
Meta-ATMoS+: A Meta-Reinforcement Learning
Framework for Threat Mitigation in

Software-Defined Networks
Hauton Tsang, Mohammad A. Salahuddin, Noura Limam and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{hauton.tsang, mohammad.salahuddin, n2limam, rboutaba}@uwaterloo.ca

Abstract—As cyber threats become increasingly common, au-
tomated threat mitigation solutions are more necessary than
ever. Conventional threat mitigation frameworks are difficult
to tune for different network environments, but frameworks
utilizing deep reinforcement learning (RL) have been proven to
be an effective approach that can adapt to different networks
automatically. Existing RL-based frameworks have shown to be
generalizable to different network sizes and threats, and robust to
false positives. However, training RL agents for these frameworks
can be challenging in a production environment as the training
process is time-consuming and disruptive to the production
network. Hence, a staging environment is required to effectively
train them. In this paper, we propose Meta-ATMoS+, a meta-RL
framework for threat mitigation in software-defined networks.
We leverage Model-Agnostic Meta-Learning (MAML) to find an
initialization for the RL agent that generalizes to a variety of
different network configurations. We show that the RL agent with
MAML-learned initialization can accomplish few-shot learning
on a target network with comparable performance to training
on a staging environment. Few-shot learning not only allows the
model to be trainable directly in the production environment but
also enables human-in-the-loop RL for the mitigation of threats
that do not have an easily-definable reward function.

Index Terms—Meta-Reinforcement learning, human-in-the-
loop, threat mitigation, software-defined networks

I. INTRODUCTION

Computer networks are getting more complex than ever,
and cyber threats against organizations are ever-evolving.
A malicious email attachment could easily compromise an
employee’s machine. A legacy system inadvertently made
accessible to the internet may easily be compromised. A
disgruntled employee may release malware in a network
purposefully. Malicious actors can even surreptitiously install
malware on a wide scale simply by compromising the update
servers of popular software. The most concerning of these
types of attacks are Advanced Persistent Threats (APTs),
which are very difficult to detect until they are activated [1].
These attacks aim to establish a foothold within the network,
avoid detection through lateral movement, and exfiltrate data
undetected.

To guard against these threats, organizations typically adopt
commercial or open-source security solutions to monitor them
and respond manually. However, there have been multiple
studies that have shown that these security solutions can
generate a large number of false positives (i.e., false alarms).
FireEye conducted a survey that showed 37% of respondents

detecting more than 10,000 alerts, of which more than 50%
were false positives [2]. Too many false alerts can cause
alert fatigue and could allow genuine attacks to remain un-
detected in the mix of false alerts. A survey conducted by the
International Data Corporation (IDC) found that on average
security analysts ignore 23% of alerts that are received in
large companies, while smaller companies ignore an even
higher percentage [3]. IDC also found that each alert can
take around half an hour to investigate, significantly decreasing
productivity.

More recently, organizations have adopted systems that
streamline the investigation process and automate responses
to incidents using Security Orchestration, Automation, and
Response (SOAR) solutions [4]. In a traditional network,
SOAR needs to be configured to interface with multiple back-
end services since the network is distributed. A software-
defined network (SDN) can allow security responses to be
much simpler, as a SOAR system only needs to communicate
with the SDN controller via Northbound interfaces to control
the entire network. By utilizing a Virtual Tenant Network
plugin, multiple virtual networks (VNs) can be defined so that
hosts on the network can be placed in them so that hosts can
be isolated based on customizable network policies that can
prevent the malware from spreading uninhibited.

However, automated solutions are only viable if false pos-
itive rates are low. Automated solutions that cannot learn to
adapt to false positives in a network may cause additional
problems if the responses they execute impact critical net-
work components. Threat mitigation frameworks have been
proposed that use reinforcement learning (RL) to learn how to
ignore false positives when responding to alerts (e.g., [5], [6]).
However, although these frameworks are scalable to arbitrary
network sizes, they still require training to be done on a
separate staging network similar to the network it will be
deployed in, as the training process requires disrupting the
network to operate. Furthermore, the training process of these
frameworks can take a significant amount of time to converge.

We propose Meta-ATMoS+, a meta-learning framework that
runs on an SDN and automates the mitigation of threats by
automatically placing hosts in the correct VNs. Meta-ATMoS+
can adapt to different networks using few-shot learning. Rather
than training exclusively in the target network, the RL agent
in the framework is trained on a set of networks beforehand

20
23

 IE
EE

 4
8t

h 
C

on
fe

re
nc

e 
on

 L
oc

al
 C

om
pu

te
r N

et
w

or
ks

 (L
C

N
) |

 9
79

-8
-3

50
3-

00
73

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
LC

N
58

19
7.

20
23

.1
02

23
40

3

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



using Model-Agnostic Meta-Learning (MAML) to learn a
good initialization [7]. We show that the Meta-ATMoS+ RL
agent obtained from applying MAML provides some major
advantages: (i) the RL agent can perform decently even
without training specifically on the target network, (ii) the RL
agent can adapt to a target network with a small number of
iterations, and (iii) the RL agent is scalable to larger network
sizes and more types of cyber attacks.

Unlike other threat mitigation algorithms that target partic-
ular threats, such as Denial of Service (DoS), Meta-ATMoS+
can be applied to generic threats as its reward function is not
constrained to any particular threat. Also, due to only needing
a small number of iterations to adapt, the Meta-ATMoS+ RL
agent does not cause significant disruption. It can be trained
without a staging network and can be integrated with a human-
in-the-loop framework to provide feedback in a production
environment.

The rest of the paper is structured as follows. Section II
evaluates other works related to threat mitigation. Section III
presents the structure of the Meta-ATMoS+ framework, while
Section IV provides implementation details of the framework
and performance results. Section V concludes the paper by
summarizing results and providing future directions.

II. RELATED WORKS

A. Non-RL-based Threat Mitigation on DoS attacks

Threat mitigation focuses on responding to a threat once
it has been discovered. Most literature on threat mitigation
relates to the mitigation of DoS attacks against SDNs. Our
paper focuses on RL-based approaches to threat mitigation,
however, there have been works that use non-RL methods.

SDN-Guard [8], a non-RL approach, aims to mitigate DoS-
type attacks that have been detected by an intrusion detec-
tion system (IDS). SDN-Guard samples network traffic from
switches, mirrors them to an IDS, and collects aggregated
flow statistics on detected malicious traffic and combines them
with other network statistics. The network statistics and IDS
alerts are fed into a flow management module, which applies
flow rules to redirect malicious flows to less-saturated links.
However, SDN-Guard does not provide feedback to the model
on whether the alerts detected by the IDS were legitimate.
Consequently, SDN-Guard cannot outright block malicious
traffic because of potential false positives.

SoftThings [9] leverages anomaly detection and classifiers
in order to mitigate DoS attacks. Flow and packet-level fea-
tures from network observers are used as input to the anomaly
detection model. The output of the anomaly detector is then
fed into a Support Vector Machine classifier that determines if
traffic is malicious or not. If the classifier predicts the traffic to
be malicious, then flow rules are installed to immediately block
the traffic and blacklist the originating IP address. However,
SoftThings has the drawback of potentially blocking a lot of
legitimate traffic as well, since the classifier’s output could
contain false positives.

B. RL-based Threat Mitigation

RL-based approaches allow the use of reward functions
in order to incorporate feedback for the threat mitigation
framework. Reward functions could be used to autonomously
fine-tune a model and improve its performance. One type of
network attack that has an easily-definable reward function
is DoS. For example, DeepAir is a framework that uses a
reward function that penalizes based on how much legitimate
traffic was impacted by an attack [10]. The reward also
increases based on the amount of malicious packets dropped,
and decreases based on the number of flow rules needed to
perform the mitigation. The RL agent is implemented as a
double Deep Q-Network (DQN), and is able to block the IP
address, rate limit the traffic, redirect the attack, reroute the
traffic, or do nothing. However, it is not straightforward to
extend a DoS-specific approach such as DeepAir for additional
types of threats.

Another example of a DoS-specific approach applies RL
to mitigate slow DoS attacks [11]. DoS attacks are detected
using a neural network-based IDS system. The attacks are
then mitigated using an intrusion prevention system (IPS)
powered by a deep RL agent. The deep RL agent receives
a reward based on the number of malicious flows between
hosts detected by the IDS that were not blocked by the IPS. In
contrast to the Meta-ATMoS+ framework, their work assumes
that the IDS has minimal false positives as it has been trained
on a dataset collected on the same network it will be running
from. Collecting this dataset in a realistic environment may
be difficult and it is unclear if the IDS could remain reliable
even if deployed in different network architectures.

C. Threat Mitigation on Generic Threats

The major challenge of extending frameworks beyond mit-
igating DoS attacks is that there is no straightforward reward
function for automatically learning to mitigate generic threats.
One method of generalizing to more general network attacks
is to define a reward function that rewards the blocking of
malicious network packets, while punishing the blocking of
legitimate packets, such as in [12]. This work proposes RL
agents that use a DQN and Proximal Policy Optimization
(PPO) architecture. To train their RL agents, they set up
an SDN using an OpenDaylight (ODL) controller, Docker
containers, and Open vSwitch switches. The reward for the RL
agent is the number of legitimate network packets subtracted
by the number of malicious packets transferred through the
network. However, for this kind of reward function to be
evaluated, the malicious packets must be reliably identified by
an IDS, otherwise, the RL agent may not be trained properly.
The authors also fail to evaluate the scalability of their agent.

A different approach to address generic threat mitigation is
to model the problem as a two-player game with an attacker
and defender [13]. The defender attempts to defend against an
attacker hacking various hosts. One host is assigned critical
services, and the game is over if the host with critical services
is hacked. The defender attempts to either evade the attacker
by moving critical services or block a potential attacker it

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



has identified. With this setup, the authors are able to apply
DeepMind’s MuZero RL agent [14] to mitigate threats. The
reward function is based on the total impact caused by the
attacker, the cost of the countermeasures used by the defender,
and the number of moves before the end of the game. The
major limitation of this approach is scalability. MuZero itself
is a complex RL agent and requires a lot of resources to fine-
tune. Given the significant amount of resources needed to run
a 12-host network, this RL agent may not be feasible to run
in most production environments.

Finally, ATMoS [5] and its extended variant ATMoS+ [6]
attempt to solve the problem of mitigating generic threats.
ATMoS runs on an SDN with VNs that can be applied to
particular hosts in a network. ATMoS uses a DQN-based RL
agent, and its input consists of alerts from an IDS to decide if
a host needs to be moved to a different VN. ATMoS trains the
RL agent using network simulations, and its reward function
is based on whether the RL agent correctly mitigated a host
using prior knowledge of which hosts were malicious.

ATMoS+ extends the ATMoS framework using set functions
in its neural network model, allowing its inputs to be invariant
to host re-ordering, and allowing it to scale to accommodate
different network sizes. Some limitations of ATMoS and
ATMoS+ are that the training of the agents can take a consid-
erably long time, and both need to be deployed in a staging
network hosting simulations with labeled malicious hosts for
initial training. Furthermore, as these RL agents rely on prior
knowledge of malicious hosts to calculate their reward, they
cannot be directly updated in a production environment to
accommodate for changes in the network over time.

III. META-ATMOS+

Meta-ATMoS+ is an extension of ATMoS+ that aims to
address several limitations in existing works, including: (i)
extensive training time that makes it infeasible to directly train
in production, (ii) lack of generalizability in threat mitigation
without relying on an IDS or prior knowledge, and (iii) not
being able to scale to larger networks.

Meta-learning is able to reduce the number of training
iterations (i.e., total number of steps) an RL agent needs to
solve a particular problem by learning on a set of similar
problems. This addresses two of the three limitations that have
been outlined above. For the first limitation, a reduction in
the number of training iterations means that disruption due
to training the meta-RL agent is minimized. Furthermore, in
practice, an RL agent that has been optimized with meta-
learning performs reasonably well in a production environment
without any training at all.

To address the second limitation, a reduction in the amount
of training needed to adapt the Meta-ATMoS+ RL agent can
allow a human to feasibly check the decisions the RL agent
makes and provide feedback prior to execution. This feedback
could then serve as a reward to the RL agent in lieu of
a reward function that uses the output of an IDS or prior
knowledge to determine which packets or hosts are malicious.

This generalizes the RL agent to mitigate any cyber attack that
can feasibly be identified by a human analyst.

To address the final limitation, the Meta-ATMoS+ RL agent
utilizes permutation equivariant and permutation invariant neu-
ral networks to decrease the number of parameters in the
RL agent, as well as accommodate network size changes.
The neural networks used in the Meta-ATMoS+ RL agent’s
model are small in size so adaptation could be performed more
quickly.

A. Problem Formulation
In order to apply RL to the problem of threat mitigation,

we first model the problem of threat mitigation as a Markov
decision process (MDP). Assuming an environment consisting
of an SDN, a network observer, and predefined VNs, we can
define the set of states of the MDP as the current VN, alert
information from the IDS, and the history of VN locations for
all hosts. The actions of the MDP are whether to change the
VN of any host or to do nothing. During the evaluation, each
host has a corresponding VN assigned to it (i.e., malicious
hosts are assigned to a high-security VN, and benign hosts
are assigned to a low-security VN). The reward function r is
defined based on whether the model correctly placed the host
being acted upon in the current step.

The reward function is asymmetric as it was experimentally
found that punishing the RL agent more when taking an incor-
rect action decreases training time compared to a symmetric
reward function where correct and incorrect actions were
weighted equally. This reward function serves as a proxy for
human analysts who would be responsible for investigating if a
host is malicious in a real-world deployment of the framework.

B. Meta-ATMoS+ Architecture
Fig. 1 shows the architecture of the Meta-ATMoS+ frame-

work. Hosts within the SDN will be located in VNs connected
to an Openflow-enabled switch. The switch will forward
network traffic to the network observer, which is running an
IDS and a network statistics collector. The network observer
then sends the results of the IDS and flow statistics to the RL
agent, which extracts features from the results and feeds it to
the RL agent model, and selects an action to take (i.e., change
the VN of a host, or do nothing). The RL agent can be in either
automated or manual mode. Once the action is chosen, if the
RL agent is in automated mode, the action is immediately
forwarded to the SDN controller, where the controller then
performs the action. If the RL agent is in manual mode, the
action is sent to the security analyst, which will investigate
whether the action is correct. If it is, the action is approved, a
positive reward will be sent to the model, and the action will
be forwarded to the SDN controller which executes the action.
If the action is not approved, a negative reward will be sent
to the model. The RL agent can be switched between manual
and automated modes by the user.

C. Meta-ATMoS+ RL Agent Architecture
The Meta-ATMoS+ RL agent is an off-policy agent with a

neural network model m. The model architecture is based on

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



Virtual Network

Virtual Network

Software-Defined Network

Switch

Switch

SDN
Controller

Network 
Observer

Meta-RL 
Agent

Security Analyst

Action Approval
Manually Approved

Action Reward

Automated
Action

Fig. 1: Architecture of Meta-ATMoS+

ATMoS+ [6], and uses layers based on permutation invariant
functions and permutation equivariant functions. The weights
on the permutation invariant and equivariant layers are shared
between all hosts, so the number of trainable weights in the
model is invariant under changes in network size. Thus, not
only is the model robust to host re-ordering, but the model
can also accommodate changes in the size of the network.

A permutation invariant function is a function f : Rn → Rp,
such that any input can be swapped with any other input,
and the output will remain constant. A permutation invariant
function is applied to determine whether any actions need
to be taken on the hosts. The permutation invariant function
implemented in the Meta-ATMoS+ RL agent’s model is based
on permutation invariant Deep sets [15]:

f(x) = ρ(max(φ(x1), φ(x2), ...φ(xn))),

where ρ and φ are approximated using dense neural net-
works. The function is permutation invariant as the aggregation
function max(x1, x2, ...) is permutation invariant, therefore,
it erases information on the ordering of the input once it is
applied. The max function was chosen as its range is constant
even when the number of hosts is increased.

A permutation equivariant function is a function g : Rn →
Rn such that if the i-th input of g may be exchanged with
the j-th input, the corresponding output at i and at j will
also be swapped. In other words, a permutation applied on
the inputs of g will result in an identical permutation applied
to the outputs of g. Therefore, any inputs of g that have been
swapped will cause the corresponding outputs of g to also be
swapped. The permutation equivariant function that is used
in the RL agent is based on a formulation by Sannai et al.
[16]. Each input of the function xi is applied to the following
function:

gi(x1, ..., xn) = ρ′(max({φ′(xj)}j 6=i), xi),

where ρ′ : Rp → R and φ′ : Rn → Rp are arbitrary functions.
The permutation equivariant function g(x) is defined as the
concatenation of all outputs of gi(xi):

g(x) = (g1(x), g2(x), ...gn(x)).

The RL model of Meta-ATMoS+ m : Rn×k → Rn+1×k can
be defined in terms of f and gi as follows:

m(x) = (f(x), g1(x), g2(x), ...gn(x)).

The architecture of the Meta-ATMoS+ RL agent model is
shown in Fig. 2.

Output (actions)

Input (network host features)

Max

𝜙
Dense 

network

Max Max Max

𝜙'
Dense network

𝜌'
Dense network

𝜌
Dense 

network

Fig. 2: Model architecture of the Meta-ATMoS+ RL agent

The xi ∈ Rk in the model input x = {x1, ..., xn} represent
a vector of k features corresponding to the i-th host in the
network. Each xi is a vector with the following features: (i)
a one-hot encoded list of alerts for the host obtained from an
IDS, (ii) the current VN the host is located in, (iii) the VNs the
host was located in the past, and (iv) summary flow statistics
(bytes transferred, bytes received, packets transferred, packets
received, and connection duration averaged over 5 minutes).
The functions φ and φ′ are approximated using two dense
neural network layers, the first layer has 36 neurons, and the
second layer has 8 neurons. Both layers use ReLU activation
functions. The functions ρ and ρ′ are approximated using a
single dense neural network layer with 8 neurons and ReLU
activation functions.

The RL agent also incorporates ε-greedy exploration in
meta-learning. During exploration, the X-means algorithm is
used to cluster the input from hosts, and a random cluster
is chosen before selecting a host to act upon. The X-means
algorithm is a clustering algorithm that can also infer the
number of clusters based on a set of initial points. This reduces

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



the probability of the RL agent exploring the same types
of hosts consecutively during exploration, reducing training
time. For example, in a network with a large number of
hosts belonging to users and a small number of hosts hosting
infrastructure such as web servers, the X-means algorithm
groups the users into a cluster and the web servers into a
different cluster. Therefore, during exploration, both types of
hosts would be explored more equally than if the host was
selected at random. For Meta-ATMoS, the X-means initial
points were selected using two centers selected using K-
means++. Both the X-means and K-means++ algorithms were
implemented using the PyClustering library [17].

D. Meta-ATMoS+ RL Agent Training

For meta-learning, the Meta-ATMoS+ RL agent uses the
MAML algorithm. By defining a distribution of networks T ,
MAML can be used to find a good set of initial parameters
(i.e., initialization) for the model to solve any task in T by
optimizing the agent on a sample of networks t ⊂ T . The
initialization obtained from optimizing the RL agent on t
would then be applicable to other tasks in T . To apply the
MAML algorithm in our case, we define T to be a distribution
of networks, and t is a set of training networks that are part
of this distribution.

The MAML algorithm for the Meta-ATMoS+ RL agent is
outlined in Algorithm 1. The algorithm updates m using policy
gradient-based methods. This procedure improves the model
parameters of m for all networks in T , as it performs gradient
descent on the average of the gradients for all networks in t,
which serves as an estimate of the gradient for T .

Algorithm 1 MAML training for Meta-ATMoS+

Require: : Set of training networks t ⊂ T
Require: : Model m

1: Randomly initialize parameters for m
2: for all training networks t do
3: Sample a trajectory D using parameters of m
4: Evaluate the gradient of the loss function calculated

from trajectory D
5: Make a copy of m denoted as m′

6: Update m′ with new parameters using gradient descent
7: Sample new trajectories D′ using m′

8: end for
9: Evaluate the gradient of the loss function calculated using

parameters for m and trajectories D′ for all t
10: Update m with new parameters using gradient descent

This process is depicted visually in Fig. 3. The model ini-
tially starts at a random initialization. Then, by incorporating
gradients obtained from a set of sample networks (in this
case, t1, ..., t4), a meta-gradient can be obtained that allows
the initialization to move closer to an optimum initialization
for all the sample networks. The optimum initialization is
an initialization that provides the shortest adaptation process
needed to obtain the optimum parameters for any ti. The
optimum initialization could then be used as the starting

point for adapting a target network. As long as the optimum
parameters of the target network are close to the optimum
initialization and optimums of the sample networks, the adap-
tation process would be much shorter than starting from
random initialization. One way of ensuring that the optimum
initialization is close to the target network optimum is to define
a distribution of networks that includes the target network, then
randomly select a representative sample of networks from that
distribution.

Random
initialization

t4
optimum

Optimum
initialization

for all ti

Meta-learning
gradient descent

t1 gradient
t2 gradient

t4 gradient

t3 gradient

t3
optimum

Target
network
optimum Adaptation

gradient
descent

t1
optimum

t2
optimum

Fig. 3: MAML meta-learning process

In practice, defining a distribution of networks is unnec-
essary as long as the training networks have similar traffic
patterns to the target network. The most reliable method of
measuring this similarity is to evaluate the performance of a
meta-learned model using the training networks on the target
network. Alternatively, heuristics could be used to approximate
similarity prior to evaluation. For example, if the selected
training networks and target network were all from educational
institutions, then they should have similar traffic patterns,
and meta-learning performance might be higher. However, if
the training networks were educational institution networks,
and the target network is a financial institution’s network,
meta-learning performance will likely be lower, as the traffic
patterns would likely not be similar.

E. Meta-ATMoS+ RL Agent Adaptation

Once the model has been trained, the model can then be
adapted by sampling new trajectories directly in the target
network. Each step in the trajectory will then be sent to the
security analyst for evaluation, and a reward for each step will
be assigned. The resulting RL agent can then be adapted to
any network similar to networks in T with few-shot learning.

IV. EVALUATION

The goal of the evaluation section is to answer the following
questions: (i) How quickly can the Meta-ATMoS+ RL agent
adapt to a network compared to adapting an already-trained

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



RL agent? (ii) Can the meta-learning framework scale to large
networks? (iii) Does meta-learning improve adaptation per-
formance over attempting to adapt an already-trained model?
(iv) Can the meta-learning framework scale and accommodate
more types of attacks?

A. Environment Setup

The Meta-ATMoS+ RL agent was tested on an SDN de-
ployed using Containernet, an SDN network emulator that
deploys hosts using Docker images. ODL was used as the SDN
controller for the network, and the Virtual Network Tenant
plugin was installed on ODL to provide VN functionality. The
switches used in the SDN are handled by Open vSwitch. The
RL agent is implemented in Python with Keras and Tensorflow.
The model parameters of RL agent are in Table I. The size of
the list of alerts and list of previous VN locations were chosen
as larger sizes did not meaningfully alter the performance
of the model, but significantly increased resource usage and
model prediction latency. Both meta-learning and adaptation
training use the Adam optimizer. The model hyper-parameter
values such as exploration probability (ε), discount factor (γ),
and learning rate (α), were chosen using grid search. The
grid search aimed to find parameters that resulted in fewer
iterations for adaptation. The search ranges were based on the
hyper-parameters from ATMoS+.

The Docker images used for the experiment consist of
labeled benign and malicious images that were implemented
to simulate a range of different users, services, and attacks
that can be found in real-world network environments. For
simplicity, each host is assumed to either be a self-contained
service or a specific type of user. Docker images containing
a service will start the service using a set of initialization
shell scripts when the Docker image is run. Docker images
representing a user contain multiple actions that simulate
how a user may behave in a realistic scenario. When the
Docker container is run, the container will randomly select
and execute one of the actions. Once the action is complete,
a different action will be executed. This repeats until the
container is stopped. The following are the different types of
benign Docker images used to evaluate our framework:
• Web Server: Hosts an insecure PHP web server running on

Apache with a MySQL database.
• System Administrator: Simulates a user that uses Secure

Shell (SSH) to access both web servers and file servers to
perform maintenance using a shell script to run various SSH
commands.

• Researcher: Simulates a person searching for information
on Google and occasionally connecting to the web servers
in the network to upload documents.

• File Server: Hosts a vulnerable Samba server with SMBv1
enabled.
The following are the attack types of malicious Docker

images used to evaluate our framework:
• SQL Injection (SQLi): Injecting SQL on form fields in the

login page and URL parameters of websites.

• Directory Traversal: Attempts to read sensitive system
files, such as /etc/passwd, by injecting URL parameters in
websites.

• SMB Attack: Attempts to exploit vulnerabilities in SMBv1.
• Port Scan: Attempts to scan common ports on all hosts in

the network.
• TCP SYN Flood: Attempts to DoS the web server by

flooding the HTTP port with TCP SYN packets.
• UDP Flood: Attempts to DoS the web server by flooding

it with UDP traffic.
• APT Data Exfiltration: Attempts to log in to the web server

and exfiltrate sensitive data after a delay.
• APT DoS: Attempts to perform DoS after a delay.

The traffic in the network is redirected to an IDS running
Snort, which has the following categories of alerts enabled:

• Port scanning: Triggered by a large number of connections
to different ports on the same host.

• Reconnaissance: Triggered by pings to a large number of
hosts.

• SMBv1 connection: Detects if SMBv1 is being used.
• DoS: Triggers if an excessive number of TCP or UDP

packets are being received.
• Bandwidth: Triggered by high sustained bandwidth usage.
• Injection attempt: Triggered by specific character se-

quences in the URL or POST request, such as ;– or
emph../../.

Some of these alerts (i.e., Reconnaissance and Bandwidth)
can be triggered by legitimate operations of the System
Administrator or Researcher images to simulate an unreliable
IDS.

For our experiment, we define the distribution of networks
to be the set of networks whose hosts are a combination of
any of the hosts in Table I. Therefore, the networks used
for evaluation contain a random combination of malicious
and benign hosts. To keep the networks realistic, the number
of malicious hosts in each network is capped at 40% of
the network size or 10 malicious hosts in total, whichever
is smaller. All of the experiments in the evaluation were
conducted on Amazon Web Services in m5.8xlarge instances,
which consist of 32 vCPU cores and 128GB RAM.

To compare against state-of-the-art, we also performed
experiments with ATMoS+ and DeepAir-based RL agents.
These agents were adapted in order to run them in our network.
ATMoS+ represents the current state-of-the-art generic threat
mitigation framework, and the DeepAir-based RL agent adapts
a state-of-the-art DoS mitigation framework to work with
generic threats.

The ATMoS+ RL agent uses the same model architecture,
but the reward function was modified to be the same as
the Meta-ATMoS+ RL agent. This modification is necessary
because the ATMoS+ reward function is evaluated by checking
every host in the network for malicious behavior. This is
infeasible for a human analyst to accomplish in the real world.
The Meta-ATMoS+ reward function can be evaluated by only

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



checking one host, i.e., the host that the RL agent is currently
acting upon.

The DeepAir-based RL agent also uses the same model
architecture, but the action space of the model was adjusted
to indicate which VN the model wants to place a host at,
and the reward function was also changed to use the Meta-
ATMoS+ RL agent’s reward function. Additionally, DeepAir’s
input features were initially intended to detect DoS attacks
only, so they were modified to include features from Meta-
ATMoS+ as well.

TABLE I: Meta-ATMoS+ RL Parameters

State Flow statistics (bytes transferred, bytes re-
ceived, packets transferred, packets received,
connection duration) avg over 5 mins, list of
last 10 alerts from IDS, list of last 5 VN
locations, current VN location

Action Change VN of a host, or do nothing
Reward

r =


1 if host placed in correct VN
0 if no action was taken
−2 if host placed in incorrect VN

α (meta-learning) 0.005
α (adaptation) 0.2
γ 0.9
ε 0.1
# of sample networks 10
Training trajectories 5,000 per sample network, each 10 iterations

long

B. Adaptation Performance versus State-of-the-art

To evaluate the adaptation performance of the Meta-
ATMoS+ RL agent, we trained it initially using 10 different
10-host networks using MAML. To compare the adaptation
performance of the Meta-ATMoS+ RL agent with ATMoS+
and DeepAir, both the ATMoS+ and DeepAir RL agents were
trained using the same set of 10-host networks in sequence.
For each network, they were trained for 5,000 trajectories with
10 iterations per trajectory.

To test adaptation performance, we generated a random 100-
host target network. During adaptation, instead of 10 iterations
per trajectory, each trajectory only contained a single iteration.
At the end of every 10 iterations, a 10-iteration trajectory for
the target network was generated from the model, and the
reward for this trajectory was recorded. This was repeated for
30 different target networks. As the reward varies depending
on the number of misplaced hosts in the network, the reward
was scaled so that the maximum reward for each network was
10. The results are shown in Fig. 4, with the solid and dashed
lines indicating the average scaled reward, and the shaded
region showing a standard deviation from the mean.

The figure demonstrates that the Meta-ATMoS+ RL agent
already performs respectably with an average reward of 7.7
even without adaptation, and most malicious hosts were suc-
cessfully mitigated. As the number of iterations increases, the
scaled reward steadily improves. At 390 iterations and above,
the Meta-ATMoS+ RL agent was able to achieve the maximum

reward on every target network. In contrast, the ATMoS+
and DeepAir RL agents have an average reward of 3.5 and
-4.6 initially, which is significantly lower. Furthermore, the
number of iterations to achieve an acceptable reward is also
much higher, with ATMoS+ requiring around 1,000 iterations
to achieve the maximum reward, and DeepAir requiring almost
1,600 iterations.

The decreased initial performance of ATMoS+ and DeepAir
may be due to catastrophic forgetting, i.e., general knowledge
about previous networks may not be retained when training on
a new one. This leads to an RL agent that is more specialized
to the final training network than the Meta-ATMoS+ RL agent,
resulting in lower performance when running on the target
network. The larger number of iterations needed for DeepAir
may be due to the fact that DeepAir’s RL agent model has
a much larger number of parameters than the Meta-ATMoS+
RL agent, necessitating additional training iterations to fully
adapt it.

0 200 400 600 800 1000 1200 1400 1600
Number of iterations

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Sc
al

ed
 re

wa
rd

Meta-ATMoS+
ATMoS+
DeepAir

Fig. 4: Scaled reward versus number of training iterations for
RL agents of different frameworks

C. Scalability to Network Size

In order to test the scalability of the Meta-ATMoS+ RL
agent, we evaluated the number of iterations that would be
needed to adapt a model to a new network for various network
sizes. To do this, we utilized the same procedure to train the
RL agent from Section IV-B but varied the training network
size from 10 to 100. Then, we tested how long it would take
to adapt the RL agent on target networks with sizes ranging
from 10 to 100 hosts. For each network size, we recorded
the number of iterations the RL agent needed to achieve
the maximum reward. We ran this experiment 30 times with
different target networks and averaged the number of iterations
for each network size. Results are shown in Fig. 5. Each line
denotes a model trained on different-sized training networks.

From the figure, it is clear that the Meta-ATMoS+ RL agent
performs similarly regardless of training network size. It is
likely that as long as the training networks have samples from
all the different attack types, the initial size of the training
network doesn’t matter. The figure also shows that the Meta-
ATMoS+ RL agent can optimize for smaller networks more

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



quickly than larger ones, and the number of iterations needed
scales almost linearly with the number of hosts. This may be
due to a larger network being more complicated, necessitating
additional training iterations to optimize. However, the number
of iterations is still low enough that a human can feasibly
double-check all the decisions made by the Meta-ATMoS+ RL
agent and provide feedback to it in a production environment.
In comparison, DeepAir and ATMoS+ require 70,000 and
5,000 iterations, respectively, to maximize the reward obtained
by their RL agents from a random initialization [10], [6].

20 40 60 80 100
Number of hosts in target network

0

50

100

150

200

250

300

350

N
um

be
r o

f i
te

ra
tio

ns

  10-host sample networks
  20-host sample networks
  40-host sample networks
  60-host sample networks
  80-host sample networks
100-host sample networks

Fig. 5: Average number of iterations needed to train the Meta-
ATMoS+ RL agent for various network sizes

D. Scalability versus State-of-the-Art

We also compared the Meta-ATMoS+ RL agent’s scalability
performance with the ATMoS+ and DeepAir RL agents. To
do this, we optimized the Meta-ATMoS+ RL agent with ten
different 10-host networks using MAML. For ATMoS+ and
DeepAir, we trained the models using the same set of 10-host
networks in sequence but using our reward function for 5,000
trajectories with 10 iterations per trajectory. Then for all three
RL agents, we found the number of training iterations they
took before being able to achieve the maximum reward in the
target network. This was then repeated 50 times. The result is
shown in Fig. 6. The solid and dashed lines denote the mean
number of iterations, and the shaded region denotes the values
within a standard deviation of the mean.

The figure shows that the Meta-ATMoS+ RL agent clearly
outperforms the ATMoS+ and DeepAir RL agents across all
network sizes from 10 to 100, though ATMoS+ and the Meta-
ATMoS+ RL agent perform comparably in smaller networks.
This may be due to the fact that the small networks are
more similar to each other than larger networks, as fewer
combinations of hosts can be chosen. Therefore, the optimal
parameters for the models of the networks are closer together.
As the trend seems to indicate that the number of iterations
will scale linearly depending on the size of the network,
we believe that the Meta-ATMoS+ RL agent will require
significantly fewer iterations to adapt to a large network than
either ATMoS+ or DeepAir RL agents.

20 40 60 80 100
Number of hosts

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f i
te

ra
tio

ns

Meta-ATMoS+
ATMoS+
DeepAir

Fig. 6: Number of iterations needed to train RL agents of
different frameworks

E. Scalability to Attack Types

We evaluated how the Meta-ATMoS+ RL agent scales with
the number of attack types. This was done by restricting the
attack types of malicious hosts during both the meta-learning
and adaptation phases. First, a subset of attack types was
selected based on the number of attack types that were being
evaluated. We then optimized the Meta-ATMoS+ RL agent
using ten 10-host networks where the malicious hosts were
chosen solely from the selected attack types. Then, we adapted
the model to a 100-host network where the malicious hosts
were also chosen from the initially selected attack types. We
recorded the number of iterations needed for the model to
achieve the maximum reward in the 100-host network. This
procedure was repeated for both the DeepAir and ATMoS+
models. The results are shown in Fig. 7.

1 2 3 4 5 6 7 8
Number of attack types

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f i
te

ra
tio

ns

Meta-ATMoS+
ATMoS+
DeepAir

Fig. 7: Number of iterations needed to train RL agents as
attack types increase

The figure shows a positive correlation between the number
of attack types and the number of iterations needed to optimize
all three RL agents, which is expected due to additional
knowledge that they need to learn to mitigate additional types
of malicious hosts.

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 



For a few attack types, the DeepAir RL agent performs
slightly better than ATMoS+ or Meta-ATMoS+. This is ex-
pected as the architecture of the DeepAir RL agent’s model
is a deep neural network consisting of dense layers, which
can encode information more efficiently than the permutation
equivariant and permutation invariant layers in the Meta-
ATMoS+ RL agent. However, its performance drastically de-
creases after more than four attack types are introduced. This
may be due to the number of malicious hosts in the training
networks being capped at 40%, so in a 10-host network only
four attack types can be present, so if there are five or more
types, the training networks will not be able to contain all
of them. The DeepAir RL agent does not seem to be able
to efficiently capture attack-type information if the attacks
are not all present together in the same network, limiting its
scalability.

ATMoS+ also performs slightly worse than the Meta-
ATMoS+ RL agent. The Meta-ATMoS+ RL agent can better
retain information about previously seen attack types than
ATMoS+ due to the meta-learning process. This allows it to
efficiently optimize for previously-seen attacks.

V. CONCLUSION

In this paper, we proposed a meta-learning-based RL frame-
work for automating threat mitigation in SDN. By applying
MAML, Meta-ATMoS+ can adapt to new networks with few-
shot learning. We show that the model performs better than
state-of-the-art and can scale to accommodate larger networks.
Therefore, Meta-ATMoS+ could readily be integrated into
any organization’s network, where the adaptation could be
supervised by a human-in-the-loop.

In real-world scenarios, the human-in-the-loop process can
leverage resources in a company’s Security Operations Center
(SOC), which typically has cybersecurity personnel investi-
gating potential malicious activity in the company’s network.
The Meta-ATMoS+ RL agent’s adaptation could easily be
integrated into an existing SOC by creating security events that
SOC personnel can investigate using their existing workflow,
minimizing friction in the adoption of the Meta-ATMoS+
framework. Although smaller companies may have smaller
cybersecurity teams, their network would likely be smaller,
so the number of steps needed to adapt the Meta-ATMoS+
RL agent would also decrease.

An assumption in the evaluation of the model is that the
human analyst in the loop is perfect. As the reward for the RL
agent is based on feedback from human analysts, the quality of
the feedback that the human analyst provides is very important.
As the model is adapted using few-shot learning, even a single
mistake could significantly affect the accuracy of the model,
requiring additional training to correct.

A future direction that could be explored is expanding the
RL agent to accommodate federated reinforcement learning
(FRL) [18]. FRL can allow the RL agent to learn from
many different types of enterprise networks directly, which
can improve the generalizability of the RL agent. The RL
agent currently relies on its initial set of networks to find a

good initialization for similar networks, so the selection of
these initial networks is important. However, if FRL can be
integrated into the model, then the generalizability of the RL
agent can be augmented further during the adaptation process,
decreasing the model’s reliance on the initial set of networks
it was trained on.

REFERENCES

[1] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1851–1877, 2019.

[2] C.-P. S. V. Organization, “Automating threat detection desired for
security analysts battling fear of missing incidents and security op-
erations center inefficiency,” https://cps-vo.org/node/74490, 2021, Ac-
cessed: 2023-03-30.

[3] C. Robinson, “In cybersecurity every alert matters,” https://www.
criticalstart.com/wp-content/uploads/2021/11/US48277521_TLWP.pdf,
2021, Accessed: 2023-04-14.

[4] P. Alto, “What is soar?” https://www.paloaltonetworks.com/cyberpedia/
what-is-soar, Accessed: 2023-04-14.

[5] I. Akbari, E. Tahoun, M. A. Salahuddin, N. Limam, and R. Boutaba,
“Atmos: Autonomous threat mitigation in sdn using reinforcement learn-
ing,” in IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1–9.

[6] H. Tsang, I. Akbari, M. A. Salahuddin, N. Limam, and R. Boutaba,
“Atmos+: Generalizable threat mitigation in sdn using permutation
equivariant and invariant deep reinforcement learning,” IEEE Commu-
nications Magazine, vol. 59, no. 12, pp. 105–111, 2021.

[7] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[8] L. Dridi and M. F. Zhani, “A holistic approach to mitigating dos
attacks in sdn networks,” International Journal of Network Management,
vol. 28, no. 1, p. e1996, 2018.

[9] S. S. Bhunia and M. Gurusamy, “Dynamic attack detection and miti-
gation in iot using sdn,” in International Telecommunication Networks
and Applications Conference, 2017, pp. 1–6.

[10] T. V. Phan and T. Bauschert, “Deepair: Deep reinforcement learning
for adaptive intrusion response in software-defined networks,” IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp.
2207–2218, 2022.

[11] N. M. Yungaicela-Naula, C. Vargas-Rosales, J. A. Perez-Diaz, and D. F.
Carrera, “A flexible sdn-based framework for slow-rate ddos attack
mitigation by using deep reinforcement learning,” Journal of Network
and Computer Applications, p. 103444, 2022.

[12] M. Zolotukhin, S. Kumar, and T. Hämäläinen, “Reinforcement learning
for attack mitigation in sdn-enabled networks,” in IEEE conference on
network softwarization, 2020, pp. 282–286.

[13] J. Gabirondo-López, J. Egana, J. Miguel-Alonso, and R. O. Urrutia,
“Towards autonomous defense of sdn networks using muzero based
intelligent agents,” IEEE Access, vol. 9, pp. 107 184–107 199, 2021.

[14] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[15] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” Advances in neural information processing
systems, vol. 30, 2017.

[16] A. Sannai, Y. Takai, and M. Cordonnier, “Universal approximations of
permutation invariant/equivariant functions by deep neural networks,”
arXiv preprint arXiv:1903.01939, 2019.

[17] A. Novikov, “Pyclustering: Data mining library,” Journal of Open
Source Software, vol. 4, no. 36, p. 1230, apr 2019. [Online]. Available:
https://doi.org/10.21105/joss.01230

[18] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement
learning: Techniques, applications, and open challenges,” arXiv preprint
arXiv:2108.11887, 2021.

Authorized licensed use limited to: University of Waterloo. Downloaded on December 03,2023 at 17:24:54 UTC from IEEE Xplore.  Restrictions apply. 


