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Abstract—The increasing sophistication of attacks over the last
years such as the proliferation of complex multi-steps attacks,
calls for new monitoring models and methods for diagnosing the
attacks’ severity and mitigating them in a timely manner. In this
paper, we propose an in-network monitoring approach capable
of detecting a set of composed behaviors and consequently
triggering different levels of alerts and reactions. Our approach
is based on a Petri Net model capable of aggregating individual
attacks into a multi-step composition. To this end, we propose
a method for deriving a Match-Action Table (MAT) abstraction
from a Petri net model. MATs can be then deployed on a P4
programmable data plane, enabling flexible re-composition of
attack detection steps at runtime. We demonstrate the feasibility
of our proposal by modeling the detection of a multi-step DNS
cache poisoning attack and implementing the model on a P4
programmable data plane.

Index Terms—P4, Programmable data plane, Security, SDN,
Monitoring, EFSM, Petri Nets, DNS

I. INTRODUCTION

Network attacks are becoming more sophisticated and
evolving to become multi-step attacks that very often pass
through a set of steps and attackers before impacting the
final target [1]. Multi-step attacks improve the efficacy of
even common attacks such as DNS cache poisoning attacks
as illustrated by the authors in [2]. Both the DNS request
transaction ID and the source port are used to avoid brute-
forcing of DNS answers. However, the authors demonstrate
that the attacker can first guess the source port by performing
a port scan and then a brute force on the DNS Transaction ID,
which avoids a combinatorial explosion.

Stateful approaches have been shown to be efficient for
detecting and mitigating such attacks [3]–[5]. Stateful security
monitoring usually requires advanced software or hardware
appliances [6], [7], which are expensive and vertically in-
tegrated with little programmability. Recently, with the ad-
vent of the Software-Defined Networking (SDN) paradigm,
the softwarization of network functions has promoted higher
flexibility in configuring and monitoring networks from both,
control and data plane point of view. Especially, advances
in programmable data plane enabled by P4 programming
language [8] and Protocol Independent Switch Architecture
(PISA) [9] create new opportunities for performing line-rate
stateful security monitoring in the data plane.

P4-based security monitoring solutions have already been
proposed in the research literature [10]–[13]. The switches
are usually deployed with a dedicated program to handle
the attack, since switches are attack-specific, they are very
efficient. However, they sacrifice the flexibility offered by
programmable switches.

Different multi-step attacks can have one or more com-
mon steps such as IP/TCP scanning, brute-forcing, etc. The
attacker can change or refine their behavior over time, so the
composition of steps of an attack can also evolve. For these
reasons, being able to compose and recompose a detection
and mitigation procedure would be beneficial for flexibility
and responsiveness.

In this paper, we address the challenge of efficiently
monitoring a compound attack and eventually react against
it. We propose to separate the decision module from the
detection modules, in this way enabling the network operators
to define an appropriate level of mitigation through different
compositions of these modules. The decision module can
be represented by an abstraction synchronizing the set of
detection modules. Therefore, the users can control decisions
and reactions on an attack progression at run-time using one
model abstraction. This approach is highly configurable, easy
to manage and helps in defining multiple security alert levels.

Our solution consists of a two-layer security monitoring
approach in P4 programmable data plane. In the first layer,
we adopt an Extended Finite State Machine (EFSM) abstrac-
tion [13] that we apply to define detection modules. This
approach allows to detect individual attacks and thus suppose
a perfect knowledge about the attacker behaviors or threats in
advance. Our new approach empowers the composition of a
set of an attack behaviors. The second layer corresponds to
the decision module that gathers information from the first
layer detection modules. The decision module is modeled
using a Petri net which gives the possibility to compose
behaviors of attacks at runtime and to define a set of alert
levels based on the composition of behaviors from the first
layer. J.P McDermott [14] was the first to introduce the
approach of using Petri net for attack modeling and called
it attack nets. Tokens moving from place to place indicate
the progress of the attack. As described at [14] a Petri based
model is efficient for modeling concurrency, attack progress,
intermediate and final objectives. These different abstractions,
EFSM and Petri nets can be programmed with P4 [8] and978-1-6654-0601-7/22/$31.00 © 2022 IEEE



instantiated on programmable PISA switches. Particularly, the
concept of Reconfigurable Match-action Table (RMT) [9]
allows us to recompose the second layer on the fly, i.e.
redefine the Petri net. In a nutshell, this paper proposes a
modular and configurable approach based on EFSM and Petri
net for detecting multi-step attacks in the data plane. Our
contributions are threefold:
• A two-layer method for synchronizing individual detec-

tion modules based on EFSM in a recomposable model
using Petri nets;

• A systematic technique to map this method in the P4
data-plane enabling a switch to detect and mitigate attacks
within the network (in-network);

• An experimental validation of our technique on the DNS
multi-step cache poisoning attack.

The rest of the paper is structured as follows. We present
an overview of the proposed approach in Section II. We then
provide details of the proposed Petri net model in Section
III and the mapping into a P4 programmable data plane in
Section IV. We describe the DNS cache poisoning and our
application to this multi-step attack in Section V. We report
our findings from the experimental evaluation in Section VI.
Some deployment considerations are discussed in Section VII.
After a summary of the related work in Section VIII, the paper
draws conclusions and points out future research perspectives
in Section IX.

II. PROPOSED APPROACH

Multi-step and sophisticated attacks are based on a combi-
nation of behaviors. Every individual step contributes to the
effectiveness of the attack. These steps can be sequential, par-
allel, optional or alternative. Detecting such attacks at an early
stage can be done by correlating observations representing the
different attack steps. In this paper, we assume that each attack
step aims a particular sub-goal or stage. Based on the attack
progression and on reached sub-goals, we can define different
levels of alerts and reactions.

The proposed approach illustrated in Figure 1 models the
relations between the attack sub-goals and their combinations.
It is based on a two-layer modeling. A first layer (low layer)
relies on a set of detectors in charge of monitoring individual
sub-goals or stages of an attack. A second layer (high, global
layer) represents a decision model which is synchronized with
the set of behaviors detected from the first layer modules
and defines possible decisions and alert levels. This high-level
module checks whether individual detectors have reached their
sub-goals to decide on the attack progression based on a user-
given attack representation. Indeed, our approach allows the
user to compose the different behaviors according to his own
needs.

Since our method is defined to be deployed on P4-based
programmable switches and run at line-rate, we have faced a
number of constraints. A P4 program [15] defines the packet
processing starting with the parsing phase. Once a packet is
parsed, the retrieved headers can be then used to apply the
processing logic and actions (drop, forward, etc.) with the

Fig. 1. Approach overview

support of re-configurable Match-Actions tables (MAT). On
such platforms, complex processing is heavily limited [16].
For instance, stochastic models should be prohibited, state
management is not supported for recursive functions, no loop
is allowed, etc. In our approach, we mainly rely on:
• Match-Actions tables (MAT): match lookup keys with

packet fields or computed metadata with actions.
• metadata: data generated and computed during P4 pro-

gram execution (e.g. switch queue size).
• registers: stateful constructs (across packets) read/written

by actions.
We combine a Petri net model with a set of EFSMs models

[13] to be able to detect sophisticated attacks. We explicitly
separate the attack decision (monitoring) module from the
attack detection modules.
• First layer (Detection modules). This layer includes

a set of individual EFSMs models. EFSMs have been
proved to be P4-compatible either within the pro-
grammable logic or using Match-Action tables [13].
However, representing an EFSM with only MATs con-
sumes a lot of tables entries and is less efficient than a
compiled program running the EFSM model. Obviously,
compiled programs discard the possibility to modify the
EFSM model. Therefore, every detector has to represent
an EFSM of an individual and generic attack stage or
sub-goal (scan, connection attempt, etc.). It can be then
pre-deployed on the switch and leveraged by the user
through the combination of behaviors in the second layer.
It is worth mentioning that non EFSM models could also
be programmed and compiled with the P4 programmable
logic to define other types of attack detection modules
but this is out of the scope of this paper.

• Second layer (Decision module). In this layer a Petri
net models the possible reactions and alerts based on
the behavior combination information gathered from the
detection modules. The relations between the first layer
elements (composition, sequence, parallelism) are de-
fined. The main advantage of the Petri net model is
its simplicity, which can be implemented using Match-
Action Tables (MATs). The MATs are reconfigurable at
runtime and so they are supporting the flexibility of our



approach. Therefore, a user can define and redefine the
composition of the behaviors on the fly.
The Petri net describes the semantics of an attack event
combination, synchronization, and composition during a
multi-step attack. Depending on the behavior detected at
each EFSM model, the tokens of the Petri Nets indicate
whether a certain sub-goal has been achieved.

As a summary, on a target P4 switch, EFSM models are
compiled to a set of conditional statement programs which
can not be modified at run-time but generate tokens in a Petri
net. The fundamental advantage of the proposed approach is
that a Petri net enables a modular monitoring by mapping it
into a MAT that is more configurable at run-time via a control
plane. The Match Action Table is configurable, based on the
attack risk levels and the composition of the set of an attack’s
sub-goals.

III. COMPOSITION MODEL

A. Petri Net to compose attacks

We suppose that a multi-step attack is composed of a set
of sub-goals SG = {sg1, sg2, .., sgn} and stages AS =
{as1, as2, .., asm}; each stage represents the composition of a
set of sub-goals to achieve an intermediate objective. The set
of sub-goals and stages are combined to reach a final attacker
objective. Therefore, an attack ATK is defined as follows:
ATK = {SG} ∪ {AS}

Figure 2 illustrates an example of our Petri net model, where
an attacker can reach three subgoals, SG = {1, 2, 3}, and 3
stages, AS = {A,B,C}.

We define a Petri Net PN by a 5-tuple PN =
(P, T,M,MF , R) with:
• P , the set of places, represents the set of an attack’s sub-

goals SG and stages AS, such that, ∀sgi ∈ SG : ∃pi ∈
P , ∀asi ∈ AS : ∃pi ∈ P .
A set of reaction actions, namely decision, can be
associated with the set of places representing an at-
tack stage, such that, ∀pi ∈ AS ∃decision =
{∅, drop, alert, .., etc.}. The decision can be, for exam-
ple, doing nothing (empty), an alert, or a drop action. It is
worth mentioning that this set of actions is not fixed and
depends on the switch capabilities which can be leveraged
as actions in a MAT, e.g., placing packets in different
QoS queues or modifying them. However, this assumes
the reaction type is available to be used in MATs (either
native or implemented beforehand similar to EFSMs). In
our example P = {1, 2, 3, A,B,C}

• A set of tokens M . The presence of one token in a place
indicates that an attack sub-goal sgi ∈ SG or an attack
stage asi ∈ AS has been achieved.

• A marking function MF : P ×M denotes the marking
of a place p with a token. This action is triggered by
a module of the first layer (e.g., EFSM model) to
inject tokens into the Petri model when executed. This
is different to the usual Petri net models where tokens
are initiated with an initial marking. In our case, tokens

can be injected externally and the Petri net execution can
be changed based on external events (modeled by EFSM).

• A transition t ∈ T is connected to input and output
places with arcs. A transition is enabled if each input
place contains at least one token and it produces one
token in each output place. The transition represents a
conditional set of an attack’s sub-goals or stages to be
validated to reach another stage. In our model, unlike the
semantics of transitions in common Petri nets, a token
is not consumed from a place by a transition to another
place. Hence, when attacker reaches an attack sub-goal or
stage, this information is voluntary made persistent over
time. In the example in Figure 2, a token in place A will
be added if there is at least one token in places 1 and 3.

• The arc r ∈R if r connects places and transitions and is
formally defined as the couple (i, o) where i ∈ P and
o ∈ T or i ∈ T and o ∈ P exclusively. Hence, places
cannot be connected directly.

Fig. 2. Petri Net Example

Once the Petri Net model PN is defined, the execution
of its transition system will change tokens through places.
The state of its execution can be represented by the pres-
ence of tokens in each place and is formally denoted as
PN ′ = (p1(m), p2(m), . . . , pn(m). By analogy, SG′ =
{sg1(status), sg2(status), . . . , sgn(status)} represents the
different status of each sub-goal sgi where sgi = 1 ⇐⇒
pi(m) > 0 (sgi is binary).

B. Attack sub-goals

The global model based on Petri net is independent of
detection modules because the marking function MF can be
instantiated by any type of modules. However, in this paper,
we adopt the EFSM abstraction for modeling the detection of
each sub-goal related to an attack. This abstraction has been
proven to support the right level of expressiveness to capture
stateful attacks without the explosion of the number of states
and, most of all, it can be mapped into the P4 primitives as
proposed in [13]. An EFSM is formally defined as a 7-tuple
(S,E,A, I, V, C, T ), where : S is the set of states, E the set
of events, A the set of actions, I the set of initial states,
V the set of variables, C the set of conditions and T the
set of transitions. At the switch level, packets are parsed and
the extracted information from headers is used to change the



current state of the EFSM (e.g. TCP flags) and/or apply actions
(e.g. update a variable like the last seen TCP sequence number,
modify packet header, etc.). To cope with the proposed layered
model, the decision module (Petri net) must synchronise with
the detection module (the set of EFSMs). Hence, the action set
is augmented with the marking function MF to add a token
into the Petri net at a specific place.

IV. MAPPING PETRI NET MODEL INTO P4

A. Match-Action Table representation

To map and execute the Petri net model into a P4 pro-
grammable pipeline, the Petri model needs to its particular
constructs. As highlighted in Section III-A, a transition is trig-
gered when all input places are marked. It is worth mentioning
that a transition requires at least one token in the input places
and, in our case, tokens are maintained and made persistent
once set in a place. Therefore, keeping track of the number of
tokens can be omitted. For the same reason, the attack stages
do not need to be maintained because they can be recovered
from the persistent tokens in places representing sub-goals.

Hence, a single MAT is used to model the Petri net where
the lookup keys represent the places of the sub-goals p ∈ SG,
one bit for each p ∈ SG. For example, 8 places are represented
as a single byte and 10010000 is the match key when tokens
are present on p0 and p3. To keep in memory the state of
the Petri net, i.e. the token, we rely on P4 registers that are
stateful constructs written and read by P4 actions. However,
they cannot be used directly in MAT lookup keys. Note that
registers are extern functions, i.e. vendor specific, but they are
assumed to be present and usable as they are also a basic
functionality. When processing a packet, P4 allows the use of
metadata to get contextual information about the switch. For
example, queue occupancy can be retrieved in a metadata but
there is also user-defined metadata. It is thus possible to read
register values as metadata similarly to parse a packet into
header structure and save metadata in a register.

As a result, we define a set of metadata representing
the places p ∈ SG and use the registers to maintain
them persistent over the processing of packets subsequently:
Meta = {meatadata1,metadata2, ..,metadatan} where
∀sgi ∈ SG : ∃mi ∈ MP with mi = 1 when sgi has been
reached (a token is in the place), 0 otherwise.

Each entry in the MAT with match values (∈Meta) set to 1
represents the set of sub-goals composing a stage achievement
asi ∈ AS, and so the action of this match is the reaction
defined for asi.

Table I corresponds to the Petri net depicted in Figure 2:
• The first line represents the achievement of the sub-goal

1 and 3, the applied action (e.g., alert level 4) is the one
associated with the stage A ∈ AS.

• The second line represents the achievement of the stage
B composed of sub-goal 2 and 3.

• The third line represents the stage C corresponding to the
achievement of the sub-goal 2 and stage 2, which in turn
corresponds to sub-goals 1 and 3. As highlighted, tokens

are persistent, so the attack stages are easily recovered
from sub-goals without maintaining the individual states
of each stage. As a result, it is more memory-efficient.

TABLE I
PETRI NET AS A MAT

meta 1 meta 2 meta 3 actions
1 0 1 decision ∈ A (e.g., alert level 4)
0 1 1 decision ∈ B (e.g., alert level 3)
1 1 1 decision ∈ C (e.g., drop)

B. Petri net execution

Algorithm 1 describes how the first and second layer are
synchronized in a minimal example, in particular without
the detection program. Lines 2-4 actually define only the
synchronization part of the first layer. If an attack sub-goal
sgi ∈ SG is achieved (line 2), a token is set on a place pi
by the action setToken(pi) ∈ EFSM , that uses the marking
function.

In the data plane, marking tokens on places is represented
by setting a metadatai ∈Meta to 1 to indicate the presence
of a token on a place pi (line 6).

The Petri net tuple is abstracted to a MAT in the data plane,
the set of match fields are the set of metadata ∈Meta and the
decision is a predefined action with respect to the achieved
attack stage (line 7).

Algorithm 1: EFSM and Petri net synchronization
algorithm

1 Definitions:
• n: number of the attack sub-goals SG
• setToken(p): function triggered by an external model

to set tokens
1: Synchronization between EFSM and PN
2: if sgi(status) = achieved then
3: setToken(pi) =⇒MF : P ×M
4: end if
5: Synchronization between PN and MAT
6: MF : P ×M =⇒ metadatai = 1
7: PN : (p1(m), p2(m), .., pn(m)) =⇒

table(match1(metadata1),match2(metadata2),
...,matchn(metadatan) | decision)

V. APPLICATION TO MULTI-STAGE DNS CACHE
POISONING ATTACK

In this section, we demonstrate the viability of our proposed
layered approach to detect the recent DNS multi-stage cache
poisoning attack [2].

To poison the DNS cache, an attacker starts with a DNS
request sent to the victim DNS server as shown on left of
Figure 3 (step 1). This server is in charge of the recursive
resolution by requesting other DNS servers within the Internet
(step 2). The objective of the attacker is to reply first with a



valid answer to one of these requests. To be valid an answer
must match the domain initially requested but also the source
port and query ID used by the DNS server. In the past, the
source port was not randomized and it was feasible to brute
force the ID [17]. Due to this flaw, the UDP source port is now
randomized making the brute-forcing impossible (quadratic
complexity). An attacker can alleviate this issue by doing a
UDP port scan and expecting the DNS server to respond with
ICMP unreachable messages for all closed ports except for the
open one (steps 3 and 4). Thanks to this strategy, the attacker
can first guess the source port and then brute-force the query
ID in step 5 (linear complexity).

Fig. 3. Multi-stage DNS cache poisoning attack

A. Attack Petri Net

We decompose the attack into 3 sub-goals SG =
{sg1, sg2, sg3} : sg1 corresponds to the reception of a valid
response (valid domain and valid ID) that matches the server
outgoing query and the port used in the response is identified
as open; sg2 represents the UDP port scan; sg3 is the DNS
brute force attack. As highlighted in Figure 4, there are three
attack stages with different alert severity levels. For example,
when an attacker does a port scan sg2 and a DNS brute force
for sg3, the Petri net enters into attack stage 5 (alert level
5). However, to be effective, the attacker has also to send
a DNS valid response sg1. So, if all sub-goals are reached,
all attack stages are reached too, including the most critical
with the action alert level 6. In this attack, we have to jointly
monitor two types of traffic: DNS traffic and generic UDP
traffic (combined with ICMP). In the DNS traffic, we have to
observe both the brute force and a valid answer. Therefore, sg1
and sg3 will be monitored by a DNS-specific module while sg2
is handled apart. Furthermore, a valid answer is also expected
from the legitimate DNS server. Hence, observing sg1 only is
not helpful to distinguish an attacker and so we must rely on
observing other side attacks.

It is worth mentioning that the different detection modules
require to share some information to be effective. For instance,
valid answers can be emitted by a DNS server. To distinguish
between a benign and malicious valid answer, our second

Fig. 4. Petri Net of DNS cache poisoning

layer model relies on detecting the port scan. This implicitly
assumes that the port scan achieved (sg2) by the attacker has
discovered the port used for the valid answer (sg1). Indepen-
dently of the second layer performing Petri net execution, the
first layer modules may need to share information. Similarly to
token management, shared data between detection modules is
performed using registers denoted as context variable hereafter.

B. Port scan detection

Figure 5 represents the detection module of the port scan
attack sub-goal sg2. The EFSM is defined as follows:
• S = {ListenUDPQueryICMPResponse,

ScanAttempt,AlertPortScan};
• E = {IP.dst = DNSserverIP, IP.protocol = 17,

ICMP.type = 3}
• V = {MetaQR,DNSserverIP, THscan};

Fig. 5. Port scan detection

This EFSM monitors if an attacker does a port scan.
Therefore, the EFSM maintains a counter of UDP packets
sent from the potential attacker to the server1. A register,
CountScan, is used to track this value in a stateful manner.
It must be managed for each potential victim, i.e. IP addresses
of DNS servers to be protected. The source IP addresses are
not taken into account in our model as we assume the attacker
has the capacity to perform the attack from distributed hosts.

1stateful variables used in EFSM are mapped to registers



Reaching a predefined threshold triggers a transition to
the state s = ScanAttempt. Once this attack sub-goal sg2
has been met, a token in the Petri Net is set on the place
p2 representing the attack sub-goal (setToken(p2)). To keep
track of tested and open ports, we introduce the context
variable MetaQR that is a hashmap with the UDP port as a
key. When the UDP probe is seen, the value is set to 1 meaning
that the port is assumed open until an ICMP unreachable (type
3) reply is received. In that case, MetaQR is set to 2 (port
closed).

C. DNS brute force detection

Figure 6 describes the DNS brute force stage detection
module composed of the sub-goals sg1 and sg3, the EFSM
is defined as follows:
• S = {ListenDNSQueryResponse,

Bruteforceconfirmed,MatchedResponse,
Attackconfirmed};

• E = {IP.dstIP = DnsServerIP, IP.srcIP =
DnsServerIP, UDP.dstPort = 53, UDP.srcPort =
53, DNS.ID,DNS.Domain}

• V = {MetaServerQR,DNSserverIP, THbrute};

Fig. 6. Multi-stage DNS cache poisoning EFSM (DNS Brute Force)

In the DNS cache poisoning attack, a set of invalid re-
sponses are expected before a legitimate response that matches
the server outgoing query. Therefore, counting unmatched
queries and comparing this counter with a specific thresh-
old can be effective for the attack detection. To detect the
match and mismatch of DNS responses, a context variable
MetaServerQR associated with a key is used to track the
server queries:
• When a server query is received, MetaServerQR is set

to a value (e.g, set to 1 ) with a key identifier composed
of (UDP.srcPort,DNS.ID,DNS.domain).

• When a DNS response is received, the value of the
MetaServerQR is verified using the reverse port in the
key (UDP.dstPort,DNS.ID,DNS.domain) to check
the match with the server query.

• Receiving a valid response that matches the server query
and the port in a scan attempt MetaQR = 1 (shared
context variable) results in setting a token in the Petri
Net at the place p1 setToken(p1) associated with the
sub-goal sg1.

• Reaching a threshold of invalid responses results in
setting a token on the place setToken(p3) corresponding
to the sub-goal sg3. Similar to port scan, a register
CountDNSResponse is used to maintain the number
of received DNS responses to detect the brute force.

VI. EVALUATION

We have implemented the DNS multi-stage cache poisoning
attack detection and mitigation model using P4-16 [18] and the
bmv2 software switch target [19]. We have used mininet [20]
and p4app docker image [21] for conducting the experiments.
The control plane provided by the bmv2 CLI is used to
configure the MATs.

A. DNS attack mitigation
In this experiment, we assume a topology composed of

one switch, one server, and an attacker. We evaluate the
effectiveness of the proposed approach when changing the
Petri Net MAT configurations: (a) only drop packets when
all sub-goals are achieved (P6 in Figure 4), (b) when at least
sg1 and sg3 are achieved (Petri net P4 or P6 in Figure 4) and
(c) when at least sg3 and sg2 are achieved (Petri net in P5
or P6 in Figure 4). Therefore, the Petri net-related MAT is
configured accordingly.

Fig. 7. DNS number of responses for different behavior combinations
To assess its proper functioning, we also make the assump-

tion that an attacker runs different behaviors when generating
50 DNS responses as shown in Figure 7:
• BF: a DNS brute force attack only (sg3)
• BF+VR: a DNS brute force attack combined with the

reception of a response that matches the server query
(sg3 + sg1)



• BF+IS: a DNS brute force attack combined with a port
scan (sg3 + sg2)

• BF+VR+IS: full malicious behaviours composed of a port
scan, brute force and a valid response (sg1 + sg3 + sg2)

The bars in Figure 7 represent the number of DNS re-
sponses. According to the different attacker behaviors and the
MAT configurations, the number of packets to filter varies.
For example, the configuration (a) only drop the traffic if
and only if all attack stages have been reached (P6 in Figure
4). This results in dropping packets only when the most
complex behavior is monitored. In case of BF + IS, a token
is added in P2 and P3 and so a transition to P5 occurs.
Assuming configuration (b), packets are not dropped in that
case as confirmed in Figure 7. The detection probability can
be directly derived from the detection threshold of the brute
force which is inversely related to the number of malicious
requests that are not filtered.

B. Switch processing time

Mininet and bmv2 switches are limited in providing an
evaluation performance that will be representative of a de-
ployment onto a real programmable switch. However, we can
still compare different scenarios in our case.

In this experiment, we evaluate the switch processing time
when increasing the number of the attack sub-goals artificially
(3, 6, 9 and 15). 100 DNS packets are generated and Figure
8 reports the processing time per packet.

Fig. 8. Switch processing time vs. Number of attack sub goals

We can see that the the median value is approximately 995
ms without no significant increase between the scenarios. This
shows that the proposed approach is scalable with respect to
the number of an attack’s sub-goals to be detected in parallel.
As a reminder, one bit per goal is necessary to do the lookup
in the MAT. Therefore, 15 bits are used at most in our case
which thus can be matched efficiently.

In the next experiment, we evaluate the switch processing
time when changing the position of a MAT entry to be
matched (1, 10, 20 or 32). As highlighted in Figure 9, the

switch average processing time is approximately 996 ms for
all entries match positions. We can deduce that the position
of an entry that is matched does not significantly impact the
switch processing time. It is worth mentioning that the number
of MAT entries is bounded by the number of Petri net places,
|P |.

Fig. 9. Switch processing time vs. table entry position

VII. DISCUSSION

A. DNS domain name parsing
Detecting DNS cache poisoning attack requires manipulat-

ing DNS domain names which are variable in length [22].
Parsing variable length fields in programmable data plane is
challenging since the parser is designed to parse fixed length
values. In the DNS header, the question field separates the
domain name into a set of labels, each preceded by its length
in terms of character in bytes, the last label is followed by
a 0x00 byte which specifies the end of the domain name.
This separation into labels makes practicable the parsing of
domain names. Different parser states can be predefined based
on different maximum label lengths so that fixed length values
are parsed as proposed in [22]. Given this restriction, in our
case, we suppose that each domain name is composed of 4
labels, each of 20 bytes length at most.

B. Memory requirement
The implementation of the proposed solution to detect

DNS cache poisoning requires four registers to maintain and
monitor per-packet information. We assume that 2-bits values
are maintained in the two registers (DNSRequestResponse
and ICMPQueryResponse) and 32-bits values for count
registers (CountScan and CountDNSResponse). There-
fore, tracking 10 000 DNS requests requires allocating 42.5
KB. The proposed approach also requires a single MAT to im-
plement a Petri net. For DNS cache poisoning, 3 match fields
corresponding to 3 sub-goals each with 1 bit are required. For
10000 entries, 3.75kB of memory is consumed. The detection
of an attack composed of 6 sub-goals requires 7.5kB for 10000
entries.



VIII. RELATED WORK

A. DNS cache poisoning attack

Many attacks target the DNS protocol even with the recent
proposed security techniques. Defence methods such as source
port randomization, 0x20 encoding, and DNSSEC were pro-
posed to prevent the attacks. DNSSEC and 0x20 encoding are
still far from being widely deployed [23] due to compatibility
issues and the necessity of DNS server modifications. Au-
thors in [24] studied the injection of vulnerabilities in DNS
resolution platforms and revealed significant security issues.
Mainly, authors invoked that DNS caches can be poisoned
with some efforts. On the other hand, RFC5452 [25] notes the
effects of source port randomization is significantly reduced
by NAT devices. Recently, Man et al. [2] have introduced
a new attack capable of poisoning the DNS server cache.
The authors have found weaknesses that allows an attacker
to divide the attack by guessing the DNS server source port
using a port scan at the first stage and then guessing the
DNS transaction ID at a second stage. There are numerous
techniques addressing the detection and characterization of
port scanning. They are usually based on the ratio between
successful and failed connections [26]. In [27] authors use
predefined access probabilities for port scan detection. In
[28], the authors have discovered a weakness in the pseudo
random number generator used for generating UDP source
ports in the linux/android kernel and they can speed up the
DNS cache poisoning attack by a factor of 3000 to 6000. A
new class of DNS poisoning attacks is described in [29]. It
initiates the attack on the client cache by adopting a local port
reservation forcing the server to pick one available port. These
works demonstrate that the DNS cache poisoning attack can
still be conducted and is a valid problem to be considered.
In [30], the authors propose to duplicate DNS queries and
send them to multiple resolvers for verification purposes but
thus entail a major overhead. In [31] a randomly generated
4-bits with the random port and transaction ID is used. In
contrast to our approach, these two solutions require the
modification of the DNS protocol. Furthermore, authors in
[2] recommend disabling outgoing ICMP replies or using
rate-limiting methods which can have a negative impact on
collocated traffic.

B. Attack detection in programmable data plane

SDN has introduced new possibilities for attack detection,
especially with the emergence of data plane programmability.
Harrison et. al [32] introduced a distributed system to detect
heavy hitters. In [33], a real-time DDoS attack detection
scheme is offloaded to a switch and monitors entropy changes.
In the same direction, Poseidon [34] mitigated volumetric
DDoS in the data plane. In [35], the authors introduced a link
failure detection system. Actually, many research works have
focused on a particular scenario or attack to detect and mitigate
[10]–[12]. A few of them have addressed DNS attacks. In [22],
a framework has been designed to associate traffic by domain
name in order to let the operators applying rate limit traffic

by domain names. P4DNS [36] implemented an in-network
DNS server. Both works offered solutions for parsing variable
domain name lengths by implementing pre-defined parsers. In
our previous works, we introduced a general formalism based
on an EFSM to describe a malicious behavior that can be
mapped to a P4 pipeline. [13], [37].

C. Attack models

Attack Trees and Petri Net have been widely used to
describe an attack process [38]. The attack tree approach
adopts a tree representation of the dependencies among the
actions performed by attackers. The Petri net approach pro-
vides more flexibility and expressiveness in capturing multiple
and simultaneous actions [39]. The utility of using Petri nets
for attacks modeling was first proposed by McDermott [14] as
an alternative to attack trees. Colored Petri Nets bring more
expressiveness by distinguishing tokens with colors [40]. In
the same direction, the authors in [41] proposed a Petri based
net for threat modeling. Such models are widely used in the
field of cyber-physical and industrial systems [42], authors in
[39] focused on smart grid attacks. Although more advanced
technique exists, in particular using machine learning [43],
such solutions must be deployed at end-hosts or on specialized
middleboxes. Our proposed in-network approach can be con-
sidered as complementary to filter traffic as earlier as possible
and at line rate.

IX. CONCLUSION

This paper proposed a layered approach based on a Petri net
model to represent multi-step attacks with a systematic method
to offload it to a programmable data plane. Our approach
relies on a set of individual attack detection functions. Those
functions can be abstracted as an EFSM but could also use
another formalism or be directly implemented in the switch.
Our main objective is to capture the dependencies between
these functions as a Petri net and represent the Petri net tran-
sitions as a single MAT which can be reconfigured at runtime.
As a result, it is possible to compose and recompose multi-
step attack mitigation procedures in a dynamic manner. It thus
provides an effective way to adapt reaction actions based on
the attacks progression. Our implementation demonstrates that
the approach is effective in detecting the DNS multi-step cache
poisoning attack in the data plane. In the case of deploying
the Petri net model in a distributed manner, the user must
consider the trade-off between communication overhead with
state distribution management with regard to the scalability of
a centralized deployment, which is part of our future work.
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