
A Critical Study of Few-shot Learning for
Encrypted Traffic Classification

Elham Akbari∗, Sheikh A. Tahmid∗, Navid Malekghaini∗, Mohammad A. Salahuddin∗, Noura Limam∗,
Raouf Boutaba∗, Bertrand Mathieu†, Stephanie Moteau†, and Stephane Tuffin†

∗David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada
{eakbaria, sa2tahmi, nmalekgh, m2salahu, n2limam, rboutaba}@uwaterloo.ca

†Orange Labs, Lannion, France
{bertrand2.mathieu, stephanie.moteau, stephane.tuffin}@orange.com

Abstract—Over the past twenty years, a plethora of methods
have been proposed for encrypted traffic classification (ETC),
while the Server name indication (SNI) is deemed to solve the
problem of classification for TLS traffic. However, SNI-based
classification has its pitfalls and the SNI will likely be pushed
into the encrypted tunnel in the future. In this work, we envision
a futuristic scenario in which encrypted SNI is the norm and
labeled traffic flows are scarce. In such settings, we tackle
the problem of traffic classification at ISP level using few-shot
learning. By means of six real-world ISP-level datasets collected
between 2019 and 2021 and two publicly available client-side
datasets, we study the performance of a few-shot learner on
TLS data, including its cross-dataset generalizability. We further
investigate the effect of the number of required labeled samples
on the learner’s performance. Our experiments show that the
dataset-specificity of deep learners carries over to few-shot meta-
learning, and calls for addressing the problem of generalizability
for deep learning architectures.

Index Terms—Encrypted traffic classification, Meta-learning,
Few-shot learning, Matching networks

I. INTRODUCTION

Outside controlled environments, with no visibility into the
traffic-generating clients, labeling real-life encrypted traffic is
akin to the classification task for a non-labeled dataset. While
SNI-based labeling paves the way for supervised classification
of encrypted traffic, it has its limitations. The SNI extension
in TLS is primarily employed by servers that host multiple
domain names to identify the appropriate SSL certificate for
a client that initiates a connection. However, there is no
guarantee for an SNI field to exist in a TLS flow or to have a
value readable by third-party packet-sniffers. For example, the
authors in [1] report that only 14% of the flows in their dataset
were labelable using the SNI field. Moreover, some Content
Delivery Networks (CDNs) have already started supporting the
Encrypted SNI feature of TLS, which pushes the SNI field into
the encrypted tunnel and prevents third parties from spying
on users. In the absence of SNI, traffic classification models
will rely on traffic collected in controlled environments for
training, and will need to be generalizable to non-independent
and identically distributed (non-i.i.d) data. Prior works [2]–[6]
have proved that porting a model from dataset to dataset is
challenging, suggesting a need for new approaches to traffic
classification.

Few-shot learning allows a deep model to transfer the
knowledge learned in previous learning experiences to a new
task using only a few labeled data samples. Among few-shot
learners, a certain class of metric-based models have been
proposed that allow the insertion of any deep architecture
as an embedding function [7]–[9] to effectively capture the
features of the input data. This property allows the integration
of tried and tested encrypted traffic classifiers with those
few-shot models. The encrypted traffic classification (ETC)
literature has explored different deep architectures and shown
their merit [1], [10]–[12]. The effectiveness of deep models
is often attributed to their ability to automatically discover
distinguishing features in data, a trait that seems promising
for their use as an embedding function (cf., Section III), as
well as an advantage over classical machine learning (ML)
models.

Another advantage that few-shot learning offers is a task-
based approach to learning, which can potentially provide an
advantage over other models in terms of generalizability to
new datasets. Based on the definition of a task (cf., Section II),
distinct network traffic datasets impose different classification
tasks. Numerous prior works [2]–[4], [13] have found an acute
drop in performance, when a model is trained and evaluated on
different datasets. This poses a real challenge for production-
level traffic classification, where the expectation is that a
trained model should perform well on future collected data,
unavailable at training time. Another advantage offered by the
class of few-shot models explored in this work is their ability
to extend their knowledge to previously unseen classes of data.

In this work, we study the performance of a few-shot
approach, carefully designed based on state-of-the-art deep
traffic classifiers, by means of a number of purely TLS traffic
traces collected at an ISP. We keep the experiments’ conditions
realistic by refraining from filtering out viable traffic flows for
which a ground truth is available, and by masking the SNI
values where header byte features are used. Thus, we report
the performance of the few-shot model on all labelable traffic
flows in the traffic traces and ensure that the classification task
is more complex than a text lookup. Our contribution lies in
providing the answer to the following questions:

• Do unique features of a few-shot learner, such as a metric-
based loss function and the use of evaluation support

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP
Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



samples, offer an advantage in terms of generalizability
and/or performance over a traditional classifier?

• How does the number of labeled samples affect the
performance of the few-shot classifier and how many
such samples are needed for a few-shot classifier to yield
acceptable performance?

• How does the few-shot classifier fair against a comparable
classical k-nearest neighbors (kNN) algorithm in terms of
performance, given the same number of labeled samples?

The rest of the paper is organized as follows. We review
the background and discuss the related works in Section II.
Section III explains our approach, including the choice of few-
shot learner, the datasets and the extracted features. Section IV
answer the three questions mentioned above and showcases
the performance and generalizability of the few-shot approach
under various ETC scenarios for header bytes and flow time-
series input features. We discuss the results in Section V and
conclude in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Knowledge Transfer

Knowledge transfer across tasks has been a focus across a
number of topics in ML, such as transfer learning, multi-task
learning, and meta-learning. Central to the idea of knowledge
transfer is the notion of a task. A task Ti is defined as a
distribution of data points pi(x), a distribution of labels over
data points pi(y|x), and a loss function Li, as shown in
Equation 1 [14]:

Ti ≜ {pi(x), pi(y|x),Li} (1)

Different tasks vary in one or more of the three elements in
Equation 1. For example, the classification of two datasets
collected over two different networks constitutes two separate
tasks as the underlying pi(x) differs between the two datasets,
even if the labeling mechanism is the same. Similarly, clas-
sifying a hierarchically labeled dataset at two different levels
of the hierarchy denotes two different tasks, because pi(y|x)
differs between the two classification tasks.

B. Few-shot and Meta-learning

Few-shot learning, the focus of this paper, is typically
categorized under meta-learning [15]. It aims at developing
models that can learn a previously unseen class using only a
few labeled data samples. Few-short learning is a response to
the data intensive nature of deep models, which limits their
applicability in scenarios where labeled data is intrinsically
scarce, e.g., with new emerging classes, rare categories, or
when labeling is cumbersome or expensive.

As with all meta-learning approaches, in few-shot learning,
a learner is created by training a deep model on a set of tasks
with the objective of minimizing the loss on a new task from
the same task distribution. However, few-shot learning differs
from other meta-learning approaches such that the number of
training data points in the target task is small, therefore, the
learner should be trained for fast learning.

Matching Networks (MN) [7], along with Prototypical
Networks [8] and Relation Networks [9], are examples of
episode-based few-shot learners. These models are similar in
using a deep embedding function and training it via episodes.
Prototypical Networks have been employed for few-shot traffic
classification in [16]. However, as most works on traffic
classification, [16] restricts the training and evaluation data
to the same largely non-encrypted dataset [17], which leaves
a realistic estimate of the model’s performance to future work.

Contrastive learners such as Siamese Networks [18], Triplet
Networks [19], and SimCLR [20] are similar to the above few-
shot learners, in that, they also feature a deep encoder archi-
tecture and are metric-based. They train the deep encoder to
differentiate between augmentations of the same data sample
as opposed to different data samples. Contrastive learners have
been applied for few-shot ETC in [19], [21], [22] and differ
from the approach in this paper in that they use unlabeled data
in pretraining.

C. Learning from Few Samples in the Networking Domain

Traffic classification. Rezaei and Liu [23] were the first
to address traffic classification in the presence of few labels.
They suggested a transfer learning approach where the sta-
tistical features of flows were used as labels to pre-train a
convolutional neural network (CNN) model using an unlabeled
dataset. The pre-trained model was then incorporated into
another model and fine-tuned using a few labeled flows. The
authors showed a comparable performance to a random forest
(RF) classifier using 30 flows augmented by different flow
sampling techniques. They extended the same approach to
multi-task learning in [24] and showed that for 10 to 100
labeled samples per class, multi-task learning outperforms a
baseline CNN+recurrent neural network (RNN)-based deep
model as well as their transfer learning approach.

Towhid and Shahriar [22] proposed a self-supervised ap-
proach for traffic classification using time-series features.
Their deep model includes a 1D ResNet architecture as an
encoder. Each flow was sampled multiple times using a
sampling technique proposed in [23] to augment data. The
authors showed that their model is effective when pre-trained
on the QUIC dataset from [11] and fine-tuned on the app-
category dataset from [1] or vice-versa, with the difference in
accuracy being less than 1%. The 1% drop is a substantial
improvement over an accuracy drop of ˜18% reported for a
similar evaluation in [23] between a different pair of datasets.

Both works [22], [23] ignored short flows in their evalua-
tions. The cutoff point for flow length is 100 packets in [23],
while it is 300 packets in [22]. Both cutoff points substantially
reduce the number of flows in the dataset. For example, the
number of labeled flows from the Orange’20 dataset reported
in [1] is 120K, whereas the number of flows considered in
[22] from the same dataset is 3.7K, preserving only 2 out of
8 classes in the dataset.

Transformer-based architecture was employed for both flow-
level and packet-level ETC in [25]. The model is pre-trained
on a large volume of header and payload bytes in the same

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



fashion as a language model, i.e., by masking tokens and
using them as labels. The approach was evaluated on 5 public
and proprietary datasets with stellar results at both flow- and
packet-level classification. The cost of the pre-training, e.g.,
number and capacity of GPUs, was not exposed.

Yang et al [26] explored the detection of zero-day applica-
tions in a large ISP-level commercial-grade dataset with very
fine application classes. They conclude that both existing ML
and DL methods perform well at detecting known applica-
tions, and propose a gradient-based technique that grants DL
methods an advantage at performing unknown classes.

Our approach is distinguished from previous works in that
1) it focuses on ISP-level datasets, 2) keeps the SNI value
masked in training and evaluation data, 3) evaluates the trained
model across datasets, and 4) compares the few-shot model
to a comparable classical model to show the advantages that
each approach presents in practice. We treat an entire real-
world dataset as the evaluation dataset, without filtering out
flows (e.g., larger flows) to fit the requirements of the model.
The closest works in the literature to ours are [2] and [26] as
they both highlight the challenges of classifying traffic under
realistic conditions at the ISP level. [2] does not consider
few-shot models. In contrast with [26], we consider pure
TLS datasets, whereas [26] reports that 55% of flows in their
TCP traffic are encrypted. Furthermore, [26] focuses on fine-
grained application-level classification in the presence of a
large number of classes, while we primarily focus on app-
category level classification across traffic traces.

Website and Mobile fingerprinting. Attacking the onion
router (Tor) network using website fingerprinting (WF) was
explored in a series of previous works [4], [5], [27], [28].
Herrmann et al [27] discovered that an array of packet sizes of
the encrypted traffic can be leveraged to discover the websites
visited by a Tor client using a simple Naı̈ve Bayes classifier.
Other classical ML models (e.g., kNN, support vector machine
(SVM), and RF) were proposed for website fingerprinting in
[29], [30] using the same side channel. Later on, [4] questioned
the practicality of proposed attacks on Tor by investigating
how four suggested attacks in the literature perform when
trained and evaluated on separate datasets. They showed that
the attack accuracy can drop from 62% to as low as 6%
when the classifier is trained and evaluated across different
Tor Browser Bundle (TBB) versions. They also demonstrated
the effect of data drift by showing that the accuracy of a trained
SVM-based classifier drops from around 80% to less than 50%
in under 10 days. Countering this problem requires frequent
retraining. With the goal of lowering the frequency of the
required retraining, Wang and Goldberg [5] studied the effect
of varying training data size on accuracy. They concluded that
a kNN-based classifier can be an effective threat with a true-
positive rate of 0.77.

Sirinam et al. [19] surveyed the assumptions made in
previous works on Tor website fingerprinting attacks. They
proposed a few-shot approach based on Triplet Networks to
address the high bootstrap time of classifiers and to improve
model transferability. They concluded that few-shot learning

EvaluationTraining

Training dataset

Data
Loader

Matching
Networks

Model
Weights

Pre-processor

Trains

x #episodes

pcap 
files Evaluation dataset

Predictions
for

unlabeled
split

Unlabeled Split

Data
Loader

Matching
Networks

x #episodes

Labeled Split

Fig. 1: The evaluated few-shot procedure

can reduce the frequency of retraining for website finger-
printing attacks against Tor. Flowprint [31], a mobile app
fingerprinting approach, was introduced the next year and used
temporal, device and destination-based features, including
device IP addresses to fingerprint seen and unseen apps. The
approach assumes traffic can be traced back to the device
which is the case in client-side networks, but does not apply
at ISP level. The works in this section highlight the difficulty
of creating high-performing cross-dataset models, however,
the use of client-side datasets in WF somewhat changes the
problem context from our use case. For example, the proposed
solution in [31] leverages information unavailable at ISP level.
Therefore, we believe that traffic classification at the ISP level
deserves a separate discussion.

III. METHODOLOGY

A. Matching Networks

We employ the few-shot procedure proposed in MN [7], the
objective of which is to train a learner able to learn a new task
fast, i.e., using a few samples. MN operates at two stages: (i)
a training stage, in which the deep learning core is trained on
data from a large number of tasks, and (ii) an evaluation stage,
where the model uses the trained deep learner to project the
evaluation data points into a latent space, and classifies them
based on their similarity to a few labeled support samples by
means of a nearest neighbor algorithm. The overall few-shot
procedure is depicted in Figure 1.

Both training and evaluation are carried out in episodes,
where an episode is a learning experience, and is equivalent to
one step of training in traditional deep learning. The difference
is that an episode subsamples the training classes as well as the
data, whereas traditionally a batch of data subsamples the data
and not the classes. As a result, in episode-based learning, the
model does not need to be aware of the total number of classes
of data in one episode. The number of classes that appear in
each episode is determined by a constant ways parameter for
the entire training or evaluation stage.

Another distinguishing property of an episode is that it
features query samples as well as support samples. The model
predicts the label of each query sample in each episode.
The loss function value is computed based on a Softmax on

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



the similarities (or distances) of the predicted representation
of each query sample to representations of support samples.
Unlike a traditional classifier, in episode-based learning, the
evaluation stage needs a number of labeled samples to serve
as support samples for the nearest neighbor algorithm. These
constitute the number of shots per class, and their number
is typically small, hence the name few-shot. The number of
training and query samples is equal for all classes and constant
throughout an experiment, resulting in balanced training and
test sets across classes. Therefore, we resort to accuracy, a
reliable performance metric, in our experiments.

B. Embedding Function

Matching Networks (MN) relies on a deep learning core,
called the embedding function, to learn representations of data.
The paper [7] suggests using two embedding functions, the
first of which learns to represent individual data points. The
second, called the Fully Contextual Embedding function (FCE)
learns to represent groups of data, in order to rely both on
individual data points and the context in which they reside.
Throughout this paper, we use the term Embedding function
to refer to the first embedding function, and the term FCE
to refer to the second. While the FCE’s structure remains the
same as in MN’s throughout our experiments, the embedding
function’s architecture is tailored to the input data type.

Our experiments showed that the architectures that are more
successful as traditional classifiers are more effective as the
embedding function. Indeed, CNN-based architectures have
successfully been employed for ETC [1], [6], [11], [32] in
the past. Therefore, for the header bytes input, we employ a
CNN-based embedding function shown in Figure 2a, which
is inspired by the header bytes classifier proposed to classify
a real-life ISP-level dataset in [1]. We name our embedding
function Model U, and call the inspiration the UW Header
classifier. We manually searched through different CNN-based
embedding functions before choosing Model U.

Our search followed a greedy methodology. The search
was not exhaustive as there are too many combinations of
parameter values to search through. Rather, we evaluated the
performance of a pair of architectures with a given set of
parameter values in each step of the search, where only one
parameter value differed between the pair. We chose the best-
performing architecture among the two to proceed to the next
step, where another single parameter of the architecture was
tweaked and evaluated. The tweaked parameters for the header
bytes embedding function are the number of filters in the
CNN block, the number of dense layers, the number of units
in the dense layers, and the number of Simple CNN Blocks
(cf., Figure 2a). In evaluating an architecture, we assess the
performance of an MN model that uses the architecture as its
embedding function on a benchmark evaluation dataset after
training it on a benchmark training dataset. The benchmark
training and evaluation datasets were non-overlapping small
and large selections of the Jul’19 dataset introduced in [1]
(cf., Section III-C).

Dense 
#units=128 
& Dropout 

( x 2 )
Transformer Encoder Stack (x2)

Simple CNN Block 
#filters 

Simple CNN Block 
#filters 

Flatten
Header
bytes 

(3x600) 

Dense 
#units

LSTM Dropout Flatten

Dense 
#units=256

Dense 
#units=

(1024x512)
Softmax

Dense 
#units=128

( x 2 )
( x 3 )

Time
series 

(1024x3) 

Conv 1D 
#filters, filter size is 2 

activation: ReLu  

( x 2 )

Max Pooling 1D 
filter size is 2 Flatten

Simple CNN Block

Simple CNN Block 
#filters = 256 

Simple CNN Block 
#filters = 128 

Flatten
Header
bytes 

(3x600) 

Header
bytes 

(3x600) 

Multi-Head
Attention 
(#heads,  
head size)

Feed
Forward  

(1D CNN x2) 

Add  
& 

 Norm

Add 
 &

Norm

Residual Residual

positional
encoding

Time-
series 
input 

(32x3)

Dense 
#units= 
(32x32) 

(a) Model U: CNN-based embedding function for TLS header bytes

Dense 
#units=128 
& Dropout 

( x 2 )
Transformer Encoder Stack (x2)

Simple CNN Block 
#filters 

Simple CNN Block 
#filters 

Flatten
Header
bytes 

(3x600) 

Dense 
#units

LSTM Dropout Flatten

Dense 
#units=128

Dense 
#units=

(1024x512)
Softmax

Dense 
#units=128

( x 2 )
( x 3 )

Time
series 

(1024x3) 

Conv 1D 
#filters, filter size is 2 

activation: ReLu  

( x 2 )

Max Pooling 1D 
filter size is 2 Flatten

Simple CNN Block

Simple CNN Block 
#filters = 256 

Simple CNN Block 
#filters = 128 

Flatten
Header
bytes 

(3x600) 

Header
bytes 

(3x600) 

Multi-Head
Attention 
(#heads,  
head size)

Feed
Forward  

(1D CNN x2) 

Add  
& 

 Norm

Add 
 &

Norm

Residual Residual

positional
encoding

Time-
series 
input 

(32x3)

Dense 
#units= 
(32x32) 

(b) Model W: Transformer-based embedding function for flow time
series

Fig. 2: Embedding functions

As the embedding function for time series input, we employ
Model W shown in Figure 2b. The architecture of Model W is
borrowed from the Transformer [33], a sequence-to-sequence
model featuring encoder and decoder stacks. Model W only
uses the encoder part, which relies on an attention mechanism
[34], residual connections, normalization, and a Feed Forward
block. The input embedding and positional encoding proposed
in [33] were also used in Model W. We implemented the
input embedding using a dense layer and the Feed Forward
block using 1D Convolution layers. The same search strategy
for assigning values to Model U’s parameters was used to
determine the size and number of heads, encoder stacks, units
in the dense layers, and output dense layers in Model W.

Throughout the experiments (cf., Section IV), traditional
(i.e., non-few-shot) classifier baselines are needed. For the
header bytes input, the UW Header classifier serves as a
baseline as it is an established SoTA classifier and similar in
architecture to Model U, with the exception of the number of
Dense layers at the end. For time-series input, we designed a
traditional classifier by feeding Model W’s output to a Softmax
layer. We name this classifier the UW Transformer.

C. Datasets and Preprocessing

1) Orange datasets: The Orange datasets are a collection
of six datasets extracted from six packet traces collected from
the mobile network of the Orange ISP. Each packet trace was
captured in a one to two-hour session. The IP addresses and
ports were anonymized, and the packets were cut beyond a
certain point by the provider for privacy concerns. This point
was chosen such that it allowed the inclusion of the TLS
headers for the TLS flows but left out the application-layer
payload. Further, we masked the SNI values after using them
for labeling to prevent the models from relying on Canary

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



features. A total of six traces were collected across three years.
Based on their month and year of collection, the traces and
their corresponding datasets are called Jul’19, Sep’20, Apr’21,
May’21, Jun’21, and Oct’21, respectively. The datasets were
pre-processed into 8 app-category classes, including email,
streaming, file download, chat, social, games, search, and
browsing using the preprocessing method described in [1].

2) MLDIT dataset: The Multi-Label Dataset of Internet
Traffic (MLDIT) [35] is a dataset of user digital behaviors
over the Internet. A public sample of the dataset is released
on Kaggle [36] and contains a large number of classes or-
dered according to a hierarchy. The hierarchy includes four
levels from top to bottom, namely; application category, the
specific application or website, browser, and action. The action
includes items such as ImageBrowse and ConnectionWithAc-
count. The leaf level of the hierarchy contains 653 classes. The
public sample of the dataset includes 2 to 5 pcap traces for
each class. Each pcap trace captures the traffic generated by a
specific user action. We use this public sample for experiments
that require a large number of classes.

We preprocessed the MLDIT dataset to extract flow-level
TLS handshake bytes. We broke each packet capture trace into
flows using YAF, and stored each flow within a separate pcap
file. The pcap file for each flow was then read using TShark
and the TCP payload (which includes the TLS header) of the
TLS handshake packets was extracted from each flow. We
filtered out the flows that did not contain a handshake packet
or an SNI value. The latter choice was an attempt to bring the
data distribution as close as possible to the Orange datasets. As
not all classes contain TLS flows that contain an SNI, after
preprocessing, 26,724 samples and 338 classes remained in
the dataset. This is the number of classes that contain at least
11 such TLS flows (i.e., with a handshake packet and an SNI
value), where 11 is the minimum number of labeled samples
needed for our experiment settings, i.e., the support and query
data points needed in training and evaluation.

3) USTC-TFC: USTC-TFC2016 [17] is a network security
dataset comprised of benign and malware traffic traces, each
of which contains 10 classes of traffic. The bulk of the traces
are non-encrypted, but the dataset is used as a benchmark
for evaluating a few-shot traffic classifier in [16]. As such,
we preprocessed this dataset to compare our approach to the
work in [16]. A total number of 540,863 flows were extracted
from the dataset. Most classes in the dataset did not contain
TLS or SSL flows, with Shifu being the only malware class in
which more than 1% of the flows were encrypted. Therefore,
we only extracted the flow time-series data from this dataset.

4) Extracted Features: Our experiments use two sets of
features extracted from the datasets:

TLS header bytes: The raw header bytes in the first three
handshake packets in a TLS flow. If the flow contained at
least one handshake packet, the raw handshake header bytes
were extracted for up to three handshake packets, 600 bytes
per packet. The SNI value was then masked by a fixed-length
string in the raw bytes. The extracted bytes were padded by
zeros, if necessary. If the flow did not contain handshake

packets, as was the case for the J6 datasets because of a
preprocessing choice, the first 600 bytes of the first three
packets in the flow were extracted.

Flow time series: The sequence of packet sizes, packet inter-
arrival times, and packet directions for each flow, i.e., a 32x3
array. We set the cut-off point to 32, as we found in our
preliminary experiments with classical ML models that this
cut-off point leads to a better performance than a larger one,
e.g., 1024. The directions are coded by 1 and -1 for forward
and backward packets, respectively.

TABLE I: Few-shot parameters (support, query and ways)

Section # Training Evaluation
#s #q #w #s #q #w

IV-A 4,8 2 8 4,8 1 8
IV-B 4 2 5 4 1 2-10
IV-C 8 4 8 1-96 1 8

IV. EXPERIMENTS

This section describes the experiments carried out to answer
the questions enlisted in the introduction about a few-shot
learner. The list of few-shot parameters for the experiments
is provided in Table I.

A. Few-shot Model as a Traditional Classifier

The experiments in this section answer the following ques-
tion: How do the unique features of a few-shot learner, such as
a metric-based loss function and the use of support samples
in the evaluation phase, affect its performance compared to
a traditional classifier, all else being equal? To this end,
we evaluated the few-shot model in the same fashion as a
traditional classifier; training it on 80% of each Orange dataset
and evaluating it on the other 20% of the same dataset. MN
was trained in 8-way episodes to keep the setup close to
traditional learning. We performed two versions of the same
experiment, one for each input feature. For raw header bytes,
we use the CNN-based Model U as MN’s embedding function.
We compare the performance of the CNN-based embedding
function to that of the UW Header classifier, a traditional
classifier with the same architecture except for two additional
dense layers. On the other hand, for time-series input, we use
the transformer-based Model W as MN’s embedding function
and compare its performance to that of the UW Tranformer, a
traditional classifier with the same architecture as Figure 2b,
followed by an additional 8-unit dense layer and a Softmax
function, as described in Section III. Figure 3 depicts the
performances of the four models in terms of accuracy on all
Orange datasets.

Figure 3 shows that a traditional classifier consistently out-
performs the few-shot classifier when trained and evaluated on
the same dataset. The inferiority of MN in these experiments
could be the result of incorporating a similarity metric into the
cost function rather than gradually reducing the dimensions
by non-linear dense layers, or it could be the result of the
support samples’ bias in the evaluation phase. Furthermore,

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



Dataset

A
cc

ur
ac

y

0.6
0.7
0.8
0.9
1.0

Jul'19 Sep'20 Apr'21 May'21 Jun'21 Oct'21

MN + CNN encoder Traditional UW Header Classifier

(a)

Dataset

A
cc

ur
ac

y

0.6
0.7
0.8
0.9
1.0

Jul'19 Sep'20 Apr'21 May'21 Jun'21 Oct'21

MN + Transformer encoder Traditional UW Transformer

(b)

Fig. 3: (a) Performance of CNN-based MN on the header bytes
of the Orange datasets compared to that of the UW Header
classifier; (b) Performance of Transformer-based MN on time-
series data from the Orange datasets compared to the UW
Transformer

Figure 3 shows that when trained and evaluated on the same
dataset, MN shows a remarkably better performance using the
Transformer-based embedding function compared to the CNN-
based, on all datasets with the exception of Jul’19, which we
believe to be a special case1. For the rest of the datasets,
the transformer-based MN yields an accuracy between 83%
and 85%, which is remarkably higher than the 72% to 77%
accuracy onserved for Model U in Figure 3a. On a similar note,
the traditional UW Transformer outperforms the traditional
UW Header classifier on all but the Jul’19 dataset, with
performances between 86% to 89% compared to the 79%
to 86% accuracy of the UW Header classifier. We suspect
that header raw bytes may be too noisy in the presence of
encryption, hence the superiority of models relying on time
series data.

B. New Tasks from Same Dataset

The experiments in this section test the following hypoth-
esis: The few-shot model offers an advantage when trained
on diverse tasks, i.e., tasks with different sets of classes, as
opposed to training on similar tasks, i.e., tasks that feature
different data points from the same 8 classes, as was the
case in Section IV-A’s experiments. We leverage the large
number of classes in the MLDIT dataset to create diverse tasks
in these experiments. We carried experiments on raw header
bytes input only, as the flows in the MLDIT dataset were too
short for flow time-series data to be informative, with a median
of 4 packets per flow.

We trained MN with Model U as embedding function
on 338 randomly chosen classes and reserved the remaining
50 classes as unseen for evaluation. This resulted in 21,892
training samples and 4,832 test samples. A small split of data
from the seen classes was reserved for the evaluation of the

1Since the Jul’19 dataset was collected in 2019 we believe the headers
might have been prone to open-text attacks, as our work in [2], [6] explains.

model’s performance on seen classes (depicted in Figure 4)
and the model was trained on the rest. We report the results
for both seen and unseen classes, increasing the difficulty
of the evaluation tasks incrementally from 2-way to 10-way
classification. Figure 4 shows the results of these experiments.

Number of ways in classification

A
cc

ur
ac

y

0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 10

Seen Classes Unseen classes

Fig. 4: Performance of MN on the MLDIT dataset’s header
data input

As evident in Figure 4, MN’s performance when trained
on diverse tasks seems to be similar to its performance on
uniform tasks. The 8-way performance (which is comparable
to the experiments in the previous section in terms of the
number of classes in the task) performs at 72% accuracy,
similar to what we saw for the May’21 dataset in Figure
3a. Furthermore, the performance of MN on unseen classes is
surprisingly close to its performance on seen classes, with the
gap being less than 2% in accuracy for binary classification,
which widens gradually as the number of ways increases and
reaches a maximum 4% in 10-way classification. One reason
for the closeness of the seen vs. unseen performances could
be that the nearest neighbor algorithm is carrying the load of
the performance rather than the CNN-based feature extractor.

Despite being a good fit for few-shot models in terms
of samples to class ratio, to the best of our knowledge the
MLDIT dataset has not yet been used in the few-shot literature
even though it is publicly available. Hence, to provide some
perspective into how our model performs compared to the few-
shot models suggested in the literature, we tested our model
on USTC-TFC [17] the reference dataset in [16]. We switched
to our Transformer-based MN to experiment on USTC-TFC
time-series data as its TLS portion was slim. As a traditional
classifier, our approach obtained 99% accuracy on a binary
benign vs. malware classification task. The work in [16]
reports binary classification results for seen vs. unseen class
experiments where 12 out of the 20 classes in the dataset
are used in training and 8 in evaluation. Their best achieved
accuracy is 96%. The closest point of comparison we can offer
is our 2-way classification results on unseen classes on the
MLDIT which performed at 90% accuracy.

The MLDIT proved a tough dataset to classify when the
SNI values are masked. This was corroborated when the UW
Header classifier obtained an accuracy of 57.7% on MLDIT
for app-category level classification (i.e., a 9-way classification
task). In comparison, on USTC-TFC’s 20-way classification
task, UW Transformer obtains 87% accuracy and as a tradi-
tional classifier, MN obtains 73% accuracy using 8 support
samples per class. This convinced us that MLDIT headers

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



present a harder classification task than USTC-TFC time
series, therefore our few-shot model performs well enough to
be the subject of this investigation.

C. Generalizability

The experiments in this section put the generalizability of
MN to test and answer the following questions. First, given
its use of support samples from the evaluation dataset, is a
few-shot model more apt at generalizing to new datasets than
a traditional model? Second, how many support samples are
required from the evaluation dataset for the few-shot model
to perform optimally? To answer these questions, we train the
few-shot model on the first of the Orange 2021 traces, namely
Apr’21, and evaluate it on the rest of the Orange datasets
as well as Apr’21. Thus, the classes that the model sees in
training and evaluation are similar and the only difference
between the pair of training and evaluation datasets is time
of collection. We chose the Apr’21 dataset as the training
dataset to see the effect of gradually increasing the disparity
of training and evaluation tasks, as the disparity increases by
an increase in the gap between the training and evaluation
datasets’ collection time.

We use the Transformer-based few-shot model in these
experiments, both because it was the more successful few-
shot model in Section IV-A and because time-series data is
arguably preferable to raw handshake bytes for production
use. We trained two versions of the model, one with the FCE
and the other without the FCE, to see whether the FCE helps
the performance. We compare the performance of the few-
shot model on a nearest-neighbor algorithm configured closely
to that of MN’s, i.e., the kNN algorithm considers all the
support set as neighbors and weighs the neighbors based on
the inverse of their Cosine similarity to the query point. The
three channels of the time-series data, i.e., packet sizes, packet
inter-arrival times, and directions, had to be flattened and fed
to the nearest neighbor algorithm as a 96-dimensional vector
because kNN cannot deal with non-vector input.

Figure 5 shows the performances of a few-shot model
trained on the Apr’21 dataset and evaluated on all the 2021
Orange datasets, using 1 to 96 support samples per class. The
dashed line shows the performance of a kNN algorithm, using
the same number of support samples. The points in the figures
show the average of three trials using three different support
sets for each algorithm. Given the similarity of the kNN to
the metric-based classifier in MN, the figure confirms that the
embedding function does contribute to the performance. In-
terestingly, comparing the figures for different datasets shows
that the closer the data distribution in the evaluation dataset
is to the training dataset, the few-shot model relies on fewer
data points to reach its optimal performance. It seems that
the sweet spot for yielding the best performance is between
4 to 8 samples per class for the May’21 and Jun’21 datasets,
but it is between 16-32 samples for the Oct’21 dataset. The
graphs plateau beyond a certain point, both for the few-shot
model and the kNN, which indicates that the support sample
is representative of the entire dataset at that point.

Support Samples per Class

A
cc

ur
ac

y

0.1

0.3

0.5

0.7

0.9

1 5 10 50

with FCE no FCE kNN, flatten_96 UWTransformer

(a) Apr-trained and evaluated on Apr’21

Support Samples per Class

A
cc

ur
ac

y

0.1

0.3

0.5

0.7

0.9

1 5 10 50

with FCE no FCE kNN,flatten_96 UWTransformer

(b) Apr-trained and evaluated on May’21

Support Samples per Class

A
cc

ur
ac

y

0.1

0.3

0.5

0.7

0.9

1 5 10 50

with FCE no FCE kNN,flatten_96 UWTransformer

(c) Apr-trained and evaluated on Jun’21

Support Samples per Class

A
cc

ur
ac

y

0.1

0.3

0.5

0.7

0.9

1 5 10 50

with FCE no FCE kNN,flatten_96 UWTransformer

(d) Apr-trained and evaluated on Oct’21

Fig. 5: Cross-dataset evaluation of the Transformer-based few-
shot model on Orange 2021 datasets

Another interesting takeaway has to do with the traditional
deep learning baseline. We trained the UW Transformer on
the Apr’21 dataset and evaluated it on the rest of the Orange
datasets to find out whether there is a practical advantage
to using a few-shot learner. The performance in terms of
accuracy is shown as a horizontal green line in Figure 5.
Note that the UW Transformer does not use any evaluation
support samples by design. We show the line in the figures to
showcase the number of support samples per class at which
the few-shot model outperforms the traditional deep learner
(if any). While the traditional deep learner outperforms the

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



Support Samples per Class

A
cc

ur
ac

y

0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 5 10 50

with FCE no FCE kNN, flatten_96 UWTransformer

(a) Apr-trained and evaluated on Jul’19

Support Samples per Class

A
cc

ur
ac

y

0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 5 10 50

with FCE no FCE kNN, flatten_96 UWTransformer

(b) Apr-trained and evaluated on Sep’20

Fig. 6: Evaluation of Transformer-based MN on datasets far
from the training dataset

few-shot model when the training and evaluation datasets are
close, its evaluation performance gradually drops lower as the
two datasets diverge in collection time. When evaluated on the
Oct’21 dataset, the performance drop of the UW Transformer
is large enough such that the few-shot model outperforms it
by 5% using 16 labeled samples per class, and by 10% at its
best, as shown in Figure 5d.

To confirm whether the few-shot model is indeed more
generalizable than its traditional deep learning counterpart,
we show the performance of the April-trained few-shot model
on the Jul’19 and the Sep’20 datasets, two datasets collected
22 and 7 months apart from the training dataset, respectively.
Figure 6 shows the results for these datasets, demonstrating
that using 16 support samples or more, the few-shot model
outperforms both the traditional deep learner, and the kNN.

V. DISCUSSION

Our expectation, based on the premise of learning how to
classify rather than a specific classification task advertised by
the few-shot meta-learning literature, was somewhat different
from what we observed in our experiments. We did not see
evidence of the model learning meta-relationships between
classes and instances, rather, our takeaway was that the deep
learning core acts as a feature extractor, i.e., it learns a repre-
sentation of the data based on the features it finds important
in the training data, and the nearest-neighbor classifier guesses
the closest class to each test sample based on the labeled data
sampled from the evaluation dataset and the learned feature
extraction method. Hence, classification largely relies on the
quality of the feature extraction, which is biased by the training
data distribution.

Dataset-specific performance is a known pitfall of deep
learners, which the meta-learning literature tries to mitigate.

MN appears to rely on a simple embedding function and sup-
port samples from the evaluation dataset to mitigate the bias.
The latter seems to be effective to some extent; as we saw in
Section IV-C, MN generalizes better to datasets moderately far
apart from the training dataset than a deep learner. However,
as the training and evaluation distributions diverge, the learned
feature extraction method quickly becomes irrelevant, and
MN’s performance falls below the acceptable threshold for an
effective classifier (cf., Approx. 40% accuracy in Figure 6a).
In fact, when performing experiments similar to Section IV-C
from an MLDIT-trained MN to Orange datasets, we found that
MN performs slightly worse than a 1-NN algorithm using the
same 1800-dimensional header byte input. The learned repre-
sentations from MLDIT were counter-productive when applied
to Orange datasets. Although, from a production standpoint, a
model may not be required to be portable between datasets as
far apart as MLDIT and Orange.

Role of the FCE. We did not highlight the role of the
FCE in this paper, because we found its role highly scenario-
dependent. The experiments in Section IV-C show that the
FCE either does not make a difference or hampers the per-
formance when training and evaluation distributions diverge.
However, in our CNN-based experiments we found that the
FCE helps the performance, although it is better discarded
in the evaluation phase when data distributions diverge. We
attribute the gain in performance to the LSTM-based FCE
capturing sequential data patterns, rather than learning class
contexts which was the inspiration behind its design choice
in [7]. We did not see any evidence of it affecting the
performance in Section IV-B’s seen vs. unseen experiments,
which is where it should have made a meaningful difference
if it learned class-specific patterns. Note that we did not report
the no-FCE results in Section IV-B for the sake of brevity. We
conclude that if the embedding function is capable of capturing
sequential patterns, as is the case for transformer encoders, the
FCE can be safely discarded.

Selection of evaluation support samples. The outcome of
the evaluation stage varies significantly based on the selection
of support samples, especially when support sets are small. For
example, the standard deviation among the three evaluation
trials in Section IV-C is in the range of 1 to 6% for 4-shot
classification but can be as high as 15% for 1-shot classifica-
tion. Resampling the support set for each evaluation episode
could potentially yield a more representative performance of
the model. However, in practice when labeled samples are
few, the same set of labeled samples will have to act as the
support set for the entire classification task. We report the
average performance over three randomly chosen support sets
to simulate the practical constraint, while keeping the reported
performances representative.

VI. CONCLUSION

Based on the state of the art in few-shot learning and
traffic classification, in this work we designed a few-shot
classifier and showed its merit as a traditional classifier in
experiments where training and test data were sampled from

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 



the same distribution, as is typical in the traffic classification
literature. Further, in order to show its performance as a few-
shot classifier, we trained and tested it on the MLDIT dataset,
a dataset that we view as the network traffic equivalent of
Omniglot [37], as it features a few traffic traces per class
for a large variety of traffic classes. Few-shot meta-learning
was originally proposed as a solution to the challenge of
classifying such datasets. We further put the effectiveness
of the deep feature extractor to test, by performing cross-
dataset experiments and comparing the generalizability of the
approach to both a deep learner and a classical kNN.

Our findings put the effectiveness of the premise of au-
tomatic feature extraction in deep learning to question. We
conclude that as far as ETC is concerned, cross-dataset gener-
alizability of the extracted features remains an open research
problem, which has been overlooked so far due to same-
dataset evaluation of proposed models. Given the constraints
of traditional deep learning, we believe reinforcement learning
(RL) or explainable AI (XAI) may offer a solution to the
challenges encountered by few-shot models. RL is believed
to be capable of learning patterns beyond the statistics of
the input datasets, while XAI offers a means to find out the
features a model relies on, thus making it possible to mask
dataset-specific features at the preprocessing stage.

REFERENCES

[1] I. Akbari et al., “A look behind the curtain: traffic classification in an
increasingly encrypted web,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 5, no. 1, pp. 1–26, 2021.

[2] N. Malekghaini et al., “Data drift in dl: Lessons learned from encrypted
traffic classification,” in 2022 IFIP Networking Conference (IFIP Net-
working). IEEE, 2022, pp. 1–9.

[3] F. Bronzino et al., “Inferring streaming video quality from encrypted
traffic: Practical models and deployment experience,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 3, pp. 1–25, 2019.

[4] M. Juarez et al., “A critical evaluation of website fingerprinting attacks,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 263–274.

[5] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting.” Proc. Priv. Enhancing Technol., vol. 2016, no. 4, pp.
21–36, 2016.

[6] N. Malekghaini, E. Akbari et al., “Deep learning for encrypted traffic
classification in the face of data drift: An empirical study,” Computer
Networks, vol. 225, p. 109648, 2023.

[7] O. Vinyals et al., “Matching networks for one shot learning,” Advances
in neural information processing systems, vol. 29, 2016.

[8] J. Snell et al., “Prototypical networks for few-shot learning,” Advances
in neural information processing systems, vol. 30, 2017.

[9] F. Sung et al., “Learning to compare: Relation network for few-shot
learning,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 1199–1208.

[10] G. Aceto et al., “Mobile encrypted traffic classification using deep
learning: Experimental evaluation, lessons learned, and challenges,”
IEEE Transactions on Network and Service Management, vol. 16, no. 2,
pp. 445–458, 2019.

[11] S. Rezaei et al., “Large-scale mobile app identification using deep
learning,” IEEE Access, vol. 8, pp. 348–362, 2019.

[12] N. Malekghaini et al., “AutoML4ETC: Automated neural architecture
search for real-world encrypted traffic classification,” arXiv preprint
arXiv:2308.02182, 2023.

[13] V. F. Taylor et al., “Robust smartphone app identification via encrypted
network traffic analysis,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 1, pp. 63–78, 2017.

[14] C. Finn, “Stanford cs330: Deep multi-task meta learning,” 2022,
accessed on 2023-12-01. [Online]. Available: https://cs330.stanford.edu/

[15] N. Bendre et al., “Learning from few samples: A survey,” arXiv preprint
arXiv:2007.15484, 2020.

[16] J. Guo et al., “Global-aware prototypical network for few-shot encrypted
traffic classification,” in 2022 IFIP Networking Conference (IFIP Net-
working). IEEE, 2022, pp. 1–9.

[17] W. Wang and D. Lu, “USTC-TFC2016,” 2019. [Online]. Available:
https://github.com/yungshenglu/USTC-TFC2016

[18] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2. Lille, 2015.

[19] P. Sirinam et al., “Triplet fingerprinting: More practical and portable
website fingerprinting with n-shot learning,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 1131–1148.

[20] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[21] E. Horowicz et al., “A few shots traffic classification with mini-flowpic
augmentations,” in Proceedings of the 22nd ACM Internet Measurement
Conference, 2022, pp. 647–654.

[22] M. S. Towhid and N. Shahriar, “Encrypted network traffic classification
in sdn using self-supervised learning,” in 2022 IEEE 8th International
Conference on Network Softwarization (NetSoft). IEEE, 2022, pp. 243–
245.

[23] S. Rezaei and X. Liu, “How to achieve high classification accuracy with
just a few labels: A semi-supervised approach using sampled packets,”
arXiv preprint arXiv:1812.09761, 2018.

[24] ——, “Multitask learning for network traffic classification,” in 2020 29th
International Conference on Computer Communications and Networks
(ICCCN). IEEE, 2020, pp. 1–9.

[25] X. Lin et al., “Et-bert: A contextualized datagram representation with
pre-training transformers for encrypted traffic classification,” in Proceed-
ings of the ACM Web Conference 2022, 2022, pp. 633–642.

[26] L. Yang et al., “Deep learning and zero-day traffic classification:
Lessons learned from a commercial-grade dataset,” IEEE Transactions
on Network and Service Management, vol. 18, no. 4, pp. 4103–4118,
2021.

[27] D. Herrmann et al., “Website fingerprinting: attacking popular privacy
enhancing technologies with the multinomial naı̈ve-bayes classifier,” in
Proceedings of the 2009 ACM workshop on Cloud computing security,
2009.

[28] A. Khajehpour et al., “Deep inside tor: Exploring website fingerprinting
attacks on tor traffic in realistic settings,” in 2022 12th International
Conference on Computer and Knowledge Engineering (ICCKE). IEEE,
2022, pp. 148–156.

[29] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in 23rd
USENIX Security Symposium, 2014, pp. 143–157.

[30] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187–1203.

[31] T. Van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in Network and distributed system security symposium (NDSS),
vol. 27, 2020.

[32] T. Shapira and Y. Shavitt, “Flowpic: Encrypted internet traffic classi-
fication is as easy as image recognition,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2019, pp. 680–687.

[33] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[34] D. Bahdanau et al., “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[35] W. Li and G. Quenard, “Towards a multi-label dataset of internet traffic
for digital behavior classification,” in 2021 3rd International Conference
on Computer Communication and the Internet (ICCCI). IEEE, 2021,
pp. 38–46.

[36] W. Li, “Multi-label dataset of internet traffics (mldit),” Dec 2020. [On-
line]. Available: https://www.kaggle.com/datasets/artemis1216/multi-
label-dataset-of-internet-traffics

[37] B. M. Lake et al., “Human-level concept learning through probabilistic
program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:04:48 UTC from IEEE Xplore.  Restrictions apply. 


