art approaches.

ACKNOWLEDGMENTS

We would like to thank Dr. Makan Pourzandi, Dr. Stere
Preda, Dr. Parisa Heidari, Richard Brunner, and Adel Larabi
from Ericsson Canada, for their invaluable feedback. We
would also like to thank Lechuan Peng for his initial work on
the Autoencoder. This work is supported in part by Ericsson
Canada, and in part by the NSERC CRD Grant CRDPJ
536445-18.

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. S. Lallie, L. A. Shepherd, J. R. Nurse, A. Erola, G. Epiphaniou,
C. Maple, and X. Bellekens, “Cyber security in the age of covid-19:
A timeline and analysis of cyber-crime and cyber-attacks during the
pandemic,” arXiv preprint arXiv:2006.11929, 2020.

[2] O. Kupreev, E. Badovskaya, and A. Gutnikov, “Ddos attacks in q1
2020,” 2020. [Online]. Available: https://securelist.com/ddos-attacks-in-
q1-2020/96837/

[3] S. Sedaghat, “The forensics of ddos attacks in the fifth generation mobile
networks based on software-defined networks.” IJ Network Security,
vol. 22, no. 1, pp. 41–53, 2020.

[4] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Ddosnet:
A deep-learning model for detecting network attacks,” 21 ST IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (IEEE WOWMOM 2020), CCNCPS2020 Workshop, 2020.

[5] J. Lam and R. Abbas, “Machine learning based anomaly detection for
5g networks,” arXiv preprint arXiv:2003.03474, 2020.

[6] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection,”
Network and Distributed System Security Symposium (NDSS 2018), no.
February, 2018.

[7] F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detec-
tion using snort-compatible signatures,” IEEE Transactions on Depend-
able and Secure Computing, 2020.

[8] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy
signature-based intrusion detection systems,” Applied Soft Computing,
p. 106301, 2020.

[9] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[10] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, vol. 99, no. 1, 1999, pp. 229–238.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[12] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[13] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW), 2018, pp. 29–35.

[14] S. Sarraf et al., “Analysis and detection of ddos attacks using machine
learning techniques,” American Scientific Research Journal for Engi-
neering, Technology, and Sciences (ASRJETS), vol. 66, no. 1, pp. 95–
104, 2020.

[15] M. Kravchik and A. Shabtai, “Efficient Cyber Attacks
Detection in Industrial Control Systems Using Lightweight Neural
Networks and PCA,” pp. 1–18, 2019. [Online]. Available:
http://arxiv.org/abs/1907.01216

[16] K. Yang, J. Zhang, Y. Xu, and J. Chao, “Ddos attacks detection with
autoencoder,” in NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2020, pp. 1–9.

[17] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised learning
approach for network intrusion detection system using autoencoders,”
Journal of Supercomputing, vol. 75, no. 9, pp. 5597–5621, 2019.
[Online]. Available: https://doi.org/10.1007/s11227-019-02805-w

[18] Y. Intrator, G. Katz, and A. Shabtai, “MDGAN: boosting
anomaly detection using multi-discriminator generative adversarial
networks,” CoRR, vol. abs/1810.05221, 2018. [Online]. Available:
http://arxiv.org/abs/1810.05221

[19] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (DDoS) attack dataset
and taxonomy,” Proceedings - International Carnahan Conference on
Security Technology, vol. 2019-Octob, no. Cic, 2019.

[20] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP), 2016, pp. 407–414.

[21] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of ip flow-based intrusion detection,” IEEE communica-
tions surveys & tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[22] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp. 238–
254, 2017.

[23] The Wireshark team, “Wireshark, Go Deep,” 2020, accessed: 2020-07-
24. [Online]. Available: https://www.wireshark.org/

[24] ——, “The Wireshark Network Analyzer,” 2020, accessed:
2020-07-24. [Online]. Available: https://www.wireshark.org/docs/man-
pages/tshark.html

[25] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5–13, 2012.

[26] M. Wullink, G. C. Moura, M. Müller, and C. Hesselman, “Entrada:
A high-performance network traffic data streaming warehouse,” in
NOMS 2016-2016 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2016, pp. 913–918.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[28] OpenStack, “Build the future of Open Infrastructure,” 2020, accessed:
2020-07-24. [Online]. Available: https://www.openstack.org/

[29] Google Brain Team, “Tensorflow,” 2020, accessed: 2020-07-24.
[Online]. Available: https://www.tensorflow.org/

[30] Google LLC, “Kaggle: Your Home for Data Science,” 2020, accessed:
2020-07-24. [Online]. Available: https://www.kaggle.com/

Authorized licensed use limited to: University of Waterloo. Downloaded on February 03,2021 at 23:14:49 UTC from IEEE Xplore. Restrictions apply.

