
Online Selection with Convex Costs

Xiaoqi Tan, Siyuan Yu
University of Alberta

{xiaoqi.tan, syu3}@ualberta.ca

Raouf Boutaba,
University of Waterloo

rboutaba@uwaterloo.ca

ABSTRACT

We study a novel online optimization problem, termed on-
line selection with convex costs (OSCC). In OSCC, there is a
sequence of items, each with a value that remains unknown
before its arrival. At each step when there is a new arrival, we
need to make an irrevocable decision in terms of whether to
accept this item and take its value, or to reject it. The crux
of OSCC is that we must pay for an increasing and convex
cost associated with the number of items accepted, namely,
it is increasingly more difficult to accommodate additional
items. The goal is to develop an online algorithm that ac-
cepts/selects a subset of items, without any prior statistical
knowledge of future arrival information, to maximize the so-
cial surplus, namely, the sum of the accepted items’ values
minus the total cost. Our main result is the development of
a threshold policy that is logistically-simple and easy to im-
plement, but has provable optimality guarantees among all
deterministic online algorithms.

1. INTRODUCTION

We consider online selection with convex cost (OSCC), a
novel online optimization problem that Þnds many interest-
ing applications in resource allocation, scheduling, and ad-
mission control. The basic setting of OSCC is as follows:
there is a set of T items, indexed by t ∈ [T], each with a
value vt that is unknown in advance. Items arrive one at
a time in an online manner (e.g., sequential arrival of jobs
submitted to a cloud computing server). Upon the arrival of
item t ∈ [T], vt is revealed, and an online decision must be
made in terms of whether to accept this item, or to discard
it. We are interested in developing an online algorithm that
accepts/selects a subset S of items, without any statistical
information of future arrivals, to maximize the social surplus
v(S)−f(|S|). Here, v(S) denotes the total value of all the se-
lected items and f(|S|) represents the cost of accommodating
a total of |S| items1.
The key challenge for solving OSCC is to balance the value-

cost tradeoff in the presence of incomplete future information,
namely, how to select a subset of “worthy” items, one at a
time, so that these decisions turn out to be good choices in
hindsight? As the key motivation behind the proposal of
OSCC, such challenges appear in many real-world resource

1For example, if T = 10 and S = {1, 5, 9}, then v(S) =
v1 + v5 + v9 and f(|S|) = f(3), leading to a social surplus of
v1 + v5 + v9 − f(3).

Copyright is held by author/owner(s).

allocation problems. For example, in Internet advertising,
how to decide which advertisement (each may have a differ-
ent value) to display when a user visits a website? In cloud
computing, when jobs have different priorities (represented
by their different values), how to decide which job to admit
to maximize allocation efficiency?

Conceptually, OSCC also provides a framework that uniÞes
a variety of classical online optimization problems. E.g.:

¥ Time series search [1] [2]. In the elementary time series

search problem [1], a player is searching for the maximum
price in a sequence that is revealed one-by-one in an online
manner. At each step t = 1, 2, · · · , T , the player receives
price quotation vt and must decide whether to accept this
price or not. The game ends once vt is accepted and con-
sequently, the player’s payoff is vt. In k-max search [2],
the player is searching for k highest prices in a sequence.
Intuitively, k-max search reduces to the elementary time
series search problem when k = 1. Our OSCC formulation
further generalizes k-max search by considering a convex
cost f , which in this context can be interpreted as the cost
of sampling price data in the time series.

¥ Online knapsack problem [3]. OSCC can also be inter-
preted as a special type of online knapsack problem with
packing costs [3], in which the weight of each item equals
1 (i.e., unit-weight). In this context, f can be interpreted
as the cost of packing additional items into the knapsack.

(Competitive Ratio) Given an arrival instance, denoted
by I = {v1, v2, · · · , vT }, an online algorithm must decide,
based on information revealed over time in I, whether an
item should be accepted or rejected. The performance of an
online algorithm is quantiÞed by its competitive ratio (CR):

α ≜ max
all possible I

OPT(I)
ALG(I) , (1)

where ALG(I) denotes the social surplus achieved by the
online algorithm, and OPT(I) is the optimal social surplus
could be achieved when I is known a priori. By deÞnition, α
is no smaller than 1, and the closer to 1 the better.

(Assumptions) To facilitate the design of competitive on-
line algorithms for OSCC, we make two major assumptions.

Assumption 1 (Bounded Variability). For any t ∈ [T], vt ∈
[vmin, vmax].

Assumption 1 argues that the value of each item is bounded
within vmin and vmax. For ease of exposition, we also assume
that vmin and vmax are known (this assumption can be relaxed
with a more complex analysis). Intuitively, vmax ≥ vmin > 0
always holds.

Performance Evaluation Review, Vol. 50, No. 2, September 2022 33

Assumption 2 (Convexity). f(x) is convex and monotoni-

cally increasing in x ∈ [0, k], and can be written as

f(x) =

!
convex and increasing if x ∈ [0, k],

+∞ otherwise,
(2)

where k is the maximum number of items we can accept.

Assumption 2 implies that it is increasingly more difficult
to accept new items. As a special case, we allow f(x) =
0, ∀x ∈ [0, k], in this case OSCC reduces to the standard k-
max search problem [2]. It is also worth mentioning that k
can be any integer ranging from 1 to ∞.
(Notations) Given the cost function f , for any m ∈ [k],

we deÞne the cost of accepting the m-th item2 as cm:

cm ≜ f(m)− f(m− 1), ∀m ∈ [k]. (3)

For example, c1 = f(1) − f(0) = f(1), denoting the cost of
making the Þrst selection of one item. When the cost function
is linear, e.g., f(x) = x, then c1 = c2 = · · · = ck = 1, meaning
that it is equally-costly to accept additional items during the
entire decision-making process.

For a cost function f given by Eq. (2), we deÞne f∗ by

f∗(v) ≜ max
m∈{0,1,··· ,k}

vm− f(m), v ∈ [0,+∞). (4)

The deÞnition of f∗ is a generalization of the standard Fenchel
conjugate, and the interpretation is as follows: suppose all
items have the same value of v, then f∗(v) equals the maxi-
mum social surplus when k items can be accepted at most.

2. MAIN RESULTS

The main result established in this paper is a threshold
policy, dubbed TPλ, that solves OSCC with the best-possible
CR among all deterministic online algorithms.

2.1 Threshold Policy: TPλ

Algorithm 1: Threshold Policy (TPλ)

1: Inputs: λ = (λ0,λ1, · · · ,λk).
2: Initialization: m = 0 and S = ∅.
3: while a new item t arrives do
4: if vt − λm < 0 or m > k then

5: Discard item t
6: else

7: Accept item t, i.e., S = S ∪ {t}
8: m = m+ 1.
9: end if

10: end while

As a threshold policy, TPλ is simple and intuitive: for
any predesigned threshold λ = (λ0,λ1, · · · ,λk), TPλ makes
decisions of accepting or rejecting items based on whether
their values exceed the corresponding threshold. As an online
algorithm, our goal is to design a threshold λ so that TPλ

achieves a constant CR that is as close to 1 as possible.
Intuitively, the threshold λ should never be lower than vmin

as it suffices to make TPλ accept any item with a threshold
of vmin. Similarly, there is no need to go beyond vmax since
a threshold of vmax + # is enough to reject all items for any
→ 0+. Thus, λ should be a sequence of k + 1 positive real
numbers within [vmin, vmax]. This leads to the deÞnition of
admission thresholds as follows.
2Note that m ∈ [k] is the index for items being accepted,
while t ∈ [T] is the index for all the items.

m

vmin

vmax

0 1 2 3 4 5

f(m)

c1 c2
c3

c4

c5

1 2

3

4

5

0

Figure 1: Illustration of an admission threshold with

τ = 2, k = 5, and f(m) = m3
.

DeÞnition 1 (Admission Threshold). An admission thresh-

old λ = (λ0,λ1, · · · ,λτ , · · · ,λk) is a sequence of k+1 mono-

tonically non-decreasing positive numbers such that

vmin = λ0 = · · · = λτ < λτ+1 ≤ · · · ≤ λk−1 ≤ λk ≤ vmax,

where τ is an integer (to be designed) within {0, 1, · · · , k−1}.

For any given admission threshold λ, TPλ always accepts
the Þrst τ + 1 items since their values are guaranteed to be
no less than vmin. On the other hand, TPλ will never accept
more than k items as no item’s value is higher than vmax.
For example, Fig. 1 illustrates an admission threshold with
vmin = λ0 = λ1 = λ2 < λ3 < λ4 < λ5 = vmax. In this case,
τ = 2 and k = 5, and TPλ always accepts the Þrst 3 items
and will never accept more than 5 items.

2.2 Uniqueness and Optimality of TPλ

Theorem 1 below shows that there exists a unique admis-
sion threshold λ∗ so that TPλ∗ is optimal among all deter-
ministic online algorithms.

Theorem 1. TPλ∗ achieves the best-possible CR of all de-

terministic algorithms, denoted by α∗
, if and only if λ∗ ="

λ∗
0,λ

∗
1, · · · ,λ∗

τ , · · · ,λ∗
k

#
is an admission threshold such that

¥ λ∗
0 = λ∗

1 = · · · = λ∗
τ = vmin and λ∗

k = vmax, where τ is the

minimum integer in {0, 1, · · · , k − 1} such that

vmin(τ + 1)− f(τ + 1) ≥ f∗(vmin)

α∗ . (5)

¥ {α∗,λ∗
τ+1,λ

∗
τ+2, · · · ,λ∗

k−1,λ
∗
k} is the unique set of k−τ+1

positive real numbers that satisfy the system of equations:

α∗ =
f∗$λ∗

τ+1

%

vmin(τ + 1)− f(τ + 1)
=

f∗$λ∗
τ+2

%
− f∗$λ∗

τ+1

%

λ∗
τ+1 − cτ+2

= · · · =
f∗(λ∗

k)− f∗$λ∗
k−1

%

λ∗
k−1 − ck

. (6)

The design of τ in Eq. (5) and the system of equations
characterized by Eq. (6) identify the necessary and sufficient
conditions for λ∗ =

"
λ∗
0,λ

∗
1, · · · ,λ∗

τ , · · · ,λ∗
k

#
that once satis-

Þed, TPλ∗ achieves the optimal CR of all deterministic online
algorithms. We remark that α∗ does not have a closed-form
expression in general – we need to numerically solve the sys-
tem of equations in Eq. (6) to obtain α∗. Given that the cost
function f is arbitrary, we argue that this is not surprising.
(Example: Linear Cost) In some special cases the cal-

culation of α∗ via Eq. (6) can be signiÞcantly simpliÞed. For

34 Performance Evaluation Review, Vol. 50, No. 2, September 2022

example, when f(x) = σx with some constant σ ∈ [0, vmin),
we have c1 = c2 = · · · = ck = σ and f∗(v) = k(v − σ).
Substituting f∗ into Eq. (6) leads to

α∗

k
=

λ∗
τ+1 − σ

(vmin − σ)(τ + 1)
=

λ∗
τ+2 − λ∗

τ+1

λ∗
τ+1 − σ

= · · · =
λ∗
k − λ∗

k−1

λ∗
k−1 − σ

,

which solves to the following analytical solution:

λ∗
m = α∗

&
1 +

α∗

k

'm−τ−1

· τ + 1

k
· (vmin − σ) + σ, (7)

where m varies within {τ + 1, · · · , k}. By Eq. (5), we have

τ =
(k

α∗

)
− 1. (8)

Substituting τ into Eq. (7), and further using the fact that
λ∗
k = vmax (the Þrst bullet in Theorem 1), we reach to the

following equation of α∗:

&
1 +

α∗

k

'k−⌈ k
α∗ ⌉

· α
∗

k
·
(k

α∗

)
=

vmax − σ

vmin − σ
. (9)

Based on Theorem 1, Eq. (9) has a unique root in variable
α∗ ∈ [1,+∞), which can be easily computed via numerical
methods such as bisection. Substituting α∗ back to Eq. (7)
will give us the optimal threshold λ∗.

3. PERFORMANCE EVALUATION

(Simulation Setup) We consider a sequence of 500 items
(i.e., T = 500), each with a value within the range of [25, 200],
namely, vmin = 25 and vmax = 200. For the cost function, we
assume f(x) = 1

5
x2. To simulate different arrival scenarios,

we construct the following three types of arrival instances.

¥ Type 1: low2high. For arrival instances that are of type
low2high, the values of the Þrst half (i.e.., 250 items) are
between vmin and (vmin + vmax)/2, and those of the sec-
ond half are between (vmin + vmax)/2 and vmax. We use
low2high to simulate the scenario when being aggressive
at the beginning (i.e., accepting too many items in earlier
stages) may be penalized as it is likely to have sufficient
number of high-value items later on.

¥ Type 2: random. In this type of arrival instances, the
values of all the 500 items are randomly sampled from
[vmin, vmax]. We use random to simulate the scenario when
we have completely no knowledge of future arrivals.

¥ Type 3: high2low. This type is conÞgured in contrast
to low2high. We use high2low to simulate the scenario
when being too reserved at the beginning (i.e., rejecting
too many items in earlier stages) may be penalized.

(Performance Metric) To empirically evaluate the com-
petitive ratio of TPλ∗ , we generate N samples of arrival in-
stances In with n ∈ [N], and calculate the empirical ratio
of TPλ∗ by averaging over N = 1000 samples of arrival in-
stances as follows:

Empirical Ratio ≜ 1

N

N*

n=1

OPT(In)

TPλ∗(In)
,

where TPλ∗(In) denotes the social surplus achieved by our
threshold policy TPλ∗ in the online setting, and OPT(In) is
the optimal performance in hindsight (or in the offline setting
when In is known a priori). For each given In, we compute

Figure 2: Performance of TPλ∗ under different types

of arrival instances. Other than α∗
, each curve shows

the empirical ratio of TPλ∗ over 1000 arrival instances

sampled by their corresponding types.

OPT(In) by solving a mixed-integer optimization problem
using Gurobi3.
(Numerical Results) Fig. 2 shows that the optimal com-

petitive ratio α∗ is roughly within [2.5, 3.2] when k varies
from 50 to 500. Recall that α∗ denotes the worst-case sce-
nario and is always sample independent. In comparison, the
empirical ratio is highly dependent on samples. For exam-
ple, the empirical ratios of TPλ∗ are always close to 1 when
input sequences are of type high2low, but become consider-
ably worse in face of low2high. The performance of TPλ∗

over random is between that of low2high and high2low, which
follows our intuition. For all these three types, the empirical
ratios are below α∗ since by deÞnition α∗ captures the worst-
possible performance. In the meanwhile, Fig. 2 shows that
as k grows, all the empirical ratios decrease, so does α∗.

4. CONCLUSIONS AND FUTURE WORK

We proposed online selection with convex costs, and de-
rived an optimal threshold policy which achieves the best-
possible performance of all deterministic online algorithms.

Recall that k denotes the maximum number of items we
can accept/select. Currently, it remains unclear if the opti-
mal competitive ratio α∗ asymptotically converges to some
lower bound when k grows (as illustrated in Fig. 2). If α∗

indeed converges, then it is interesting to study i) how to
characterize and interpret this converged lower bound, and
ii) whether this lower bound can be outperformed by ran-
domized algorithms (e.g., randomized threshold policies).

5. REFERENCES

[1] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin,
“Optimal search and one-way trading online
algorithms,” Algorithmica, vol. 30, no. 1, pp. 101–139,
2001.

[2] J. Lorenz, K. Panagiotou, and A. Steger, “Optimal
algorithms for k-search with application in option
pricing,” Algorithmica, vol. 55, no. 2, pp. 311–328, 2009.

[3] X. Tan, B. Sun, A. Leon-Garcia, Y. Wu, and D. H.
Tsang, “Mechanism design for online resource allocation:
A uniÞed approach,” Proc. ACM Meas. Anal. Comput.

Syst. (SIGMETRICS ’20), vol. 4, no. 2, Jun. 2020.

3https://www.gurobi.com/

Performance Evaluation Review, Vol. 50, No. 2, September 2022 35

