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Abstract—5G Cloud Radio Access Networks (C-RANs) facili-
tate new forms of flexible resource management as dynamic RAN
function splitting and placement. Virtualized RAN functions can
be placed at different sites in the substrate network according to
resource availability and slice constraints. Due to limited resource
availability in the substrate network, the Infrastructure Provider
(InP) must perform network slicing in a strategic manner, and
accept or reject slice-requests in order to maximize long-term
revenue. In this paper, we propose to use multi-agent Deep
Reinforcement Learning (DRL) to jointly solve the problems of
network slicing and slice Admission Control (AC). Multi-agent
DRL is a promising choice since it is well-suited to problems
where multiple distinct tasks have to be performed optimally. The
proposed DRL approach can learn the dynamics of slice-request
traffic and effectively address these joint problems. We compare
multi-agent DRL to approaches that use: (i) simple heuristics to
address the problems, and (ii) DRL to address either slicing or
AC. Our results show that the proposed approach achieves up to
18% and 3.8% gain in long-term InP revenue when compared to
approaches (i) and (ii), respectively. Additionally, we show that
multi-agent DRL is preferable to a single-agent DRL approach
that addresses the problems jointly. Finally, we evaluate the
robustness of the trained model in terms of its ability to generalize
to scenarios that deviate from training.

Index Terms—5G, C-RAN, Network Slicing, Admission Con-
trol, Multi-agent Reinforcement Learning

I. INTRODUCTION

The Fifth Generation (5G) Radio Access Network (RAN)
comprises chains of network functions (NFs) that belong to
the New Radio (NR) protocol stack [1]. With the adoption of
Cloud RAN (C-RAN) in 5G mobile networks, the substrate
network has been re-imagined as a network of interconnected
sites, each consisting of a number of commodity servers
(nodes). Network Function Virtualization (NFV) allows an
infrastructure provider (InP) to virtualize these resources and
facilitates flexible and strategic placement of the virtualized
network functions (VNFs), at different sites. This can alleviate
network bottlenecks, and increase infrastructure utilization and
InP revenue.

In a metro 5G C-RAN, the interconnected sites are catego-
rized into tiers [2]. A lower-tier site is in closer proximity to
the radio units (RUs), but has less resources, while a higher-
tier site is geographically distant from the RUs with more

resources. The higher-tier sites allow for centralized placement
of resource-hungry VNFs, and lead to higher multiplexing
gains via resource sharing among multiple instances of VNFs
(i.e., time-multiplexing) [3]. However, the degree of centraliza-
tion is constrained by the delay tolerance of individual VNFs.
With a higher degree of centralization, more unprocessed
data has to traverse the inter-site links [4], which leads to
a higher bandwidth demand on these links. Therefore, it is
imperative that an optimal placement is chosen for the VNFs
in 5G C-RAN, such that resource utilization is maximized
without creating bandwidth bottlenecks, while also satisfying
their latency and throughput requirements.

The 5G mobile networks are poised to support a wide
range of services, primarily categorized into enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communica-
tions (URLLC), and massive Machine-Type Communications
(mMTC), based on their Quality of Service (QoS) require-
ments (e.g., bandwidth, latency and mobility). Network slicing
is a key enabling technology to offer isolated end-to-end
virtual networks (i.e., 5G network slices), that are tailored
to satisfy the specific QoS requirements of different services
on the same infrastructure. Network slices consist of a chain
of the VNFs. While placing these VNFs in 5G C-RAN
at different sites (i.e., Virtual Network Embedding (VNE)),
it is crucial to consider the service type and its Service-
Level Agreements (SLAs). Accepting a slice-request (SR)
from a service provider contributes towards the InP’s revenue.
However, given an InP’s limited resources, it is impossible
to serve all incoming SRs. Therefore, an Admission Control
(AC) decision must be made for each incoming SR, such that
it maximizes the InP’s long-term revenue.

Recently, Deep Reinforcement Learning (DRL) [5] has
shown unprecedented performance in solving problems that
were previously too challenging for Artificial Intelligence-
based solutions. A DRL agent interacts with an environ-
ment and, through trials and corresponding rewards, learns
the actions that maximize its cumulative reward without a
priori knowledge of the environment or the need for massive
datasets. Hence, DRL lends itself well to solving AC and
slicing in 5G C-RAN. Numerous works in the literature (e.g.,
[6, 7]) have proposed either traditional reinforcement learning
(RL) or DRL-based solutions to these problems. Though, AC
and network slicing are both quintessential to offer differenti-978-1-6654-0601-7/22/$31.00 © 2022 IEEE



ated QoS, most works propose DRL-based solutions to solely
one of them. Using DRL to address only one aspect of the
network slicing and AC problems and using a naı̈ve approach,
such as greedy, for the other one can potentially lead to a
loss in the long-term revenue for the InP. For instance, the
authors in [6] propose a DRL-based AC solution, however,
they assume network slicing does not present a challenge.
In this scenario, if the slicing algorithm creates a bandwidth
bottleneck in a critical network link, the total number of SRs
that can be admitted becomes limited.

Additionally, in practice, the future SRs are not known
in advance. Hence, future SRs must be predicted to make
intelligent slicing and AC decisions. However, some works
in the literature (e.g., [8, 9]) are oblivious to this, limiting
the applicability of their solutions. Whereas, a DRL agent can
take the future consequences of its actions into account while
maximizing its cumulative reward. If a certain slicing decision
causes future SRs to be rejected due to a resource bottleneck,
the DRL agent anticipates this and avoids that decision.

In the case of joint slicing and AC, the reward formulation
for a single DRL agent does not allow to effectively address
both problems jointly. For example, if the DRL agent is
given a negative reward for a non-optimal AC action, the
entire policy (i.e., the neural network used for comparing the
optimality of different actions in a given environment state) is
impacted. This causes the concurrent slicing action to also be
disincentivized, even if it is the optimal action. This concern
is alleviated in multi-agent DRL, where the agents can have
separate policies for AC and slicing. The reward functions for
these policies can be designed such that the two agents learn
to work in synergy without negatively impacting one another.

In this paper, we propose a novel multi-agent DRL-based
solution to jointly address slicing and AC in 5G C-RAN,
in order to improve the long-term InP revenue. To evaluate
the efficacy of our proposed solution, we develop a C-RAN
slicing and AC simulation framework that also facilitates the
evaluation of other solutions, such as a single-agent DRL-
based solution. In this regard, we demonstrate the following:
• We compare the proposed multi-agent DRL-based solution

against a greedy approach and a node-ranking approach
(inspired by [10]), and show that our solution outclasses
these approaches in maximizing the long-term InP revenue.

• We compare the proposed solution against approaches that
use DRL to address either slicing or AC (e.g., [11], [12]). We
show that using multi-agent DRL to address both of these
problems jointly leads to higher long-term InP revenue.

• We compare against a single-agent DRL approach that
jointly addresses the slicing and AC problems in 5G C-RAN.
We show that multi-agent DRL outperforms the single-agent
counterpart in terms of the achieved long-term InP revenue
and convergence time.

• We evaluate the robustness of the trained model under
practical network conditions, such as variable SR arrival
rates. We show that multi-agent DRL is able to generalize
to these scenarios and achieve the highest long-term InP
revenue when compared to the other approaches.

The rest of the paper is organized as follows. In Section II,
we present closely related works, followed by system design
for closed-loop orchestration and management of VNFs in
5G C-RAN in Section III. Section IV delineates the pro-
posed multi-agent DRL-based slicing and AC solution, while
Section V showcases the evaluation results. We conclude in
Section VI and instigate future research directions.

II. RELATED WORKS

Several works in the literature address slicing and AC (i.e.,
admission control) in 5G. Van Huynh et al. [6], Dandachi
et al. [12] mostly focus on the AC aspect of 5G slicing and
orchestration. The authors in [12] propose a traditional RL-
based solution for 5G slice deployment and orchestration.
Even though they consider a slice as a set of VNFs, the
substrate network is only considered in aggregate. That is,
instead of modeling the substrate network as a collection
of interconnected sites or nodes, each with its own limited
resources, the network is modeled as a single node with a cer-
tain amount of resources. This simplifies the slice embedding
problem to an unrealistic degree. The authors in [6] propose
DRL for slice AC and resource allocation, but similar to [12],
they do not model a slice as a collection of VNFs and the
substrate network as a set of interconnected nodes.

Pujol Roig et al. [7] propose RL for VNF management
and orchestration in an online fashion. When a new VNF
placement request arrives, a DRL agent decides to either place
that VNF on an already running server by assigning it a part
of the server’s remaining resources, start up a separate server
and allocate its resources to the VNF, or upload the VNF
to the cloud, with the objective of minimizing incurred cost.
Although the authors deal with the VNF request in an online
manner, their model only deals with individual VNFs instead
of a network slice. Sciancalepore et al. [13] propose an online
network slice brokering solution that maximizes multiplexing
gains. The problem is modeled as a budgeted lock-up multi-
armed bandit problem, which is a variation of the well-known
multi-armed bandit problem. Nevertheless, similar to [7], the
authors model a network slice as only requiring a number
of Physical Resource Blocks (PRBs), whereas a RAN slice
consists of a number of functions each with its own latency
and computing resource requirements.

The authors in [8, 9] address the user-centric functional
split problem, which deals with splitting the RAN functions
between a remote site and a centralized site. They model the
problem as an Integer Linear Problem (ILP), and propose solu-
tions based on particle swarm optimization and deep learning,
respectively. However, the authors model the substrate network
as only having a single remote site and a single distributed site.
Additionally, the authors do not factor online AC in their ILP.
Murti et al. [14] build on the work of Garcia-Saavedra et al.
[15] to address the functional split optimization problem. They
form a cost-minimization based objective function, subject to
multiple constraints. They address the problem in an offline
fashion, where a functional split is decided for each distributed
unit in the network, instead of a functional split for each SR



(i.e., slice-request) as it arrives. Murti et al. [16] propose RL
as a less complex alternative solution to the problem in [15],
but their work suffers from the same drawback.

Wang and Zhang [11] propose RL-based resource allocation
for network slicing in 5G C-RAN. Although the authors
model a slice as a chain of VNFs and the substrate network
as a set of interconnected nodes, they do not address the
AC aspect of 5G slicing and orchestration. Liu and Han
[17] propose distributed cross-domain resource orchestration
(DIRECT) protocol, which optimizes the resources allocated
to the slice in multiple domains. However, the proposed
algorithm only optimizes resources for in-service slices and it
does not perform AC. The work of Raza et al. [18] is the most
similar to ours. Authors propose a policy-based RL algorithm
for slice AC. Nevertheless, the arriving SRs, in their work,
already include the amount of resources required at the remote
and central sites. This sidesteps an important aspect of slicing,
where all of an SR’s functions can be placed at either the
remote or the centralized location. Additionally, the selection
of the central location (i.e., remote data center) for the SR is
done after the AC decision has been made. This precludes the
AC agent from knowing the embedding before making the AC
decision and can lead to performance degradation in resource-
constrained environments. Our work differs from the existing
literature in that we jointly address the problem of network
slicing and AC in 5G C-RAN.

III. SYSTEM DESIGN

The system design is based on the MAPE (i.e., monitor,
analyze, plan, execute) control loop [19, 20] to facilitate
closed-loop, autonomous management and orchestration of
VNFs in 5G C-RAN, as depicted in Fig. 1. The data from
the substrate network, collected by the monitor module, is
forwarded to the analyze module. The analyze module extracts
useful knowledge from the raw data, and computes any metrics
required for visualization and planning. This processed data
and any incoming SR, is received by the plan module.
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Fig. 1: High-level view of closed-loop, autonomous manage-
ment and orchestration of VNFs in 5G C-RAN

The plan module performs intelligent slice orchestration
and, performance and fault management by leveraging AI/ML
techniques [21]. The AC and slicing sub-components, which
are a part of the performance & fault management component,
are utilized by the plan module to produce intelligent AC and
slicing decisions. These can be utilized either concurrently
(i.e., both output their decision independently) or sequentially
(i.e., one sub-component can utilize the output of the other to
make its decision). If the SR is admitted, the slice orchestrator
forwards the actions required for its orchestration to the
execute module which executes these actions by interacting
with the substrate network. Since we simulate a substrate
network, the monitor, analyze and execute modules do not
present a research challenge. Therefore, in this paper, we only
describe the pertinent system design, and propose and evaluate
the design of the slicing and AC components.
A. Substrate Network

An example of a multi-tier 5G C-RAN supporting dynamic
RAN functional decomposition [2], is shown in Fig. 1. This
constitutes the basis of our substrate network design. The
substrate network is represented as a graph G = (N ,L),
where N = {n1, n2, ..., nk} represents the set of k nodes and
L ⊆N ×N represents the set of j links each with a certain
latency. We use ln,n′ ∈ L to denote the link between the
nodes n, n′ ∈N . At any time t, a node n ∈N has a certain
amount of available computing resources, denoted by ctn, and
a link l ∈ L has an available bandwidth, denoted by btl . A
set of RUs are connected to Tier-1 site with low-latency and
high-bandwidth links. VNFs requiring very low latency can be
placed there. As the sites become more centralized (i.e., Tier
2–3 sites), the experienced latency from the RU increases due
to the increased path delay. Although nodes at these sites have
higher available computing resources, these sites must support
a greater number of lower-tier sites.
B. Functional Split Requirements

The NR protocol stack consists of a number of essen-
tial functions, namely, RF, Low-PHY, High-PHY, Low-MAC,
High-MAC, Low-RLC, High-RLC, PDCP, and RRC. 3GPP
enumerates the possible splits for these functions [1], shown
in Fig. 2. These splits describe the functions that are to be
decentralized at the Distributed Unit (DU) and those that are
to be centralized at the Central Unit (CU). With dynamic
function splitting, the split for each SR (i.e., slice-request) is
not fixed. Instead, it varies for each SR based on its VNFs’
placement at different sites. With option 8, all functions except
RF signal generation are centralized. This split leads to the
highest multiplexing gain, yet has also very strict latency
requirements and bandwidth demands. On the other hand, with
option 2, only PDCP is centralized at the CU. This leads
to high computing resource requirements at the DU but less
stringent bandwidth and latency requirements [1, 22].

Based on the functional split options proposed by 3GPP,
ITU recommends option 7 as the split between the RU and
the DU [23], due to its high bandwidth and strict latency
requirements. Therefore, in this paper, we consider Low-PHY
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Fig. 2: Functional splits for VNFs in 5G C-RAN [1]

and RF functions to always be placed at the RU. Additionally,
since the computing resource modeling between Low-RLC and
High-RLC, and Low-MAC and High-MAC is still in progress,
we only consider options 2, 4, 6 and 7 as the possible splits.
Therefore, we refer to High-PHY, MAC, RLC and PDCP
functions as f1–f4, respectively.

In 5G C-RAN, these functions are virtualized, i.e., VNFs,
and placed at different nodes in the substrate network. Each of
these VNFs requires a certain amount of computing resource
measured in Giga Operations Per Second (GOPS). The com-
puting resource requirement depends on the type of operations
each VNF needs to perform, and can be calculated as [24]:
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where G1–G2 refer to the computing resource requirements
for the sub-functions of f1, and G3–G5 refer to the computing
resource requirements for f2–f4, respectively. B, A, L, and
M refer to the bandwidth, number of MIMO antennas, load,
and modulation, respectively. Gref , Bref , Aref , Lref , and
Mref are values for the computing resource requirements,
bandwidth, MIMO number of antennas, load, and modulation
in the reference scenario [24, 25], respectively. The bandwidth
requirements for different splits can be modeled as:

R(λ) = k1λ+ k2, (6)
where R is the required link bandwidth, λ is the slice through-
put in Mbps, and k1, k2 are constants with specific values for
the different splits which can be calculated using [26]. The
latency requirements depend on the VNF and the end-to-end
latency requirement of the SR [27, 28].
C. Slice-requests

Each incoming SR is considered to be dedicated to one of
the following service types: eMBB, URLLC, or mMTC. A
SR arriving at time t, denoted by st, consists of its service
type, the required throughput λst that it needs to support, its
end-to-end latency requirement, its operation time τst , and
its offered revenue per unit time rst . Multiple SRs cannot
arrive at the same instant of time. If the SR is embedded, it
consumes the substrate network’s computing and bandwidth
resources for a duration of τst , after which it departs, freeing
up the reserved resources. eMBB slices require the highest
bandwidth and can tolerate a moderate amount of latency. On

the other hand, URLLC slices require a moderate amount of
bandwidth but have very strict latency requirements. Finally,
mMTC slices require a moderate amount of bandwidth and
can operate under high latency. Additionally, each slice is of
either high priority (HP) or low priority (LP), and the offered
revenue is proportional to the priority of the slice.
D. Joint Slicing and AC

The slicing decision for any SR st is in the form of a
M × |N | embedding-relationship matrix ηst , where M is the
number of VNFs that need to be embedded in the substrate
network. ηstfm,n = 1 if fm is mapped to substrate network node
n ∈N , and ηstfm,n = 0 otherwise. The path selection between
the nodes is done based on the shortest-path algorithm. dru,n
and dn,n′ are used to denote the shortest-path delay between
the RU and node n, and between the nodes n, n′, respectively,
where n, n′ ∈ N . ϕl,n,n′ = 1 if link l ∈ L is in the shortest
path between nodes n, n′ ∈ N . Whereas, ϕl,ru,n = 1 if link
l ∈ L in the shortest path between RU and the node n ∈ N .
An embedding-relationship matrix ηst , for any SR st, is valid
if it satisfies all of the following constraints:∑

n∈N

ηstfm,n = 1 ∀m ∈ {1, ...,M}, (C1)

M∑
m=1

ηstfm,n · c
st
fm
≤ ctn ∀n ∈N , (C2)

dru,n · ηstf1,n +

fm∑
fi=f1

ηstfi,n · η
st
fi+1,n′ · dn,n′ ≤ dstfm

∀n, n′ ∈N ,∀m ∈ {1, ...,M},

(C3)

ηstf1,n ·R
st
f1
(λst) · ϕl,ru,n +

M−1∑
m=1

ηstfm,n · η
st
fm+1,n′ ·

Rst
fm

(λst) · ϕl,n,n′ ≤ btl ∀n, n′ ∈N ,∀l ∈ L,
(C4)

where cstfm and Rst
fm

(λst) denote the computing resource
requirement, and the output data-rate for VNF fm of SR
st, respectively. These are calculated using equation (1)–(5)
and equation (6), respectively. dstfm is used to denote the
latency requirement of the VNF fm of SR st. Constraint
(C1) ensures that a VNF is mapped to only one substrate
network node, which is an assumption commonly made in
the literature to simplify the problem. Constraint (C2) ensures
that the substrate nodes have the computing resources available
to host the VNFs, constraint (C3) ensures that the path delays
meet the latency requirements of each of the VNFs and finally,
constraint (C4) ensures that the link bandwidth limits are not
exceeded. A SR st is feasible if there exists a possible ηst

that is valid.
The objective of slicing and AC (i.e., admission control) is

to maximize the cumulative InP revenue achieved (i.e., rtotal):

maximize rtotal =
∑
t∈T

rst ∗ τst

s.t. (C1)− (C4),
(7)



where T denotes the set of arrival times of SRs dedicated to
different service types. With a slicing-only problem formula-
tion, when enough resources are available for an SR, the only
recourse to reject it preemptively is to deliberately produce an
infeasible embedding-relationship matrix, which is antithetical
to the idea of slicing. The joint AC and slicing problem, on
the other hand, includes the AC as a part of the problem
formulation. In this case, AC actions can be used to reject
SRs in order to prevent resource bottlenecks, or to preserve
resources for future SRs with potentially higher revenue.

IV. PROPOSED SOLUTION

To jointly address the slicing and AC (i.e., admission con-
trol) problems, we propose a multi-agent DRL-based approach
which we refer to as M-AC-VNE. In this approach, two
separate agents—a slicing agent and an AC agent—are used to
produce the embedding-relationship matrix and the admission
decisions. The slicing agent is only invoked if an st is feasible
(i.e., a valid ηst exists), and the AC agent is invoked if the
slicing agent produces a ηst that is valid.

The agents’ observation space includes the incoming SR’s
(st) service type (i.e., URLLC, eMBB, mMTC), its operation
time (τst ), offered revenue (rst ) and the current substrate
network state (Ct,Bt). The AC agent’s observation space
also includes the resulting substrate network state if the st
is to be admitted. To train the DRL agents’ policy network
weights, we utilize the Proximal Policy Optimization (PPO)
algorithm [29], which is an on-policy, model-free, policy-
based algorithm that outperformed the other DRL algorithms
during our trials. Since the objective in equation (7) can only
be computed after a training episode ends, it would be too
sparse for use as a reward for a DRL agent. Therefore, we
use Algorithm 1 and Algorithm 2 to generate the reward for
the slicing agent and the AC agent, respectively.

For the slicing agent, the reward depends on the number
of constraints (C2)–(C4) violated by ηst , the number of
subsequent SRs (Ssub) that are infeasible and if AC agent
admits st. The algorithm is designed to make the slicing agent
produce embedding-relationship matrices that are valid, cause
the least amount of bottlenecks, and are likely to be accepted
by the AC agent. For the AC agent, the reward depends on the
rst . If the AC agent admits st, it gets the total offered revenue
by that st as the reward. But if subsequent SRs are infeasible,
then the AC agent gets a negative reward equal to the potential
revenue loss. This reinforces the AC agent’s policy to reject
SRs that are LP (i.e., low priority) and are likely to cause
bottlenecks. The constants (i.e., +/- 1, 1.5) used in Algorithm
1 to balance between the negative and positive rewards are
based on trial-and-error and lead to faster learning.

As one of the comparison-cases for the proposed approach,
we design the single-agent DRL approach, referred to as S-
AC-VNE. In this approach, both the embedding-relationship
matrix and admission decision are concurrently produced by
a single DRL-agent. The observation space is the same as that
of the slicing agent in M-AC-VNE. The reward function for
this approach is given in Algorithm 3.

Algorithm 1 Slicing agent’s reward in M-AC-VNE
Input : st, ηst , (Ct,Bt), subsequent SRs (Ssub)
Output: slicing agent’s reward

reward← 0
foreach constraint (C2)–(C4) violated by ηst do

reward← reward− 1
end
if (ηst is valid) ∧ (SR st admitted by AC) then

reward← reward+ 1.5
end
for ssub ∈ Ssub do

if ssub not feasible then
reward← reward− 1.5

else
return reward

end
end

Algorithm 2 AC agent’s reward in M-AC-VNE
Input : st, ηst , (Ct,Bt), subsequent SRs (Ssub)
Output: AC agent’s reward

reward← 0
if st is admitted then

reward← reward+ (rst ∗ τst)
end
for ssub ∈ Ssub do

if ssub not feasible then
reward← reward− (rssub ∗ τssub)

else
return reward

end
end

Algorithm 3 RL agent’s reward in S-AC-VNE
Input : st, ηst , (Ct,Bt), max offered revenue by any SR

(rmax)
Output: RL agent’s reward

reward← 0
foreach Constraint (C2)–(C4) violated by ηst do

reward← reward− (rmax ∗ τst)
end
if (ηst is valid) ∧ (st is admitted) then

reward← reward+ (rst ∗ τst)
end
return reward

In this case, if st is successfully embedded, the reward
is proportional to rst . Otherwise, a negative reward that is
proportional to the number of SR (i.e., slice-request) constraint
violations, is given to the agent. It is worth noting that
the negative reward in case of a constraint violation by the
embedding-relationship matrix is proportional to the maximum
offered revenue. This is so that the agent utilizes its AC action
to reject SRs, instead of producing an infeasible embedding-
relationship matrix for the SRs. In the single-agent case, there



can not be a separate reward for slicing and AC. Due to this,
the learning of one aspect can interfere with that of the other.
For example, if the agent is given a negative reward for a non-
optimal AC action, the entire policy is impacted. This causes
the concurrent slicing action to also be disincentivized, even
if it is optimal. This leads to a slower and potentially non-
optimal learning for S-AC-VNE, as shown in Section V.

V. EVALUATION

A. Environment Setup
The simulation is implemented as a custom OpenAI Gym

[30] environment, coupled with RLLib [31] on a cluster of 3
servers. Each server includes 16GB of RAM, 8x Intel Xeon
3.30GHz cores and runs Ubuntu 16.04 . Cluster management
is done through Ray [32], and DRL algorithms are imple-
mented in RLLib, using Python 3.8.9 and leveraging PyTorch
[33]. This setup enables distributed learning to accelerate the
training and hyperparameter optimization.
B. Comparative Approaches

During evaluation, we compare to a variety of approaches,
aiming to encompass the current baseline and state-of-the-art
approaches in 5G C-RAN slicing and AC.

1) Heuristics-based: Greedy & Node-ranking

In the greedy approach, all SRs are accepted and each VNF
is placed at the closest node to the RU with enough resources
available to host the VNF. In case of a tie, the node with higher
available resources is selected. Since the VNFs are placed at
the closer nodes first, the delay requirement is readily met
and minimum link bandwidth is used. However, this approach
is naı̈ve, as once the computing resources at Tier-1 site are
exhausted, VNFs that demand a low latency cannot be placed
anymore. Consequently, all additional SRs are rejected until
resources at Tier-1 site become available again.

To circumvent this bottleneck, we design the Node-ranking
approach for slicing (inspired by [10]). For each VNF, starting
from the last one in the chain, all the nodes in the substrate
network within the VNF’s tolerable delay are ranked. This
ranking is done based on the tier of the node (i.e., farthest to
closest), followed by their available computing resources (i.e.,
highest to lowest). Finally, the highest-ranked node that does
not violate any link bandwidth constraints is selected. This
ranking method is used for all SR service types, since it puts
the least strain on Tier-1 site’s computing resources until the
bandwidth to higher-tier sites is constrained.

2) DRL-based: DRL-AC, DRL-VNE & S-AC-VNE

Since a number of works propose DRL for AC without
proper modeling of network slicing [6, 12] and for network
slicing without modeling AC [11], we deploy two DRL-based
benchmark solutions. In the first approach, DRL is used for
AC, but slicing is done through the Node-ranking approach
described earlier. In the second case, slicing is done by DRL,
but all SRs are accepted. The reward formulation for the DRL-
agent in both approaches is kept the same as the one for
the corresponding DRL-agent in the M-AC-VNE approach.

Henceforth, we refer to these approaches as DRL-AC and
DRL-VNE, respectively. The single-agent DRL approach (S-
AC-VNE) is described in Section IV.
C. Simulation Parameters

The maximum latency required for the RAN VNFs’ opera-
tion [26] and the end-to-end latency SLA for each service type
are given in Table I. These values are used to derive effective
latency requirements (i.e., dstfm ) for f1–f4.

One-way Latency Requirement (ms)
Service f1 f2 f3 f4 End-to-End
URLLC 0.25 2 6 30 1.5
eMBB 0.25 2 6 30 4
mMTC 0.25 2 6 30 10

TABLE I: VNF latency requirement for each service type

URLLC, mMTC, and eMBB SRs require a throughput of
75Mbps, 75Mbps, and 150Mbps, respectively. For the training
scenario, the SRs have a Poisson-distributed arrival rate with
an average of 5 SRs per hour. The SR operation time is
uniformly distributed with a mean of 6 hours and a standard
deviation of 0.5. Any incoming SR has 50% probability of
having a service type of eMBB and 50% probability of having
the other two service types. Each SR can be either HP (i.e.,
high priority) or LP with 50% probability. On average, HP
SRs offer twice the revenue as compared to LP SRs.

The computing resources available per node are 1500,
2000, and 4000 GOPS at Tier-1, Tier-2, and Tier-3 sites,
respectively. The link latencies between RU and Tier-1 site,
Tier-1 and Tier-2 sites, and Tier-2 and Tier-3 sites are 0.25ms,
1.2ms, and 4.2ms [2], respectively. The available bandwidth
for Tier-1 to Tier-2 site link is 1000Mbps and that of Tier-2 to
Tier-3 link is 1500Mbps. Due to the close proximity of nodes,
the intra-site links are modeled to have ample bandwidth and
negligible latencies. The RUs operate at 20MHz, 2x2 MIMO,
and 64QAM. A training episode in DRL consists of 10 days
of operation after which the simulation is restarted and a new
episode is initiated. After hyperparameter search, we reach
those shown in Table II for the PPO algorithm, which are
then used for all the DRL-based agents.

DRL Hyperparameter Value
# Hidden-layer neurons [128, 128, 128]
Learning rate at timesteps [0, 107, 108] [3e-3, 5e-4, 1-e4]
Train batch size, Mini-batch size, # SGD iters 16348, 4096, 5
KL coefficient, Lambda 0.4, 0.95

TABLE II: PPO Training Hyperparameters

D. Results
We train each of the DRL-based approaches for 100 million

training steps and evaluate their performances using the check-
point with the highest achieved revenue. Fig. 3 shows the total
revenue achieved by the different approaches as the training
progresses, and the final InP (i.e., infrastructure provider)
revenue achieved during evaluation is shown in Fig. 4. Since
the DRL-agents do not perform exploration during evaluation,
the average revenue achieved is slightly higher as compared
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to the training phase. Evidently, the greedy approach achieves
the lowest revenue. We set this approach as the baseline
to compare the rest of the approaches against. S-AC-VNE
achieves only 0.3% higher revenue as compared to the greedy
approach for reasons explained in Section IV. S-AC-VNE is
followed by Node-ranking, DRL-VNE, DRL-AC, and M-AC-
VNE approaches, which achieve 9.1%, 23.8%, 24.1%, and
29.5% gain in revenue over the greedy approach, respectively.

The average available bandwidth for Tier-1 to Tier-2 link
during evaluation is shown in Fig. 5. The available bandwidth
is lowest for the node-ranking approach since this approach
places all VNFs at the farthest node, which consumes a higher
amount of bandwidth. A similar value can be observed for the
DRL-AC approach as it uses the Node-ranking approach for
slicing. As opposed to DRL-AC, for M-AC-VNE and DRL-
VNE the average available bandwidth is higher. This shows
that DRL-based slicing approaches are able to preserve more
bandwidth by placing a lesser number of bandwidth-hungry
SRs over the Tier-1 to Tier-2 link. This is also corroborated
by Fig. 6, which shows that DRL-VNE and M-AC-VNE
approaches achieve the highest resource utilization in Tier-3,
while still maintaining high resource utilization at Tier-1 and
Tier-2. S-AC-VNE approach has the highest average available
bandwidth since it has the lowest number of in-service SRs
throughout the training, as shown in Fig. 7.

Due to a limited amount of resources available in the
substrate network, there can only be a limited number of
SRs (i.e., slice-requests) in-service at any given time. The
number of in-service SRs depends on different factors, such as
the availability of computing resources at lower-tier sites and
available link bandwidths. Fig. 7 shows the average number
of in-service SRs during each episode as the DRL-based ap-
proaches are trained. It can be observed that as the approaches
with DRL-based slicing train, the average number of in-service
SRs increases. This is because the slicing agent learns to
produce embedding-relationship matrices, such that there is
a lesser number of bottlenecks, resulting in more SRs to be
accepted. Additionally, we can see that the greedy approach
has the lowest number of in-service SRs after the S-AC-VNE
approach due to the bottleneck described in Section V-B1. The
Node-ranking approach circumvents this bottleneck, which

leads to an increase in the average number of in-service SRs
over the duration of the episode. But with this approach the
link bandwidth can become a bottleneck. We can see that
the DRL-VNE approach achieves the highest average number
of in-service SRs by optimally balancing the computing and
bandwidth resource utilization.

To maximize the long-term revenue, some LP SRs should
be preemptively rejected to keep the resources available for the
HP (i.e., high-priority) SRs. Fig. 8 shows the percentage of HP
embedded SRs during an episode as the training progresses.
As expected, for the greedy and Node-ranking approaches,
it is 50%, whereas, for the approaches with DRL-based AC
(i.e., admission control), it is higher. Indeed, DRL-AC leads to
accepting the highest proportion of HP SRs. This percentage
is highest for the DRL-AC approach, even though it does not
have the highest average number of in-service SRs. This leads
to a comparatively higher revenue in the case of DRL-AC
when compared to approaches with a higher average number of
in-service SRs. Finally, we can see that M-AC-VNE achieves
the highest average revenue (cf., Fig. 3) by optimally balancing
between the average number of in-service SRs (cf., Fig. 7) and
the average number of embedded SRs that are HP (cf., Fig. 8).

The episode reward for DRL-AC is the earliest to reach a
plateau during its training, followed by DRL-VNE, as shown
in Fig. 9. This is because these approaches are using DRL
for either slicing or AC, but not for both. Additionally, we see
that although the episode reward for DRL-VNE decreases after
25M training steps, the revenue (cf., Fig. 3) does not follow
the same trend. This is because, in addition to the number of
embedded SRs, the reward for the DRL-agent also depends
on the number of SR constraints’ violations.

Although the training is stopped at 100M training steps, the
episode rewards for M-AC-VNE and S-AC-VNE still show
a rising trend. Moreover, M-AC-VNE converges to a higher
episode reward compared to S-AC-VNE. It is possible for the
latter to achieve the same long-term reward as the former, since
the policy represented by the two policy networks of the M-
AC-VNE can also be represented by a single policy network
of S-AC-VNE. In practice, however, we see that S-AC-VNE
achieves much lower revenue in 100M training steps.

Finally, to test the robustness of the trained model under
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diversified conditions, we vary the arrival rate and priority of
SRs. The M-AC-VNE approach is trained with an average
SR arrival rate of 5 SRs/hour and with 50% probability
of any SR being HP. First, we introduce previously unseen
load conditions to the agents, by deviating the SR arrival
rate from the one used during training. Fig. 10 displays
the robustness of the approach against such loads. In more
saturated network conditions (i.e., rapid arrival of SRs), not
only the proposed approach maintains its performance, but
the revenue gap between it and the baseline approaches also
increases. At the highest point, the total revenue difference
between our approach, and the Node-ranking and greedy
approaches reaches 19.3% and 31.9%, respectively. Whereas,
under less demanding conditions (i.e., sporadic arrival of SRs),
this difference is smaller. We speculate that in such situations,
there is a lesser need for more intelligent decision-making, as
there is a lesser chance of creating bottlenecks.

Furthermore, we evaluate the proposed approach under
varying percentages of HP SRs. Fig. 11 shows the revenue
achieved by the proposed approach and the baseline ap-
proaches in this scenario. It is evident that M-AC-VNE is able
to generalize to this scenario as well and maintain its lead in
the achieved long-term InP revenue. In cases where there are
no HP SRs, or when all of the SRs are HP, the M-AC-VNE
is still able to achieve a higher revenue when compared to
baseline approaches as it is able to avoid resource bottlenecks.
Additionally, DRL also makes use of the higher revenues
offered by the HP SRs by admitting a higher percentage
of corresponding SRs. As a result, as the percentage of HP
SRs increases, the M-AC-VNE approach shows a higher rate

of increase in revenue. However, as the HP SRs become
oversaturated, the rate of increase decreases.

VI. CONCLUSION

In this paper, we studied the problem of joint slicing and
AC in 5G C-RAN. Maximizing an InP’s long-term revenue
involves a number of factors which make the joint slicing
and AC problem quite complex. This complexity calls for a
close collaboration between the slicing and AC modules. We
propose multi-agent DRL as an effective approach to address
slicing and AC problems jointly and show that DRL-based
approaches that address only one aspect of the problem lead
to a loss in potential InP revenue. Our results show that the
proposed approach achieves as much as 29.5% higher revenue
when compared to approaches based on simple heuristics and
DRL approaches that address the two problems separately. Our
results also show that multi-agent DRL achieves 29.1% higher
long-term InP revenue and leads to faster convergence, when
compared to a single-agent DRL approach that jointly address
the slicing and AC problems. In the future, we will evaluate
our approach in a more complex metro 5G RAN environment.
Further investigation is also needed to make the proposed
approach more robust by training the agent under more diverse
and varying network conditions.
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Pérez, and G. Iosifidis, “An Optimal Deployment Framework
for Multi-Cloud Virtualized Radio Access Networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 4, pp.
2251–2265, 2021.

[15] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosi-
fidis, “FluidRAN: Optimized vRAN/MEC Orchestration,” in
IEEE Conference on Computer Communications, 2018, pp.
2366–2374.

[16] F. W. Murti, S. Ali, and M. Latva-aho, “Deep Reinforcement
Based Optimization of Function Splitting in Virtualized Radio
Access Networks,” in IEEE International Conference on Com-
munications Workshops (ICC Workshops), 2021.

[17] Q. Liu and T. Han, “DIRECT: Distributed Cross-Domain Re-

source Orchestration in Cellular Edge Computing,” in ACM
International Symposium on Mobile Ad Hoc Networking and
Computing, 2019, pp. 181–190.

[18] M. R. Raza, C. Natalino, P. Ohlen, L. Wosinska, and P. Monti,
“Reinforcement Learning for Slicing in a 5G Flexible RAN,”
Journal of Lightwave Technology, vol. 37, no. 20, pp. 5161–
5169, Oct. 2019.

[19] R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury,
N. Saha, and A. James, “AI-Driven Closed-Loop Automation
in 5G and beyond Mobile Networks,” in ACM Workshop on
Flexible Networks Artificial Intelligence Supported Network
Flexibility and Agility (FlexNets), 2021, p. 1–6.

[20] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar,
R. Boutaba, F. Estrada-Solano, and O. M. Caicedo, “Machine
Learning for Cognitive Network Management,” IEEE Commu-
nications Magazine, vol. 56, no. 1, pp. 158–165, 2018.

[21] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi,
N. Shahriar, F. Estrada-Solano, and O. M. Caicedo, “A compre-
hensive survey on machine learning for networking: evolution,
applications and research opportunities,” Journal of Internet
Services and Applications, vol. 9, no. 1, pp. 1–99, 2018.

[22] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A Survey
of the Functional Splits Proposed for 5G Mobile Crosshaul
Networks,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 1, pp. 146–172, 2019.

[23] G.sup.5GP, “5G Wireless Fronthaul Requirements in a PON
Context,” ITU-T, G.Sup66 Supplement, Jul. 2019.

[24] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer,
H. Holtkamp, W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez,
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