
Generalizable GNN-based 5G RAN/MEC Slicing
and Admission Control in Metropolitan Networks

Arash Moayyedi∗, Mahdieh Ahmadi∗, Mohammad A. Salahuddin∗, Raouf Boutaba∗, and Aladdin Saleh†
∗David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

{arash.moayyedi, mahdieh.ahmadi, mohammad.salahuddin, rboutaba}@uwaterloo.ca
†Rogers Communications Inc., Ontario, Canada, {aladdin.saleh@rci.rogers.com}

Abstract—The 5G RAN functions can be virtualized and
distributed across the radio unit (RU), distributed unit (DU), and
centralized unit (CU) to facilitate flexible resource management.
Complemented by multi-access edge computing (MEC), these
components create network slices tailored for applications with
diverse quality of service (QoS) requirements. However, as the
requests for various slices arrive dynamically over time and
the network resources are limited, it is non-trivial for an
infrastructure provider (InP) to optimize its long-term revenue
from real-time admission and embedding of slice requests. Prior
works have leveraged Deep Reinforcement Learning (DRL) to
address this problem, however, these solutions either require
re-training when facing topology changes or do not consider
the slice admission and embedding problems jointly. In this
paper, we use multi-agent DRL and Graph Attention Networks
(GATs) to address these limitations. Specifically, we propose
novel topology-independent admission and slicing agents that are
scalable and generalizable to large and different metropolitan
networks. Results show that the proposed approach converges
faster and achieves up to 35.2% and 20% gain in revenue
compared to heuristics and other DRL-based approaches, re-
spectively. Additionally, we demonstrate that our approach is
generalizable to scenarios and substrate networks previously
unseen during training, as it maintains superior performance
without re-training or re-tuning.

Index Terms—5G RAN, MEC, network slicing, Deep Rein-
forcement Learning, Graph Attention Networks

I. INTRODUCTION

The decomposition of the 5G radio access network (RAN)
plays a key role in the 5G New Radio (NR) architecture.
The RAN protocol stack, i.e., baseband unit (BBU) functions
in 4G, can be split into radio unit (RU), distributed unit
(DU), and central unit (CU), which provides flexibility in
distributing RAN functions to meet latency and bandwidth
requirements of different services. Multi-access edge comput-
ing (MEC) can further facilitate stringent quality of service
(QoS) guarantees by placing application servers close to end-
users. By leveraging Network Function Virtualization (NFV),
the 5G infrastructure provider (InP) can cater to a variety
of MEC-enabled use-cases with variable QoS requirements,
providing end-to-end (E2E) isolated and differentiated net-
works for each application, i.e., network slices. However, to
achieve efficiency and revenue gains from network slicing,
coordinated and dynamic management of the entire 5G system
is imperative, including the RAN, MEC, core, and transport
networks connecting them.

Metropolitan 5G networks usually consist of multi-level

nodes—access, aggregation, and core—interconnected by
mesh-like or multi-ring topologies [1, 2]. Connected to the
cell sites are the access nodes, which are linked to the core
by aggregation nodes. Centralized sites and links offer more
resources, but incur more transport latency and bandwidth as
unprocessed data traverses to the higher-layer sites. From the
InP’s perspective, centralizing RAN and MEC virtual network
functions (VNFs) can increase multiplexing gains (e.g., power
consumption and maintenance [3]), and prevent computing
bottlenecks at the access, provided that the delay constraints
and bandwidth requirements of individual VNFs are met.
Therefore, to ensure the optimal placement of VNFs, technical
and cost-effective trade-offs between throughput, latency, and
centralization must be considered.

MEC is best suited to services requiring very high band-
width and ultra-low latency, such as virtual reality and
mission-critical applications. Requests for these services are
generated dynamically over time by slice tenants, such as ser-
vice providers. Slices consist of RAN (i.e., RU, DU, CU) and
MEC VNFs, along with virtual links (VLs) that connect them,
collectively referred to as Virtual Networks (VNs). However,
the addition of MEC complicates the RAN slicing problem by
imposing the E2E MEC service latency requirements on top of
the latency requirements of individual RAN components. InPs
generate revenue from accepting and accommodating network
slice requests, but not all requests can be met due to resource
limitations in the substrate network. Moreover, the revenue
earned for each request may vary depending on factors such
as the tenant’s subscription and QoS requirements. Therefore,
to maximize the long-term revenue, the InP should: i) perform
admission control (AC) in a way that maximizes the long-term
revenue, ii) place the RAN and MEC VNFs according to their
delay and processing requirements, and iii) route traffic from
the originating cell site to the core, which is the Internet’s
interface to the mobile infrastructure. We refer to the latter
two (i.e., ii and iii) decisions as slicing.

The problem of RAN/MEC slicing has previously been
investigated in an offline manner [4, 5, 6]. Recently, deep
reinforcement learning (DRL) has shown promising perfor-
mance in the RAN slicing [7] and AC problems [8, 9] in an
online, but disjoint setting. Sulaiman et al. [10, 11] designed
a joint AC and RAN slicing solution for a simple multi-tier
network using multi-agent DRL. However, they use multi-layer
perceptron (MLP) models for both slicing and AC which limits

Mahdieh Ahmadi
This paper has been accepted for publication in IEEE/IFIP Network Operations and Management Symposium,
Miami, FL, USA, May 2023. This is an author’s copy. The respective copyrights are with IEEE/IFIP.

scalability and generalizability across different networks. With
MLP architectures, information about the network state, which
includes the topology, and features of all nodes and links, is
passed to the model as a whole. Moreover, the formats of
these feature vectors are defined during model initialization
and training. As a result, with the slightest topological varia-
tion, e.g., node/link failure or network expansion, the model
becomes obsolete and requires re-training. Training a deep
neural network from scratch can be prohibitive, especially in
a highly dynamic environment, or under tight service delay
requirements.

In this work, we integrate multi-agent DRL with Graph
Neural Network (GNN), which provides promising topology-
independent feature extraction capabilities [12]. More specifi-
cally, we use a recent variant of the popular Graph Attention
Networks (GATs) [13], GATv2 [14], which is a spatial-based
GNN model (cf., Section IV-A). Spatial-based methods are
popular for their efficiency, flexibility, and generalizability and
work by propagating node features across edges [12]. In GATs,
an attention mechanism is used that effectively exploits the
structural characteristics of networks by learning how each
node contributes to its neighbours. In addition, different from
all other GNNs, they can take the edge features directly
into account. Utilizing GATv2 and a novel learning model,
we propose a generalizable RAN/MEC slicing DRL agent.
For AC, we employ an MLP with an input that consists of
features of the nodes and edges where VNFs and VLs are
respectively placed, and the slice request information. Such
input is independent of the topology, so the MLP-based AC
agent can operate in presence of changing network conditions.
The main contributions of the paper are:

• The problem of joint AC and MEC/RAN slicing in 5G
metropolitan networks under E2E service delay and resource
constraints is modeled as an integer linear programming
(ILP) problem and proven to be NP-hard.

• A novel solution for the joint online AC and slicing problem
is proposed using multi-agent DRL. For slicing, a gener-
alizable GNN-based DRL agent, and for AC, a topology-
independent MLP is devised, which allows both of them to
operate on arbitrary topologies.

• The proposed approach is evaluated and compared to greedy
and state-of-the-art heuristics, and DRL-based solutions.
Our model outperforms the baselines by up to 35.2% in
the overall revenue gain.

• The robustness and generalization of our slicing and AC
agents are evaluated under varying network conditions. The
agents outperform other heuristic approaches by up to 25.5%
even in previously unseen network topologies.

The paper is organized as follows. Section II reviews
the state of the art. Section III provides background on
RAN slicing and mathematically formulates the joint AC
and MEC/RAN slicing problem. The proposed method is
introduced in Section IV and evaluated in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. RAN Slicing
Yu et al. [15] were the first to investigate the 3-layer RAN

slicing in the context of metro/aggregation networks. They
analyzed the problem of CU/DU placement and routing to
minimize the number of central offices (COs) housing the
functions under delay and capacity constraints. The authors
showed that the increased flexibility of a 3-layer RAN architec-
ture leads to a higher consolidation of COs. Based on the same
architecture, Yu et al. [16] investigated isolation-aware slicing
and proposed a heuristic for minimizing the number of active
COs or wavelengths under isolation and latency constraints.
Marotta et al. [17] addressed the same problem but also took
into account the reliability requirements of different slices. All
of these approaches place VNFs using a heuristic method, and
then use variants of the shortest-path algorithm for routing.
In addition, they work in an offline setting, i.e., an objective
function is optimized over all the requests.

Gao et al. [7] developed a DRL-based method for online
RAN function placement and routing with the objective of
minimizing the number of active COs, bandwidth, and trans-
port latency. However, they did not consider E2E service
latency constraints and slices with finite operation time. The
works in [4, 5, 6] investigated function placement in the
context of MEC-enabled RAN. They modeled the problem of
minimizing the operational cost under delay and capacity con-
straints as an ILP and solved it using Benders Decomposition
[4, 5] and DRL [6]. However, in these methods, the problem
is considered in an offline setting and placement is decided for
each cell instead of each request. The aforementioned works
also do not take AC into consideration. Sulaiman et al. [10, 11]
proposed an online joint RAN slicing and AC solution under
E2E service delay and resource constraints using multi-agent
DRL. They showed that the AC mechanism can lead to higher
revenue by preemptively rejecting low-priority slice requests.
However, their method is not scalable and generalizable to
large and previously unseen substrate networks.
B. Learning using GNN

GNN-based architectures have been employed in network-
ing for applications such as Virtual Network Embedding
(VNE) [18], traffic routing [19], and congestion prediction
[20], to capture the spatial information hidden in the network
topology [18] and benefit from its generalizability to different
topologies [19, 20]. Among these works, the problem of RAN
slicing shares the most similarities with VNE, which is a
resource allocation problem involving mapping a VN onto the
substrate network. Therefore, we discuss these works here. Yan
et al. [18] were the first to apply DRL with GNNs, specifically
Graph Convolutional Network (GCN), to the VNE problem
and showed that it can lead to a higher acceptance ratio. The
DRL agent places the VNFs one-by-one on substrate nodes
with sufficient CPU and bandwidth, and then, the shortest-path
algorithm is utilized for routing between the selected nodes.

Zhang et al. [21] investigated the same problem when
VNs can dynamically change over time. However, GNN-based

Fig. 1: Mapping RU, DU, CU, and MEC functions and FH, MH-I,
MH-II, and BH networks to the split points [24, 25, 26]

DRL is solely used for the initial mapping and a heuristic is
leveraged to remap the VN when a change happens. Esteves
et al. [22] extended the approach in [18] by considering more
resource types for each VNF and using heuristically assisted
DRL for faster convergence. However, the use of spectral-
based GNN models (cf., Section IV-A) and dense layers in the
learning model limit the applicability of these works to static
network topologies. Habibi et al. [23] employed a spatial-
based graph autoencoder to cluster similar substrate nodes
based on their resources and accessibility. However, the final
node and link embeddings across clusters are decided using a
Breadth-First Search (BFS) algorithm which is not efficient.

In contrast to the aforementioned VNE solutions, in this
paper, we use an attention-based GNN, namely GATv2 [14],
combined with DRL for slicing. The use of GATv2 and the
employed learning architecture allows us to operate on unseen
topologies without retraining. Furthermore, we incorporate an
AC mechanism and take the E2E service delay constraint into
account, which is crucial for delay-sensitive applications.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. RAN and MEC Architecture

Fig. 1 shows RAN functions and different split options
proposed by 3GPP [24]. Aligned with 3GPP and ITU-T
recommendation [25], in this paper, we consider options 2 and
7 for higher layer (CU/DU) and lower layer (DU/RU) splits,
respectively, and use the terms midhaul-I (MH-I) and fronthaul
(FH) to refer to the corresponding transport network segments.
In addition, we assume that the CU includes only the user-
plane PDCP function and control-plane functions are placed in
the core network (CN). This configuration is particularly useful
for applications that do not require rapid call establishment but
require a low user-plane delay, e.g., cloud gaming [1]. MEC
can be integrated with the 5G network in various ways [26].
We assume that the MEC includes edge application, as well
as local user-plane functions (UPF) and is connected through
the midhaul-II (MH-II) and backhaul (BH) network to the CU
and CN, respectively. Finally, CN is connected to the Internet.

For each network slice, the individual RU, DU, CU, and
MEC entities are virtualized and placed at different physical
locations according to their latency and resource requirements,
and residual capacity in the substrate network. We assume
RU is placed on the access node connected directly to the
originating cell and CN is placed on the core node, which has
abundant capacity, and therefore, we only decide the placement
of DU, CU, and MEC, and routing from the access site to the
core node. The specifications of MEC depend on the type of
service, but we use the following formulations to calculate
the computation (ccpu

DU and ccpu
CU in Giga Operations Per Second

(GOPS)) and bandwidth (λl in Mbps) requirements of RAN

Fig. 2: Virtual network model of service s

components and their interconnecting transport segments, re-
spectively.

ccpu
DU = kDU

1 BA2L+ kDU
2 BALM + kDU

3 A, (1)

ccpu
CU = kCU

1 A, (2)

λl = kl1λ
new + kl2, ∀l ∈ {FH,MH-I,MH-II,BH}, (3)

where k parameters in (3) and (1)-(2) are constant coefficients
specific to different RAN functions whose details can be found
in [27, 28] and [29], respectively. λnew, B, A, L, and M
represent the service traffic, carrier bandwidth, number of
antennas, traffic load, and modulation (in bits per symbol).
While MH-I (i.e., λMH-I) and MH-II (i.e., λMH-II) bandwidth
requirements for each slice request are almost equal to λnew,
FH interface (i.e., λFH) requires considerably higher band-
width. The bandwidth requirement at the BH network (i.e.,
λBH) depends on the amount of Internet traffic of each type of
service. Moreover, each RAN component has a specific delay
requirement. From the RAN perspective, for DU, depending
on the specific vendor implementation of the HARQ loop, it
can be up to 2 ms for the case where interleaving is done, and
for CU, it could be up to 6 ms [28]. However, since DU and
CU are before MEC in the user-plane, their delay requirements
depend on both the respective RAN component and the E2E
service latency, i.e., the minimum value should be considered.

B. System Model

Substrate network: We consider a network architecture
consisting of N access and aggregation sites equipped with
dedicated processing capabilities. Access nodes can be con-
nected to one or multiple cell sites. We also have a core1

node with abundant resources which can host the CN. These
nodes are connected through an undirected graph G = (V, E),
where V is the union of N and core node (index 0), and E is
the set of all physical links. We denote by Ccpu

v and C ram
v the

maximum computing and RAM resource capacities of each
node v ∈ V , respectively. Also, each link e ∈ E has a certain
bandwidth capacity, Be, and delay, de.

Services: We consider a set of S services, i.e., MEC
applications. Throughput and E2E service delay constitute
QoS metrics, and are denoted by λnew

s and Dsrv
s , respectively.

RAN and MEC form a VN consisting of a chain of five
VNFs, F = {f0, · · · , f4}, namely, RU, DU, CU, MEC, and
CN, and four VLs L = {l1, · · · , l4}, namely, FH, MH-I,
MH-II, and BH (cf., Fig. 2). For service s, we can denote
the computing and memory resource requirements of VNF f ,
and bandwidth requirement on VL l by ccpu

s,f , cram
s,f , and λs,l,

respectively. The CPU and bandwidth requirements can be
calculated according to equations (1)-(3) for RAN VNFs. We
assume that RAM requirements follow the same pattern as

1The formulation can trivially be extended to networks with more than one
core node.

computation requirements for RAN VNFs. For MEC, these
requirements depend on the computational complexity of the
specific application. The delay requirement of VNF f is also
shown by Ds,f , which for MEC is equal to Dsrv

s .
Slice requests (SRs): Requests arrive for different services

over time. We characterize each generic SR k by its service
type, the access node on which this request was first submitted,
nsrc
k , offered revenue, pk, and the set of time slots it needs to

receive service (i.e., operation time), Tk = {tarv
k , · · · , tarv

k +
τk − 1}. We analyze the system over period T and denote the
set of all SRs for service s and for all the services that arrive
over this period by Ks and K, respectively.

C. Problem Formulation

Given the knowledge of future SRs, the offline RAN slicing
and AC problem should decide about the admission of each
SR and the embedding of its corresponding VN.

Decision variables: Let α = [αk]k∈K denote admission
matrix, where αk ∈ {0, 1} denote whether SR k is admitted
(αk = 1) or not (αk = 0). VNF embedding decisions are
defined by the matrix X = [xk

f,v]r∈R,f∈F,v∈V , where xk
f,v ∈

{0, 1} indicate whether VNF f of SR k has been placed on
physical node v (xk

f,v = 1) or not (xk
f,v = 0). In this work, we

consider single-path routing, i.e., each VL is mapped to one
physical path. Let q ∈ Q denote a simple path in the physical
network. A path is a sequence of links between two nodes
src(q), dst(q) ∈ V . We assume ∅ ∈ Q for which src(q) =
dst(q), to consider co-location of VNFs. So, we define matrix
Y = [ykl,q]k∈K,l∈L,q∈Q to describe VL embedding decisions,
where ykl,q ∈ {0, 1} indicates whether the traffic of VL l in
SR k has passed through q (ykl,q = 1) or not (ykl,q = 0).

Admission and embedding constraint: If SR k is admitted,
it will remain in the system throughout its operation time,
t ∈ Tk, and the corresponding VN should be embedded into
the substrate network. The following constraint ensures the
embedding of each VNF and VL of an SR on one physical
node and one physical path, respectively, if and only if it is
admitted:

αk =
∑

v∈Vk,f

xk
f,v =

∑
q∈Q

ykl,q, ∀k, f, (4)

where Vk,f ⊆ V includes the physical nodes on which VNF f
of SR k can be placed. As discussed, the placement is decided
for DU, CU, and MEC for which Vk,1 = Vk,2 = Vk,3 = V,∀k.
However, for the sake of formulation, we also define VNF
embedding variables for CN and RU and set Vk,4 = {0} and
Vk,0 = {nsrc

k } to impose the placement of CN and RU on the
core node and originating access site, respectively.

Routing constraints: The problem of selecting paths for
embedding each VL can be framed as the well-known unsplit-
table multi-commodity flow problem [30]. Therefore, routing
variables specified by VL embedding matrix, Y, should meet
the below flow conservation constraint, where src(l), dst(l) ∈
F are source and destination VNFs of VL l:∑

q∈Q:
src(q)=v

ykl,q−
∑
q∈Q:

dst(q)=v

ykl,q = xk
src(l),v−xk

dst(l),v, ∀k, v, l. (5)

Capacity constraints: The assigned resources to VNFs and
VLs should not exceed the capacity of nodes and links in the
substrate network. These constraints are expressed by∑

s∈S

∑
k∈Ks
:t∈Tk

∑
f∈F

ccpu
s,fx

k
f,v ≤ Ccpu

v , ∀v, t ∈ T , (6)

∑
s∈S

∑
k∈Ks
:t∈Tk

∑
f∈F

cram
s,fx

k
f,v ≤ C ram

v , ∀v, t ∈ T , (7)

∑
s∈S

∑
k∈Ks
:t∈Tk

∑
l∈L

∑
q∈Q
:e∈q

λs,ly
k
l,q ≤ Be, ∀e, t ∈ T . (8)

In the above expressions, the total used resources at time t
are computed as the sum of resource requirements of active
embedded SRs at that time, i.e., each SR k for which t ∈ Tk.

Delay constraints: Finally, E2E service delay and individ-
ual VNF latency constraints for each SR are expressed by∑

l∈L:
l≤f

∑
q∈Q

ykl,q
∑
e∈q

de ≤ Ds,f , ∀s, k ∈ Ks, 1 ≤ f ≤ 3. (9)

Objective: The goal of the InP is to grant SRs that lead to
the highest long-term revenue. We can formulate the problem
of RAN slicing and AC while optimizing the revenue of InP
over all the requests (or period T) as

max
α,X,Y

∑
k∈K

pkτkαk subject to (4) − (9).

The above problem is NP-hard [31] and the information about
SRs is not known in advance. To address this, we propose
using a DRL-based approach to tackle the problem in an online
setting, without requiring prior knowledge of SRs.

IV. GNN-BASED MULTI-AGENT DRL FRAMEWORK

The online scenario requires that SRs be handled one-by-
one as they arrive, such that the long-term revenue of InP
is maximized. When a request arrives, the online DRL-based
solution should decide on its admission and VN embedding
based on the current network state. To maximize InP revenue,
the agent should be rewarded for successful embeddings and
revenue generation. However, such reward design may lead
to unintended behaviour, as it is not clear whether the lost
revenues are a consequence of suboptimal previous admission
or embedding actions. To tackle this issue, similar to [10, 11],
we use two agents, slicing and AC, in a coordinated manner.
In our proposed solution, called GNN-AC-SL, first the slicing
agent optimizes the embedding based on the SR’s specifica-
tions and network state to maximize the number of embedded
requests. Note that to reduce action space for the slicing agent,
we decompose VN embedding into a sequence of four VNF
embeddings. The AC agent then decides whether to accept
the SR based on the embedding decision, the system state, and
the SR’s information, so that long-term revenue is maximized.
This section will provide a background on GNNs, followed by
a detailed explanation of the two DRL-based agents.

A. Graph Neural Networks

GNNs are neural models designed to operate directly on
graph-structured data and have numerous variants. The main
goal of a GNN is to learn a low-dimensional vector repre-
sentation for each node hv , which can be used for different
learning tasks. ConvGNNs are a popular variant of GNNs
that extend the convolutional operator to graphs and have
two categories: spectral-based and spatial-based [12]. The first
category performs graph convolutional operation on the entire
graph at once in the Fourier domain and thus suffers from poor
scalability and generalizability. Spatial-based GNNs address
these limitations by implementing graph convolutions using
message-passing between the neighboring nodes of the graph.
At each layer, first input graph nodes’ features/representations{
hv ∈ RF | v ∈ V

}
are aggregated with those of their neigh-

bours. The combined representations are then passed through
a transformation function g (e.g., a dense layer and a non-
linearity) to output new representations

{
h′
v ∈ RF ′ | v ∈ V

}
.

Specifically, for each node, we perform

h′
v = g (hv, AGGREGATE ({hu |u ∈ Nv})) , (10)

where Nv is the set of neighbours of node v and AGGREGATE

can be any permutation invariant function, e.g., mean. The se-
lection of g and AGGREGATE in the update process contributes
the most variance among different spatial-based models [14].

Many GNN models assume the contributions of the neigh-
bouring nodes on the central node’s representation are either
identical or pre-determined (e.g., [23]) in the aggregation
process. In GAT [13], however, a learned attention layer is
used to output a representation based on the weighted average
of neighbours’ representations. In addition, this method allows
us to consider edge features huv ∈ RFe by including them
in the input of the attention layer. In this paper, we use
GATv2 which has a simple adjustment to the way attention
is calculated in GAT and has been shown to be theoretically
and empirically superior [14]. The attention mechanism which
is defined by scoring function e : RF × RF ′ → R in this
method calculates the relative importance of the features of
the neighbor u to the node v as

GATv2 : e(hv, hu) = a⊤LeakyReLU (W . [hv∥hu∥hvu]) , (11)

where a and W are learned and ∥ is the concatenation
operator. Using the Softmax function, attention scores are then
normalized across all neighbours and used to calculate a new
representation for each node, by a weighted average followed
by a non-linearity (σ):

h′
v = σ

(∑
u∈Nv

softmaxNv (e(hv, hu)) .Whu

)
. (12)

Note that once the parameters of the attention mechanism and
linear transformation, i.e., a and W , are learned, there is no
need for re-training with each topological variation and only
(11) and (12) should be recalculated for affected nodes.

FC
|st|×128

FC
Fsl×128

GATv2
32×(32x3)

GATv2
(32x3)×(32x3)

EnvironmentXsl, Xsl,e

FC
128x128

FC
128x128

FC
128x1

Vs

Actor

Critic

FC
128x32

GATv2
(32x3)x1

Softmax
at

Flatten

Fig. 3: Slicing agent model architecture

B. RL Environment
State (st): For the slicing agent, we represent the state of

the whole system as a graph, st = (V, E), with node and edge
attributes. Since VNFs will be placed one-by-one, the current
VNF should also be considered in the state of the system. We
define the node features by Xsl = [Xsl

v]v∈V , where Xsl
v ∈ RF sl

is the feature vector of node v and consists of its maximum and
remaining CPU and RAM, its level in the substrate network
(i.e., access, aggregate or core), and the delay and remaining
bandwidth from the last placed VNF.
Xsl

v also includes features of the current SR and its VNFs,
namely the operation time, the index and the delay budget of
the current VNF, and the required CPU and RAM by the last
and current VNFs. Similarly, the matrix Xsl,e = [Xsl,e

vu](v,u)∈E
represents the edge features, where Xsl,e

vu ∈ RF sl,e
includes the

maximum and remaining bandwidth capacity, and link delay
for the edge between nodes v and u.

Different from the slicing agent, the AC agent only con-
siders the hosting nodes and edges of the substrate network
based on the given embedding decided by the slicing agent.
The input feature of the AC agent is an F ac-dimensional vector
Xac ∈ RF ac

which includes the hosting nodes’ maximum and
remaining CPU and RAM, level in the substrate network, and
the requested CPU and RAM by the embedding along with
embedding’s sum of requested bandwidth across the substrate
network, and the SR’s operation time and revenue.

Action (at): AC agent’s action space is equal to Aac =
{0, 1}, corresponding to SR rejection and admission. For each
SR, we embed four VNFs in a sequence and VL associated
with each VNF is embedded using a shortest-path algorithm.
Thus, for the slicing agent, the set of all possible actions is
limited to the number of substrate nodes, i.e., Asl = V .

Reward (rt): A total reward of +1 is given to the slicing
agent for the successful embedding of all four RAN functions,
and partial embedding is not rewarded for the agent to learn
how to embed the requests in their complete form. Using this
system, a rewarding decision includes up to four steps until
an SR embedding succeeds or fails. Likewise, the AC agent
receives +1 reward for admission of each SR.
C. Training Algorithm

We train both AC and slicing agents together as a multi-
agent RL scenario and utilize the Proximal Policy Opti-
mization (PPO) algorithm [32], which is one of the leading
policy-gradient DRL methods. This method has an actor-critic
architecture, wherein, the actor generates the probabilities of

Algorithm 1: Slicing and Admission Control
Input: action at, current agent δcurr
Output: next state st+1, reward rt, next agent δnext

1 rt ← 0
2 if δcurr ==“Slicing” then
3 if checkActionFeasibility(at) then
4 embedding.add(at)
5 if len(embedding) == 4 then // SR embedding is complete
6 rt ← 1
7 δnext ←“Admission Control”
8 else
9 moveToNextVNF()

10 δnext ← “Slicing”

11 else
12 moveToNextSliceRequest() // infeasible SR
13 embedding ← ∅
14 δnext ←“Slicing”

15 else if δcurr ==“Admission Control” then
16 if at == 1 then // SR is admitted for deployment
17 deploy(embedding)
18 rt ← revenue

19 δnext ←“Slicing”, go to Line 12

20 st+1 ← readState()
21 return st+1, rt, δnext

selecting different actions in any given state with a neural
network (NN) parameterized by θ, i.e., πθ(a|st), and the
critic estimates the expected reward of starting in any state
st with a NN parameterized by ϕ, i.e., vϕ(st). At each
training iteration k, first the set of trajectories Dk = {mi},
where mi = {s0, a0, r0, · · · , sT , aT , rT } are collected for
both agents by running action at sampled from policy πθk at
state st and receiving reward rt and next state st+1 according
to Alg. 1. In this algorithm, the environment stores the actions
until the SR’s embedding is complete or the last action violates
a constraint. Then, the parameters of the actor and critic
networks are updated as

θk+1 = argmax
θ

1

|Dk|T
∑

m∈Dk

T∑
t=0

min(
rt(θ)Â

πθk (st, at), clip(ϵ, rt(θ))Â
πθk (st, at)

)
, (13)

ϕk+1 = argmin
ϕ

1

|Dk|T
∑

m∈Dk

T∑
t=0

(
vϕ(st)− R̂t

)2
, (14)

where rt(θ) = πθ(at|st)
πθk

(at|st) , R̂t is the discounted cumulative

reward, and Ât is the generalized advantage estimate [33].

The NN architecture of actor and critic modules for the
slicing agent is shown in Fig. 3. First, the node-wise input
is passed through two fully connected (FC) layers to create
embeddings used by the GNN layers. Although these layers
are FC, they operate on a per-node basis, meaning network
information is fed to them as a batch of single-node feature
vectors, Xsl

v , which has a constant size F sl. Such design is
compatible with the dynamicity of our model. Next, three
GATv2 layers are used, each with three attention heads of size
32. Finally, the model outputs a single value per node, and
a Softmax function is used to determine the node-selection
probability distribution. Due to the simpler objective of the

TABLE I: MEC applications with characteristics [34]
Application λnew

(Mbps)
MEC CPU

(GOPS)
MEC RAM

(GiB)
MEC

Latency (ms)
Backhaul

Traffic (Mbps) Revenue

Remote Surgery (RS) 20 200 10 1 10 N (80, 5)
Cloud Gaming (CG) 100 1500 30 5 30 N (80, 10)
Virtual Reality (VR) 100 2000 60 10 30 N (100, 10)
Video Streaming (VS) 200 150 10 200 60 N (70, 10)

Aggr. Node

Access Node

Core Node

Tier 2 Link

Tier 1 Link

Fig. 4: Baseline metropolitan 5G network used for training

Fig. 5: Episode revenue during training

critic model and the fact that it is only used during the training
phase in which the topology is fixed, we use an MLP model
for it which has a faster convergence time. The model is fed
with the flattened |st|-dimensional representation of the state
st that is stripped of some repetitive features. In the same vein,
as explained in Section IV-B, since the input dimensions of
the AC agent remain static regardless of the substrate network
size and it has a small action space of size 2, we opt for a
less complex MLP-based architecture for the AC agent which
consists of four fully connected layers.

V. PERFORMANCE EVALUATION

Simulation setup: We consider four delay-sensitive MEC
applications shown in Table I with corresponding required
throughput, MEC delay, CPU and RAM usage of MEC
VNF, and backhaul traffic [34]. Parameters of other VNFs
and VLs in the VN are derived as discussed in Section III
with RU configuration of 20MHz, 4x4 MIMO, and 64QAM.
A simulation is run for 2000 time units with random SRs
arriving heterogeneously at different access nodes with a total
rate of 1 SR per time unit. Each SR has an operation time
following N (300, 25) and is uniformly assigned to a MEC
application and to a priority class (i.e., high-priority (HP) or
low-priority (LP)). A HP SR offers twice the revenue of a
LP SR. We train our agents on the topology shown in Fig. 4,
which comprises 10 access nodes, 2 aggregation nodes, and
1 core node. CPU capacities are equal to 4000, 6000, and
12000 GOPS, and RAM capacities are 100, 150, and 300 GB,
for access, aggregation, and core nodes, respectively. Links
connecting access nodes to each other and to aggregation
nodes are Tier 1 links (cf., Fig. 4) and have a capacity of
2 Gbps and a transmission delay of 1.8 ms. Other links are
called Tier 2 links and have a capacity of 3 Gbps and a delay
of 4.8 ms [1]. The same network and SR parameters were used

(a) InP revenue with improvement relative to Cen-
tralized

(b) Node CPU utilization. Note that there is only
one core node.

(c) Link utilization

Fig. 6: Evaluation results on the baseline training network

Fig. 7: VNF placement of different methods for each slice type, i.e.,
MEC application.

TABLE II: GNN-AC-SL training hyper-parameters
Parameter AC Slicing

PPO clipping 0.05 0.2
entropy coefficient 0.1 0.0001
gamma 1 0.99

lambda, learning rate, gradient clipping 1, 1e-05, 10
SGD iters, batch size 50, 372000

during training. The training was done on an NVIDIA A100
GPU and took 139 hours. The final results were obtained using
the hyperparameters shown in Table II.

Baselines: The following heuristic and DRL-based methods
are implemented for comparison. DRL-AC and MLP-AC-SL
are the only baselines with an intelligent AC module. Others
greedily admit all feasible SRs.
• Centralized: a heuristic that places VNFs as close to the core

node as allowed by delay and capacity constraints.
• Node-Ranking (NR): a heuristic for isolation-aware RAN

slicing with delay constraint. We consider the scenario of
the highest isolation level in [16], with the objective of
minimizing active sites.

• DRL-AC: slicing is performed using Centralized algorithm,
while the admission is decided by the DRL-based AC agent.

• [MLP/GNN]-SL: in these two approaches, slicing is managed
by a DRL agent based on MLP/GNN architecture.

• MLP-AC-SL: multi-agent DRL-based method that uses MLP
architecture for both agents similar to [10, 11].

A. Results
1) Training

Fig. 5 shows the training performance in terms of the
total revenue achieved per episode. Since GNNs are opti-
mized for graph data, GNN-AC-SL and GNN-SL have faster
convergence and higher performance compared to their MLP-

based counterparts. Moreover, DRL-AC converges the fastest
due to small action space, albeit to a local optimum, as the
slicing performance of the Centralized approach prevents it
from reaching its full potential. However, once the intelligent
AC and slicing agents are combined, they can operate in
harmony and reach their maximum capacity.

2) Evaluation

Once the training ends, the best-performing model check-
point is restored to perform evaluations. For evaluation, the
exploration is disabled, changing the action selection policy
from stochastic sampling to deterministic, thereby improving
the revenue margins slightly. Fig. 6a shows the total revenue,
the portion achieved by granting HP and LP SRs, and the
percentage improvement of all approaches compared to the
Centralized baseline. The Centralized approach performs the
worst because it greedily places near the core, leading to
bandwidth bottlenecks, especially with high-throughput SRs.
Next, NR performs relatively similarly because ranking works
on a feature weighting basis that requires manual fine-tuning
based on SR type and substrate network.

The heuristic approaches are followed by DRL-based meth-
ods. Although DRL-AC takes advantage of an intelligent AC,
it is stuck on a local optimum, deploying only HP SRs.
This is due to the inability of the Centralized approach to
avoid bottlenecks and accommodate more SRs. With fewer
overall SR embeddings offered to the AC agent, it chooses
to skip LP SRs completely. Next, we have the two slicing-
only approaches that follow the same pattern as observed in
Fig. 5, followed by the two joint slicing and AC solutions.
As GNN-SL is shown to be a more efficient slicing solution
compared to MLP-SL, the AC agent in GNN-AC-SL is also
able to admit more HP SRs in the network without creating
bottlenecks. Such advantage makes GNN-AC-SL the highest
achieving approach in terms of the overall gained revenue.

Figures 6b and 6c show the distribution of links and
nodes utilization across the substrate network. The Centralized
approach has the highest utilization of higher-tier nodes, but
it falls behind DRL-based slicing algorithms when it comes
to access nodes. Centralized and consequently DRL-AC have
the highest variation of utilization across access nodes. Fur-
thermore, GNN-based solutions have a higher utilization of
higher-tier nodes compared to MLP-based methods without
causing link bottlenecks. Finally, the addition of the AC

(a) Revenue vs. proportion of HP SRs (b) Revenue vs. SR arrival rate (c) Revenue under different topologies
Fig. 8: Robustness and generalizability analysis

Core

Agg.

Agg.

Agg.

(a) Synthetic Topology

Core

Core

Agg. Agg.

Agg.

Agg.

Agg.

Agg.

(b) Milan Topology
Fig. 9: New studied topologies: (a) synthetic network with 31 nodes
and 54 links, and (b) Telecom Italia metro-regional network with 52
nodes and 101 links [35].

module generally lowers the utilization to make room for
potential HP SRs.

Fig. 7 shows an in-depth look at slicing decisions of each
method for all SR types, i.e., MEC applications. VS and RS
SRs are deployed more than VR and CG in all approaches,
as they are less demanding in terms of processing capacity.
RS SRs have a restricted delay tolerance which limits their
placement to their originating access nodes. On the other
hand, VS SRs have the most utilization of the core node
due to their relaxed delay requirements. Compared to MLP-
based approaches, GNN-based methods aim at increasing the
deployment of higher-paying CG and VR SRs at the cost of
less SRs of type RS and VS. In this regard, DRL-AC rejects too
many VS SRs when compared to MLP-AC-SL and GNN-AC-SL,
as only HP SRs are profitable, given the slicing efficiency.

3) Robustness and Generalizability Analysis

In this section, we evaluate the robustness and generaliz-
ability of trained agents by deviating the simulation conditions
from the training scenario. Fig. 8a plots the impact of changing
the proportion of HP SRs (from 0.5 used for training) on
the total InP revenue. The revenue of slicing-only approaches
increase linearly with the proportion of the HP SRs since
they are imperceptive to SRs’ revenue. In addition, as the
proportion of HP SRs approaches 0 or 1, the AC effect
diminishes and GNN-AC-SL, MLP-AC-SL, and DRL-AC perform
similarly to their slicing-only counterparts. Lastly, with few
HP SRs, the difference between MLP-AC-SL and GNN-AC-SL
which is due to better slicing performance is more prominent.

Fig. 8b compares algorithms under different network loads
resulting from changing SR arrival rate. GNN-AC-SL consis-
tently outperforms the other approaches. Moreover, as the
arrival rate decreases, the performance of the MLP-based
methods deteriorates significantly. This supports the fact that
MLP models can over-fit to the input and are less generalizable
in graph applications, when compared to GNNs, to the extent

that with an arrival rate of 0.2 SRs/timestep GNN-AC-SL
outperforms MLP-AC-SL by 24%.

Finally, to showcase the generalizability of our proposed
model on different topologies, we evaluate it on unseen sub-
strate networks, without re-training or re-purposing the model.
We consider a moderate-size 31-node synthetic network, and
the 52-node real Milan network [35] shown in Fig. 9, which
are 2.5× and 4× the size of the training network, respectively,
and have similar resource capacities and delays. Fig. 8c
only plots the performance of the heuristic and GNN-based
approaches because previously trained MLP-based methods
cannot operate when the network changes due to their fixed
input size. The Centralized approach is set as the baseline
for revenue normalization with total revenues of 73016 and
172006 in the Synthetic and Milan topologies, respectively.
GNN-AC-SL outperforms the heuristic baseline by 25.5% and
25.1% in the synthetic and Milan topologies, respectively.
However, with larger networks, there are less bottlenecks and
the impact of the AC approach is less notable, resulting in
lower percentage of improvements compared to the Centralized
baseline. Overall, these results demonstrate that while trained
on a small-scale network, our proposed GNN-AC-SL solution
scales well to larger real-world metropolitan networks.

VI. CONCLUSIONS

In this work, we addressed the problem of joint RAN/MEC
slicing and AC in dynamic metropolitan 5G networks using
DRL. Conventional DRL approaches in this area are based on
fully connected NN designs that are bound to the input/output
data dimensions. Where these models fail to operate on
different topologies, our GNN-based solution can effectively
scale to large previously-unseen networks without the need
for re-training. The results showed that our proposed solution
converges faster than the MLP-based methods and achieves
as much as 35.2% and 25.5% higher overall revenue, when
compared to heuristic baselines, on the training and unseen
networks, respectively. In the future, we plan to investigate
the effect of training on random topologies and scenarios on
generalizability, and the use of attention scores generated by
the GAT model for identifying network bottlenecks.

ACKNOWLEDGMENT

This work was supported in part by Rogers Communications
Canada Inc. and in part by a Mitacs Accelerate Grant.

REFERENCES

[1] “NGMN overview on 5G RAN functional decomposition,”
NGMN Alliance, Final Deliverable, version 1.0, February 2018.

[2] “Characteristics of transport networks to support IMT-
2020/5G,” ITU-T G.8300, 2020.

[3] M. Shehata, A. Elbanna, F. Musumeci, and M. Tornatore,
“Multiplexing gain and processing savings of 5G radio-access-
network functional splits,” IEEE Transactions on Green Com-
munications and Networking, vol. 2, no. 4, pp. 982–991, 2018.

[4] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosi-
fidis, “FluidRAN: Optimized vRAN/MEC orchestration,” in
IEEE Conference on Computer Communications (ICC), 2018,
pp. 2366–2374.

[5] A. Garcia-Saavedra, G. Iosifidis, X. Costa-Perez, and D. J.
Leith, “Joint optimization of edge computing architectures and
radio access networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 11, pp. 2433–2443, 2018.

[6] F. W. Murti, S. Ali, and M. Latva-aho, “Deep reinforcement
based optimization of function splitting in virtualized radio
access networks,” in IEEE International Conference on Com-
munications Workshops (ICC Workshops), 2021.

[7] Z. Gao, S. Yan, J. Zhang, B. Han, Y. Wang, Y. Xiao, D. Sime-
onidou, and Y. Ji, “Deep reinforcement learning-based policy
for baseband function placement and routing of RAN in 5G
and beyond,” Journal of Lightwave Technology, vol. 40, no. 2,
pp. 470–480, 2021.

[8] V. Sciancalepore, L. Zanzi, X. Costa-Perez, and A. Capone,
“ONETS: online network slice broker from theory to practice,”
IEEE Transactions on Wireless Communications, vol. 21, no. 1,
pp. 121–134, 2021.

[9] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and
E. Dutkiewicz, “Optimal and fast real-time resource slicing with
deep dueling neural networks,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 6, pp. 1455–1470, 2019.

[10] M. Sulaiman, A. Moayyedi, M. A. Salahuddin, R. Boutaba, and
A. Saleh, “Multi-agent deep reinforcement learning for slicing
and admission control in 5G C-RAN,” in IEEE/IFIP Network
Operations and Management Symposium (NOMS), 2022, pp.
1–9.

[11] M. Sulaiman, A. Moayyedi, M. Ahmadi, M. A. Salahuddin,
R. Boutaba, and A. Saleh, “Coordinated slicing and admission
control using multi-agent deep reinforcement learning,” IEEE
Transactions on Network and Service Management, 2022, doi:
10.1109/TNSM.2022.3222589.

[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y.
Philip, “A comprehensive survey on graph neural networks,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 1, pp. 4–24, 2020.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[14] S. Brody, U. Alon, and E. Yahav, “How attentive are graph
attention networks?” arXiv preprint arXiv:2105.14491, 2021.

[15] H. Yu, F. Musumeci, J. Zhang, Y. Xiao, M. Tornatore, and
Y. Ji, “DU/CU placement for C-RAN over optical metro-
aggregation networks,” in International IFIP Conference on
Optical Network Design and Modeling (ONDM). Springer,
2019, pp. 82–93.

[16] H. Yu, F. Musumeci, J. Zhang, M. Tornatore, and Y. Ji,
“Isolation-aware 5G RAN slice mapping over WDM metro-
aggregation networks,” Journal of Lightwave Technology,
vol. 38, no. 6, pp. 1125–1137, 2020.

[17] A. Marotta, D. Cassioli, M. Tornatore, Y. Hirota, Y. Awaji, and
B. Mukherjee, “Multilayer protection-at-lightpath for reliable
slicing with isolation in optical metro-aggregation networks,”
Journal of Optical Communications and Networking, vol. 14,

no. 4, pp. 289–302, 2022.
[18] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual

network embedding: A deep reinforcement learning approach
with graph convolutional networks,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 6, pp. 1040–1057, 2020.

[19] P. Almasan, J. Suárez-Varela, A. Badia-Sampera, K. Rusek,
P. Barlet-Ros, and A. Cabellos-Aparicio, “Deep reinforcement
learning meets graph neural networks: Exploring a routing
optimization use case,” arXiv preprint arXiv:1910.07421, 2019.

[20] K. Poularakis, Q. Qin, F. Le, S. Kompella, and L. Tassiulas,
“Generalizable and interpretable deep learning for network
congestion prediction,” in IEEE International Conference on
Network Protocols (ICNP), 2021, pp. 1–10.

[21] P. Zhang, C. Wang, N. Kumar, W. Zhang, and L. Liu, “Dynamic
virtual network embedding algorithm based on graph convolu-
tion neural network and reinforcement learning,” IEEE Internet
of Things Journal, 2021.

[22] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A
heuristically assisted deep reinforcement learning approach for
network slice placement,” IEEE Transactions on Network and
Service Management, 2021, doi: 10.1109/TNSM.2021.3132103.

[23] F. Habibi, M. Dolati, A. Khonsari, and M. Ghaderi, “Accelerat-
ing virtual network embedding with graph neural networks,”
in IEEE International Conference on Network and Service
Management (CNSM), 2020, pp. 1–9.

[24] “Study on new radio access technology: Radio access architec-
ture and interfaces,” 3GPP TR 38.801 V14.0.0 (R14), 2017.

[25] “5G wireless fronthaul requirements in a passive optical net-
work context,” ITU-T G Suppl. 66, 2020.

[26] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin et al.,
“MEC in 5G networks,” ETSI white paper, vol. 28, 2018.

[27] X. Wang, L. Wang, S. E. Elayoubi, A. Conte, B. Mukherjee,
and C. Cavdar, “Centralize or distribute? a techno-economic
study to design a low-cost cloud radio access network,” in IEEE
International Conference on Communications (ICC), 2017, pp.
1–7.

[28] “Small cell virtualization functional splits and use cases Rel.
7.0,” Small Cell Forum, 2016.

[29] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer,
H. Holtkamp, W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez
et al., “Flexible power modeling of LTE base stations,” in IEEE
wireless communications and networking conference (WCNC),
2012, pp. 2858–2862.

[30] W. Szeto, Y. Iraqi, and R. Boutaba, “A multi-commodity flow
based approach to virtual network resource allocation,” in IEEE
Global Telecommunications Conference (GLOBECOM), vol. 6,
2003, pp. 3004–3008.

[31] M. Rost and S. Schmid, “On the hardness and inapproximability
of virtual network embeddings,” IEEE/ACM Transactions on
Networking, vol. 28, no. 2, pp. 791–803, 2020.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[33] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advan-
tage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[34] “Service requirements for the 5g system; stage 1,” 3GPP TS
22.261 V18.6.0 (R18), 2022.

[35] L. Askari, F. Musumeci, and M. Tornatore, “Latency-aware traf-
fic grooming for dynamic service chaining in metro networks,”
in IEEE International Conference on Communications (ICC),
2019, pp. 1–6.

