
A Token-Prioritization Strategy for Handling Data
Imbalance in Network-Change Ticket Classification

Md. Shamim Towhid*, Nasik Sami Khan*, Nashid Shahriar*, Massimo Tornatore†, Raouf Boutaba‡, Aladdin Saleh§

*Department of Computer Science, University of Regina, {mty754, nku618, nashid.shahriar}@uregina.ca
†Politecnico di Milano, massimo.tornatore@polimi.it

‡David R. Cheriton School of Computer Science, University of Waterloo, rboutaba@uwaterloo.ca
§Rogers Communications Canada Inc., aladdin.saleh@rci.rogers.com

Abstract—Changes are an integral part of the day-to-day
operation of large telecommunications networks as they allow to
keep pace with technological advancements, meet growing network
demands, ensure scalability, enhance security, improve service
quality, and meet customer expectations. Changing configurations,
installing devices, and migrating traffic are some examples of
these changes. These changes are documented by opening tickets
through a ticket management system. Automation in the ticket
management system is now becoming highly desirable to manage
the large number of submitted tickets. An automated ticket
management system supports the management of a ticket by
automating several parts of a ticket’s life cycle. In this context,
ticket classification problem consists in assigning an appropriate
label to a ticket to be utilized in the later stages of the ticket
management cycle. In this paper, we use a collection of network-
change tickets from a real network operator to solve a ticket
classification problem. We observe that the network-change ticket
dataset is highly skewed in the number of tickets for different
possible classes. We address this challenge of classification in a
highly imbalanced dataset by proposing two token-prioritization
strategies along with other components. We compare three vari-
ations of our proposed approach with three methods from the
literature and show that the variations of the proposed approach
outperform existing methods by up to 7% in terms of F1 score.

Index Terms—ticket classification, imbalanced data, token pri-
oritization, deep learning, automation

I. INTRODUCTION

Tickets describing network changes are commonly used to
manage changes in a complex telecommunication network.
Opening tickets for network changes enables efficient manage-
ment, documentation, accountability, collaboration, and com-
pliance within an organization. It supports smooth operations,
minimizes disruptions, and ensures the network is maintained
effectively. The information recorded in a submitted ticket
for a network change may vary depending on the specific
processes and systems used by an organization. The most
commonly recorded information in a Network-Change Ticket
(NCT) is the requestor information, the description of the
changes, the level of priority, and the information related to the
approval and authorization process. Once a ticket is submitted
by the requestor, it goes through an authorization process. If
the changes are approved and authorized by the designated
employee, the ticket goes to the execution phase.

A large number of NCTs are submitted on a daily basis in a
large and complex network, so an automated ticket management
system is essential to manage these tickets in an efficient

and effective manner. Authors in [1] mention five ways an
automated ticket management system can be beneficial to an
organization. One crucial aspect of automated ticket manage-
ment is ticket classification, i.e., the process of assigning a label
to a submitted ticket. This label can be based on the priority of
the changes, required problem resolutions, or possible impact
of the suggested change on the network.

In this paper, we leverage a repository of a large number of
submitted NCTs from a major telecommunication operator in
Canada. The life cycle of an NCT in the existing approach is
shown in the upper part of Figure 1. During the submission of
an NCT, the submitter assigns a network-impact label to the
NCT based on his/her initial assessment and domain expertise.
This network-impact label captures the probable impact on the
network during the execution of the NCT. There are four types
of network impact in our collection of NCTs, namely, “Outage”,
“Threatened”, “Degraded”, and “No Impact”. The priority of
an NCT during the authorization phase is decided based on
the assigned network impact label by the ticket submitter.
For example, a ticket with “Outage” as network impact is
given more priority than a ticket with “No Impact” as network
impact. Furthermore, this network-impact label helps to make
informed decisions during the execution phase of an NCT. If a
ticket submitter predicts the network impact as “Degraded” or
“Threatened”, but the changes lead to an “Outage”, it is critical
to the organization, and there can be negative consequences
to the implementer of the NCT. Therefore, It is crucial to
assign the correct network-impact label to the NCTs during the
submission. We develop a new Deep Learning (DL) model to
predict the network-impact label by taking the NCT description
as input. The model prediction should assist the human assess-
ment of network impact during the submission of an NCT,
increasing the confidence of the submitter. Since the model is
trained on previously submitted NCT tickets, it learns to predict
the network impact based on the description of the changes. The
lower part of Figure 1 shows our proposed approach to predict
the network impact label using the proposed DL model.

In our dataset, network changes are summarized in two
columns: “Headline” for a brief overview and “Description” for
details. We concatenate these columns to input our DL model,
which must address specific dataset and NLP challenges for
accurate network impact prediction.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP
Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Existing ticket management process and our proposed approach

• The dataset is highly imbalanced, as shown in Figure 2.
As our dataset is from a real network, more than 50%
of the NCTs belong to the “No Impact” class because an
event like “Outage” is rare in the real network. The DL
model will be biased towards the majority class if we train
a model on this imbalanced dataset.

• The dataset contains many domain-specific words (e.g.,
IPRAN, QAM, LTE, etc.). In text classification, a common
practice is to use a pre-trained model available in public
and fine-tune the pre-trained layers for a specific task
[7]. Because of these domain-specific words, pre-trained
models do not perform well on our dataset.

• A lot of words in our dataset provide context for the
change description but are not relevant for the classifica-
tion of network impact. Keeping these words may cause
the model to overfit the data.

• Since the description of an NCT is written by humans,
there will be spelling errors and ambiguity in the data.
Non-meaningful characters like repeated punctuations and
special characters (***, !!!, &) and HTML-like tags are
also present in the dataset. The presence of ambiguity
in the data and the inconsistency of punctuations pose
challenges in learning patterns and accurately identifying
the intended class of a ticket.

In our proposed solution, we leverage a transformer-based
state-of-the-art model named BERT, and we propose several
new components in our solution to handle each of the men-
tioned challenges, as outlined below.

• To handle the data imbalance issue, we propose to use aug-
mentation strategies combined with token prioritization.
As for augmentation, we apply both textual and numeric
augmentation processes mentioned in [5]. Our proposed
token-prioritization strategies help to improve the overall
accuracy of the model by giving priority to the most
important words in a ticket.

Fig. 2: Class distribution of our NCT ticket dataset

• Our contribution involves fine-tuning BERT’s pre-trained
tokenizer and transformer layers to effectively handle
domain-specific words, addressing the issue of context-
related words through the use of volatile tokens [2].

• We use regular expressions and other text processing
techniques (removal of stopwords and filtering text) to
handle the issues of non-meaningful characters in our
dataset [4].

• Through extensive experiments, we show that the proposed
approach outperforms existing methods by 7% in terms of
the F1 score. Furthermore, our proposed approach is able
to achieve higher F1 scores for minority classes compared
to existing approaches.

The remainder of the paper is organized as follows. Our
literature review is presented in Section II, where we discuss
existing works in the literature. Section III provides a detailed
description of the components of our method. In Section IV,
we present the results of our proposed approach in comparison
with three existing approaches from the literature. Section V
concludes the paper by providing a summary of our work and

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

discussing future research directions.

II. RELATED WORKS

In this section, we discuss state-of-the-art research focusing
on research questions that are similar to ours, such as using data
augmentation for solving class imbalance in text classification,
selecting relevant important features, and adaptation of custom-
domain knowledge.

A. Data Augmentation

The work in [2] investigates several data augmentation
strategies to solve the data imbalance issue. The authors discuss
the effectiveness of sampling a subset of the dataset for aug-
mentation, the efficiency of introducing augmented examples
gradually during training, the significance of choosing the right
sentence pairs, and the potential of sampling techniques like the
Synthetic Minority Oversampling Technique (SMOTE) [16] to
address the class imbalance in classification models.

To address the class imbalance, the limitations of a unique
oversampling method using SMOTE for high-dimensional bi-
nary datasets have been discussed in [3]. In [3], the authors
propose a novel distance metric that analyzes various ranking
schemes and considers a selection of pertinent features. In high-
dimensional space, it performs better than SMOTE and other
alternatives.

Authors in [4] compare various open-source libraries and
advanced NLP frameworks for text processing. They focus
primarily on the NLPAug [15] library and evaluate its usage to
enhance the processing of textual datasets for training conversa-
tional chatbots and other NLP applications. Similar to NLPAug,
authors in [5] discussed another approach to data augmentation,
named Easy Data Augmentation (EDA) which uses straightfor-
ward textual modifications to produce new training samples. It
involves the four fundamental processes of synonym substitu-
tion, random word addition, random word removal, and random
word switching. On average, the EDA method improved model
accuracy by 4.5% across five benchmark datasets, with individ-
ual increases ranging from 0.9% to 9.4% based on the dataset
and model used. A thorough overview of data augmentation
for NLP tasks depending on various scenarios can be found in
[6]. The overview examines several augmentation techniques
and emphasizes the importance of data augmentation in several
NLP tasks. When selecting a suitable augmentation technique,
the authors stressed the importance of carefully considering the
data quality, the intended result, and the task limits.

B. Feature Extraction

In a text classification problem, selecting the best features
from the words in numeric space is a vital task that impacts the
overall result of the classification model. Authors in [7] present
a method for selecting the first token using the BERT model,
which is used to better capture the linguistic nuances and
increase performance on a wide range of NLP tasks. The study
in [8] employs a combined strategy of numerical augmentation
and the BERT model to address the problem of data imbalance.

We compare this approach with our proposed approach in this
research.

Another common way to concentrate on data imbalance
issues is discussed in [9] by employing a weighed loss mecha-
nism, which we combined with BERT in our research. Authors
in [10] introduce a three-way model that divides the description
space into confirmatory, disconfirmatory, and neutral regions
for evaluating confirmation in classifications. However, the
proposed method is limited for binary classification in [9]. One
of the token prioritization techniques in our research is inspired
by this study.

C. Domain Adaptation

To classify domain-specific log messages, the study in [11]
enhances the word embedding-based neural network’s adapt-
ability by focusing on domain-specific vocabulary, word-level
and character-level information, training coverage, and various
approaches of word embedding. The approach divides log
messages into templates based on contextual similarity and
uses volatile tokens to generalize similar words with minor
differences by masking the keywords in place of volatile tokens.
This helps analyze and effectively categorize log messages
by reducing feature dimensionality. Another method for fault
localization that employs word embeddings to convey semantic
relationships in IT infrastructure event data is discussed in [12].
The method uses transfer learning to cluster extracted vectors
based on semantic similarity, enhancing online fault detection
by gradually adding domain-specific token sequences to generic
word embeddings, resulting in high efficiency without recreat-
ing knowledge bases.

Authors of [13] propose a multimodal deep-learning frame-
work for the classification of short texts into multi-classes using
an imbalanced and extremely small dataset, which achieved
an F1-score of 85% and an accuracy of 86.65%, surpassing
existing models. It uses a five-layer architecture consisting
of a DistilBERT [13] model for word embeddings, LSTM
network layers for deep semantic information, and SoftMax and
max-pooling layers for multiclass classification. This efficient
method is competitive for small datasets and lightweight for
mobile device deployment. In this paper, we leverage both
down-sampling and up-sampling strategies using numeric and
textual augmentation to tackle data imbalance. We explore the
use of a probabilistic relevancy score based method which
performs well with imbalance data, and the Term Frequency-
Inverse Document Frequency (TF-IDF) method for token se-
lection, finetuning pre-trained model, which are different from
this existing research.

III. METHODOLOGY

In this section, we discuss our proposed approach. The
overview of all the steps in our proposed approach is shown
in Figure 3. Our contributions to address the challenges in our
dataset are categorized into three subsections: Pre-processing,
Domain adaptation, and Token prioritization.

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of the proposed approach

Fig. 4: Class distribution after textual augmentation

A. Pre-processing

The first step in any text classification problem is to clean
the text. Human written text may contain many characters
(e.g., punctuation marks) which are not particularly useful for
classification. We perform the following operations as our pre-
processing steps.

Text cleaning: We start by converting all text to lowercase
to remove case sensitivity. Next, we address challenges in
the data, including NULL and duplicate values, and exclude
test tickets with “Test” in the “headline” column. We then
utilize regular expressions to eliminate repeated punctuation,
non-meaningful characters like new lines and HTML tags, and
remove common stop words (e.g., ’a’, ’an’, ’the’). We notice
numerous non-relevant words, such as IP addresses, employee
names, employee email addresses, and URLs, in our dataset,
which contribute to sentence context but do not aid in NCT
ticket classification. Instead of deletion, we follow the approach
outlined in [2] to replace them with a designated keyword
referred to as a “volatile token”.

Random downsample of the majority class: After text

cleaning, we aim to balance our dataset. As depicted in Figure
2, most NCT tickets are in the “No Impact” class. To rectify
this, we randomly trim “No Impact” tickets until they match
the count of the second largest class, “Outage”.

Upsample of the minority classes: We balance the “Outage”
and “No Impact” classes through random downsampling. To
address the scarcity of “Threatened” and “Degraded” class
tickets, we consider two methods discussed in Section II:
text-based augmentation and numeric augmentation. In our
experiments, we explore both approaches as described below:

i) Textual augmentation: In the text-based augmentation
process, we utilize the NLPAug [15] library to augment the
“Threatened” class by doubling the number of tickets in this
category. This aligns “Threatened” with the “Outage” class,
which is nearly twice its size. Likewise, we augment each
“Degraded” ticket four times to balance it with the “Out-
age” class. Regarding the augmentation process, we employ
synonym and antonym replacement, random deletion, spelling
correction, split augmentation with “insertion” action, and word
embedding-based augmentation. We utilize both contextual and
non-contextual word embedding for this purpose. Figure 4
illustrates the updated class distribution of our dataset after
text-based augmentation.

ii) Numeric augmentation: In Section II, we discussed the
use of numeric augmentation techniques for achieving dataset
balance. To convert our text data into a numeric format, we
employ a pre-trained BERT model. This model transforms the
text input into numeric representations using transformer layers.
We then save these numeric representations with their corre-
sponding labels in a CSV file. Finally, we apply the SMOTE
technique [16] for numeric augmentation. In our experiments,
we increase the number of samples of minority classes to be
exactly the same as the majority classes. We train a bidirectional
LSTM model by following [8] on this balanced data. The result
of this experiment is discussed in Section IV.

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

B. Domain adaptation
Our work’s domain adaptation process, illustrated in Figure

3, involves two key steps: tokenizer fine-tuning and pre-trained
BERT transformer layer fine-tuning. These steps are essential
for adapting to domain-specific terms in our dataset.

Finetune the tokenizer: Tokenization is the process of
converting text into numbers using a vocabulary list. BERT em-
ploys “WordPiece” tokenization, breaking words into subwords
or characters if they’re not in the vocabulary list. For example,
“cutover” becomes “cut” and “over” if not in the list. We fine-
tune BERT’s tokenizer to include domain-specific words due
to our dataset’s many such terms.

Finetune the transformer layers: The common approach
to text classification involves loading a pre-trained model like
BERT, which is readily available online, and fine-tuning it on
a specific dataset. This method is effective when the dataset
resembles BERT’s pre-training data, such as the “BookCor-
pus” and “English Wikipedia”. However, our dataset contains
domain-specific words like IPRAN and QAM, which are
uncommon in standard English sentences. Consequently, we
initially fine-tune the transformer layers on our dataset, fol-
lowing the same procedure as pre-training BERT. We evaluate
the fine-tuned BERT model using a metric called “perplexity
score”, which measures its ability to predict the next word in a
sequence. A lower perplexity score indicates better predictive
performance. For this fine-tuning, we train for 20 epochs on
our dataset. The perplexity score after each epoch is shown in
Figure 5. At the beginning of the training, the perplexity score
is high. With this fine-tuning, the score gradually converges.
We see the benefit of fine-tuning our dataset in Figure 5.

Fig. 5: Perplexity score of the fine-tuned BERT model on our
dataset

C. Token prioritization
In this paper, we introduce two feature vector selection

strategies for the classifier input. Figure 3 displays the chosen
feature vectors (in red boxes) using our methods, which rely
on either TF-IDF or probabilistic word relevance scores. Our
approach offers three variations based on token prioritization
and augmentation methods: TF-IDF with textual augmentation
(TF-IDF+TextAug) for one experiment, and probabilistic rele-
vance scores with (Relv. score + TextAug) and without (Relv.
score) textual augmentation for the other two experiments.

TF-IDF score: The TF-IDF score quantifies a word’s im-
portance in a document or set of documents through term
frequency (TF) and inverse document frequency (IDF). TF
measures a word’s importance within a data sample, while
IDF assesses its uniqueness across all samples in the dataset,
making rarer words more valuable for conveying meaningful
information. We calculate the TF-IDF score for each word in
the dataset before the training starts. During the training, we
select the top n vectors based on this TF-IDF score. We vary
the value of n in our experiments described in Section IV. In
the example shown in Figure 3, the value of n is two. Therefore,
two vectors (shown in the red boxes) are selected.

Relevance score: We introduce a novel probabilistic rele-
vance score that accounts for a word’s importance in classifying
a specific dataset class. In contrast, TF-IDF only considers word
frequency. Our score is derived using Bayesian confirmation
theory as outlined in [7], leveraging the Bayes theorem [18] to
combine prior beliefs with evidence likelihood for classifying
tickets based on specific words. The posterior probability can
be calculated as follows:

P (Ci|Tj) =
P (Ci)× P (Tj |Ci)

P (Tj)

Here, Ci is the ith class in our dataset, and Tj is the jth token
in a sample data. Using the Bayes theorem, we can calculate the
posterior and prior probabilities. Now, we can use the Bayesian
confirmation theory [7] to either confirm or disconfirm whether
a token is relevant for classifying in a particular class or not.
The confirmation theory is given below:

Tj confirms Ci, iff P (Ci|Tj) > P (Ci)

Tj is irrelevant to Ci, iff P (Ci|Tj) = P (Ci)

Tj disconfirms Ci, iff P (Ci|Tj) < P (Ci)

According to the confirmation theory, if the difference be-
tween posterior and prior is positive, then the token confirms the
classification to a specific class. If the difference is 0, then the
token is irrelevant for classification. Finally, if the difference is
negative, then the token is not relevant for classification in that
particular class. Since we have four classes in our dataset, we
get four posterior and prior probability scores for each token
in a single input. We use the following formula to combine all
these four probability scores and get a single relevance score
for each token in the input.

Rj =
1

K
×

K−1∑
i=0

|P (Ci|Tj)− P (Ci)|

Here, Rj is the relevance score for jth token, and K is the
total number of classes. Using the above formula, we get a
single value for each token in the input. We calculate the prior
probability and likelihood before starting the training and save
them in a file. During the training, we use this information to
calculate the posterior for each class and then calculate the final

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

relevance score. Afterward, based on the relevance score, we
select the feature vectors of the top n tokens from the input.

Combining multiple vectors: We select multiple vectors
using TF-IDF or relevance score (Rj) and combine them for
classifier input. We experiment with two strategies: addition or
concatenation. Concatenation increases input dimension, adding
complexity. Addition maintains input dimension but may affect
input uniqueness in feature space.

IV. EVALUATION

We discuss the experiments and results of our proposed
approach in this section. First, we discuss our compared
approaches, and then we show the results of our proposed
approach in comparison with the compared approaches.

Evaluation Setting: Table I shows the compared approaches
and how they differ from our proposed approach. We compare
our proposed approach with three existing approaches from the
literature. The first three rows in Table I show the compared
approaches. The last three rows show some variations of our
proposed approach.

TABLE I: Compared approaches

Approaches Pre-
processing

Domain
adapt.

Token pri-
oritization

Classifier

BERT [7] Downsample No First token Dense
BERT + WL
[9]

Downsample No First token Dense

NumericAug
[8]

Downsample
+ SMOTE

Yes First token BiLSTM

TF-IDF +
TextAug

Downsample
+ TextAug

Yes TF-IDF Dense

Relv. score Downsample Yes Relv. score Dense
Relv. score +
TextAug

Downsample
+ TextAug

Yes Relv. score Dense

Relv. = Relevance, TextAug = Textual Augmentation,
Adapt. = Adaptation, WL = Weighted Loss

The first compared approach is the pre-trained BERT model
proposed in [7]. Then, as a common approach to deal with
data imbalance, in our second compared approach, we combine
BERT with the weighted loss (WL) [9]. In the third compared
approach [8], we use numeric augmentation (SMOTE) after ex-
tracting features using fine-tuned BERT model. A bidirectional
LSTM (BiLSTM) model is used as a classifier in this compared
approach.

Since our dataset is highly imbalanced, the F1 score is the
most important evaluation metric in our experiments. When
dealing with imbalanced datasets, accuracy alone can be mis-
leading and may not provide a comprehensive understanding of
the model’s performance. In all the approaches, we use the same
hyperparameters (epoch, learning rate, optimizer, regularize) to
train the BERT model for a fair comparison. For the bidi-
rectional LSTM model, we follow the same hyperparameters
mentioned in [8]. Each of the experiments is run five times,
and the average score for each evaluation metric is reported
in the following subsection. The experiments are conducted on
a machine equipped with two Tesla P40 GPUs, each having
24GB of memory, and a main memory of 196GB.

Fig. 6: Class-wise F1 score of all the approaches

Evaluation Results: The average score of all the evaluation
metrics is shown in Table II. Each variation of our proposed
approach (the last three rows in Table II) outperforms all the
compared approaches in all four evaluation metrics. Since our
dataset is imbalanced, it is necessary to look at the class-wise
performance of the model. Figure 6 shows the F1 score for

TABLE II: Evaluation metrics of all the approaches

Approaches Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

BERT [7] 89.20 84.40 81.98 83.00
BERT + WL [9] 88.30 83.58 83.18 83.34
NumericAug [8] 85.68 78.02 81.11 79.20

TF-IDF + TextAug 92.18 88.78 89.94 90.16
Relv. score 92.74 90.40 87.46 88.90

Relv. score + TextAug 92.68 88.84 89.52 89.14

each class in our dataset by all the approaches. The F1 score
of the compared approaches on minority classes is significantly
lower than all variations of our proposed approach, indicating
the ability of our proposed approach to handle data imbalance.
Furthermore, the larger error bars on the compared approaches
indicate an unstable performance of the compared approaches.
On the other hand, the F1 scores of each variation of the
proposed approach are stable, which indicates a consistently
improved performance. If we consider the average F1 score,
our best approach is the textual augmentation with TF-IDF
score outperforming the baseline approach (BERT) by 7.16%.
Another interesting result is the F1 score achieved by Relv.
score approach that uses only the relevance score without any
form of augmentation (the second last in Figure 6).

As mentioned in Section III-C, we use two strategies (sum-
mation and concatenation) to combine the selected feature
vectors. So, in the following, we discuss how the performance
varies with different values of n. Here, n is the number of
selected tokens based on either TF-IDF or relevance score.
Figure 7 shows the results of summation and concatenation
operations on the selected tokens based on relevance score
(Figure 7a) and TF-IDF score (Figure 7b). When n = 1, we
select the top token based on either TF-IDF or relevance score.

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

Since there is only one token selected in this case, there is
no need for summation or concatenation operations to combine
features. The result for n = 1 is shown in the “red” bar in
Figure 7. The results of the summation operation are shown in
the “blue” bar, and the “green” bar shows the results of the
concatenation operation. Figure 7 clearly indicates that both

(a) Comparing summation and concatenation of selected tokens with
varying “n” values using the relevance score formula

(b) Comparing summation and concatenation of selected tokens with
varying “n” values using the TF-IDF score

Fig. 7: Comparison between the two feature combination strate-
gies in our proposed token-prioritization strategies

token prioritization strategies perform better than the compared
“first token selection” strategy. We experiment with even higher
values of n (n = 10, n = 15) and observed that the F1 score
does not increase much after n = 5. In our proposed approach,
n is a hyperparameter, and we need to select the best value of n
with experiments like other hyperparameters in deep learning.
The choice between summation and concatenation depends on
the specific characteristics of the data.

V. CONCLUSION

In this paper, we tackle several challenges for ticket classi-
fication that may occur when dealing with datasets from real
networks. Our dataset contains NCTs submitted over the past
few years during the operation of a major telecommunication
operator in Canada. The existing methods from the literature
cannot effectively deal with the ticket classification problem, as
the distribution of ticket types in real networks is imbalanced.
In this paper, we propose two ways to prioritize tokens present
in NCTs, along with other parts, that can improve the F1
score even in an imbalanced dataset. Our frequency based

prioritzation helps decide which words in the text are more
important than others but requires a balanced dataset that can
be achieved by textual or numeric augmentation. On the other
hand, the probabilistic relevance based prioritzation can do the
same even in an imbalanced dataset. We discuss two ways to
combine the selected feature vectors. One is adding the selected
feature vectors, and the other is concatenating them. We found
the concatenation operation works better than the summation
on our dataset. We also address the problem of domain-specific
words by fine-tuning the tokenizer and transformer layers of the
feature extractor. In our experiments, the best model performs
better than the standard ones by 7%.

Acknowledgement: This work was supported in part by
Rogers Communications Canada Inc. and in part by a Mitacs
Accelerate Grant.

REFERENCES

[1] M. W. Asres et al., “Supporting Telecommunication Alarm Management
System With Trouble Ticket Prediction,” in IEEE Transactions on Indus-
trial Informatics, vol. 17, no. 2, pp. 1459-1469, Feb. 2021.

[2] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text data augmentation
for deep learning,” Journal of Big Data, vol. 8, pp. 1–34, 2021.

[3] S. Maldonado, J. López, and C. Vairetti, “An alternative SMOTE oversam-
pling strategy for high-dimensional datasets,” Applied Soft Computing,
vol. 76, pp. 380–389, 2019.

[4] J. P. Gujjar, H. P. Kumar, and M. G. Prasad, “Advanced NLP Framework
for Text Processing,” IEEE International Conference on Information
Systems and Computer Networks (ISCON), pp. 1–3, 2023.

[5] J. Wei and K. Zou, “Eda: Easy data augmentation techniques for
boosting performance on text classification tasks,” arXiv preprint
arXiv:1901.11196, 2019.

[6] S. Y. Feng et al., “A survey of data augmentation approaches for NLP,”
arXiv preprint arXiv:2105.03075, 2021.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understand-
ing,” Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1,
pp. 4171–4186, Jun. 2019.

[8] David, Jeniffer, Jiarong Cui, and Fatemeh Rahimi. “Classification of
Imbalanced Dataset using BERT Embeddings.” (2020).

[9] Shrivastava, I. (2020) Handling class imbalance by introducing sample
weighting in the loss function, Medium. Available at: https://bit.ly/
3D14AqH (Accessed: 06 July 2023).

[10] M. Hu, “Three-way Bayesian confirmation in classifications,” Cognitive
Computation, vol. 14, no. 6, pp. 2020–2039, 2022.

[11] Y. Shehu and R. Harper, “Enhancements to Language Modeling Tech-
niques for Adaptable Log Message Classification,” IEEE Transactions on
Network and Service Management, 2022.

[12] Y. Shehu and R. Harper, “Improved fault localization using transfer
learning and language modeling,” IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2020.

[13] J. Tong, Z. Wang, and X. Rui, “A Multimodel-Based Deep Learning
Framework for Short Text Multiclass Classification with the Imbalanced
and Extremely Small Data Set,” Computational Intelligence and Neuro-
science, vol. 2022, 2022.

[14] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language
Processing with Python. O’Reilly Media Inc.

[15] J. Yong, “NLPAug: Data Augmentation Library for NLP,” 2021. [Online].
Available: https://github.com/makcedward/nlpaug.

[16] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique”.
Journal of Artificial Intelligence Research, Vol. 16, no. 1, pp. 321-357,
Jan 2002.

[17] Mao, L. (2020) Entropy, perplexity and its applications, Lei Mao’s
Log Book. Available at: https://leimao.github.io/blog/Entropy-Perplexity
(Accessed: 04 July 2023).

[18] J. Joyce, “Bayes’ Theorem,” The Stanford Encyclopedia of Philosophy,
Stanford University, 2021. [Online]. Available: https://plato.stanford.edu/
archives/fall2021/entries/bayes-theorem/.

2023 19th International Conference on Network and Service Management (CNSM)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 29,2024 at 15:03:29 UTC from IEEE Xplore. Restrictions apply.

