
Soteria: An Approach for Detecting
Multi-Institution Attacks

Saif Zabarah∗, Omar Naman∗, Mohammad A. Salahuddin∗, Raouf Boutaba∗, Samer Al-Kiswany∗#
∗University of Waterloo, Canada

#Acronis Research, Canada

Abstract—We present Soteria, a data processing pipeline for
detecting multi-institution attacks. Soteria uses a set of Machine
Learning techniques to detect future attacks, predict their future
targets, and ranks attacks based on their predicted severity. Our
evaluation with real data from Canada wide academic institution
networks shows that Soteria can predict future attacks with 95%
recall rate, predict the next targets of an attack with 97% recall
rate, and detect attacks in the first 20% of their life span. Soteria
is deployed in production and is in use by tens of Canadian
academic institutions that are part of the CANARIE IDS project.

I. INTRODUCTION

Multi-institution attacks look for vulnerabilities at large num-
ber of nodes located at multiple institutions. These attacks
cause significant financial loses and information leaks. For
instance, the loss caused by NotPetya attack exceeds $10
billion [1], and the WannaCry ransomware attack affected
more than 200,000 computers in 150 countries [2] causing
millions in damages.

Defending against multi-institution attacks is complicated
because the target nodes are managed by tens of independent
security teams. Detecting these attacks requires timely infor-
mation sharing between institutions and analysis of potential
threats. This is further complicated by the following. First,
the vulnerabilities an attacker can exploit continuously change
making it harder to automate the defence mechanism. Worst
yet, it may take months until vulnerabilities are patched.
For instance, the WannaCry ransomware attack targeted a
vulnerability in old Windows versions, for which a patch had
been released more than two months before the attack [2].
Second, the attacks often happen in a short period of time.
For instance, our data set (Section IV) shows that attacks
can initiate millions of connections in just 24 hours. This
short duration leaves little time for the cybersecurity personnel
to detect, analyse, and deploy a defence mechanism. Third,
large number of attacks happen at the same time. As the
current process for analysing the attacks involves cybersecurity
personnel, the number of attacks that can be inspected in
time is limited. This prolongs the attack detection time and
increases the time window in which an attack can cause
damage.

For academic institutions, defending against multi-
institution attacks is harder because they operate large
and constantly changing networks (e.g., research projects
or students spawning new nodes and services), and they
have smaller budgets and cybersecurity teams. This makes

academic institutions a prime target for attacks. For instance,
in Canada, cybercrime caused an average of $9.25 million
in losses per academic institution in 2019 [3] and 46% of
the Canadian institutions reported a cybersecurity incident
in 2017, which was the second highest impacted sector in
Canada [4].

The current defence technique against these attacks is
inadequate. The main approach relies on sharing intelligence
between cooperating institutions and using public databases
that list recent IoCs. This approach is slow to detect an attack
and the information shared is often limited due to regulatory
and privacy policies.

We present Soteria, a novel data processing pipeline for de-
tecting multi-institution attacks. Soteria overcomes the short-
comings of the current defence approach. Soteria collects
minimum information from cooperating institutions, mainly
information about connections to an institution. It then uses
a novel combination of machine learning (ML) techniques to
detect current attacks and predict future attacks. Soteria also
predicts the next targets of an attack and identifies the larger-
scale attacks (i.e., the more severe attacks). These findings help
focus each institution’s limited resources on the most severe
attacks that are targeting them now or in the near future.

Soteria is carefully designed to be able to scale to hundreds
of institutions and detect attacks in a timely manner. Soteria
uses graph analysis to extract features, linear regression to
detect future attacks, and time series analysis to predict the
next targets of an attack. We use a bidirectional long short-term
memory recurrent neural network with attention mechanism
(ABiLSTM) to predict the future targets of an attack. Finally,
to predict the severity of an attack we capture static and dy-
namic features of the generated graphs and use normalization
and reduction techniques to compute a severity indicator.

Through our study of the dataset and the exploration of
different techniques we learnt a number of insights. We found
that to accurately predict the next target of an attack, the
used mechanism should capture: 1) The relationships between
institutions, as institutions with similar characteristics (e.g.,
institution size, services offered, and security posture) are
usually targeted together. 2) The sequence of the attack; 3)
The level of activity of an attacker. One would expect that
ML techniques that predict events that occur together, such as
a co-occurrence matrix [5], to be efficient in detecting Multi-
institution Attackers (MIA). Surprisingly, based on our exper-
iments, these techniques are not efficient; this is because a co-
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occurrence matrix does not capture the sequence or the level
of activity of an attack. Techniques, such as a unidirectional
LSTM which predict a sequence of events performed better,
but did not achieve high accuracy in predicting the next target
because attacks do not follow the same sequence in every
attack incident.

It was interesting that a simple linear regression model over
the right set of features is highly effective in detecting an
attack and nodes that contact more than one institution are,
with high probability, initiating an attack. Surprisingly, using
a short history of recent connections detects attacks faster than
when using the data from the last 24 hours.

Soteria has been deployed in production for the last year
as part of the Canadian Network for the Advancement of
Research, Industry and Education (CANARIE) Intrusion De-
tection System (IDS) program. CANARIE [6] is a Canada
wide backbone network connecting academic institutions. The
CANARIE IDS is serving over 100 institutions in Canada.
Over the last year Soteria has identified numerous severe
multi-institution attacks.

Our evaluation with real data from the CANARIE network
shows that external IPs communicating with more than one
institution are 95% likely to be a multi-institution attacker.
Our evaluation also shows that Soteria detects future attacks
with up to 95% recall rate and within the first 20% of the
attack’s lifetime. Finally, Soteria detects and notifies 97%
of institutions that will be targeted in the future before the
attacker initiates a connection to that institution.

The rest of this paper is organized as follows. In Section II
we survey related work. In Section III we detail the design of
Soteria. In Section IV we evaluate the accuracy of predicting
a future attack and the future targets of an attack. We present
our concluding remarks in Section V.

II. RELATED WORK

Reconnaissance Detection. Reconnaissance attacks try to
scan systems looking for vulnerabilities. Previous efforts on
reconnaissance detection are limited to detecting port scans.
For instance, Udhayan et al. [7] detect port scanning attempts
by applying a set of heuristics on the connection timing and
TCP header fields. Allen et al. [8] note that port scanning
tools leave detectable features in the generated requests. For
instance, they may contain invalid data or header information.
Given the short list of scanning tools, they explore inspecting
packets for special markers to identify port scanning attempts.
Heavy Hitters Detection. Previous efforts attempted to detect
large scale attacks known as heavy-hitter attacks. Heavy-
hitters communicate with an unusually large number of hosts.
The main challenge for detecting heavy hitters is handling
large amounts of data. Previous efforts [9, 10] resorted to
filtering out low cardinality hosts and sampling. Yang et
al. [11] summarize traffic measurements by using mergeable
data structures and aggregating the summaries at the operator
center. The merged summary is used to detect heavy hitters.
Intrusion Detection Systems. IDSs monitors network traffic
to detect malicious activities. Examples of IDS systems are

ZEEK [12], Snort [13], and Suricata [14]. IDS is primarily
for detecting attacker in a single institution, mostly based on
network rules and policies. Soteria targets MIA attacks using
ZEEK connection logs.
Current Approach for Detecting Multi-Institutional At-
tacks. The main approach for handling multi-institution at-
tacks nowadays is through sharing attack intelligence between
institutions [15]. Institutions may share knowledge, tools,
operational details, and details about active attacks. The shared
intelligence can come from peer institutions or from public
databases of attacks. A number of databases offer information
about known attacks and list malicious IPs, such as Abu-
seIPDB [16] and VirusTotal [17].

Unfortunately, while helpful, this approach does not ade-
quately protect against multi-institution attacks. That is be-
cause this approach is often slow in responding to active
attacks, the systems are large and continuously changing, and
there is continuously a large number of attack attempts which
overwhelms institution staff.

Soteria aims to overcome the shortcomings of the previous
techniques. It relies on minimal information shared by insti-
tutions, namely only information about incoming connections
to institutions. It uses this data to automatically detect multi-
institution attacks. To help prioritize the analysis of potential
attacks, Soteria identifies the most severe attacks. Further,
it identifies the next potential targets for the attack. This
information is used to notify the targeted institution of the
most severe attacks before the attack reaches that institution.

III. SYSTEM DESIGN

Soteria data processing pipeline is organized into five stages:
(i) feature extraction, (ii) attack detection, (iii) severity esti-
mation, (iv) next target detection, and (v) report generation.
Figure 1 shows the Soteria system architecture.

Institutions periodically submit logs of the recent communi-
cation activities on their networks. The feature extraction step
(Figure 1) analyzes the data to extract a vector of features.
The extracted features are leveraged by the attack detection
step that uses an ML model to predict potential attacks. The
ML model also outputs additional metrics to help with the
next two steps.

The severity estimation step uses the metrics calculated in
the previous steps to estimate the severity of the predicted
attacks. This step helps identify severe attacks. The next target
prediction step uses deep learning to identify the next targets

Fig. 1: Soteria Pipeline.
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of the predicted attacks. Finally, Soteria combines the results
of the attack detection, severity estimation, and next target
prediction steps into user reports. The rest of this section
details the design of each step.

A. Institutional Data

Sharing connection and infrastructure information between
institutions is complicated due to regulatory restrictions and
privacy-related concerns. This is the case for the academic
institutions connected to CANARIE [6]. The institutions peri-
odically share connections logs collected by ZEEK, a network
security monitoring tool. In addition to ZEEK connection logs,
each institution identifies the IP addresses it owns. We present
the details of the data set we use in Section IV.

Each row in a ZEEK connection log lists information about
a connection. In our work, we use three fields for each
connection:

• id.orig h: IP address of the node starting the connection.
• id.resp h: IP address of the node responding to the

connection.
• ts: the time stamp when the connection occurred.

B. Feature Extraction

To identify attacks on multiple institutions, we build a directed
and weighted graph representing all the connections in the
ZEEK connection logs. Each IP address represents a vertex.
We add a directed edge from a source to a destination
between two vertices that had one or more connections. Each
edge has a weight. The weight is equal to the number of
connections with the same direction between the two vertices.
Vertices are labeled as internal vertex if they belong to an
institution or external vertex otherwise. Unfortunately, this
approach for generating a graph creates enormous graphs that
are challenging to analyse in a timely manner. For instance,
for our data set this approach resulted in an enormous graph
with over 26.5 million vertices and 1.4 billion edges.

To reduce the graph size without losing information relevant
to the attack we do the following. First, we remove all edges
representing a connection that is initiated by an internal vertex
because those vertices are trusted. Second, we represent each
institution by a single aggregate vertex and remove all its
internal vertices. The aggregate vertex represents all the IP
addresses belonging to an institution. We add a directed edge
from an external vertex to an aggregate vertex if the external
vertex have contacted any of the internal address of that insti-
tution. Each edge has two weights: the number of connections
the external vertex initiated to any of the internal vertices,
i.e., conn_count, and the count of unique internal vertices
the external vertex is connected to, i.e., vert_count. These
steps significantly reduce the graph size.

In the feature extraction step (Figure 1) we compute the
following for every external vertex:

• Outdegree (OD): the number of edges that begin from
this specific vertex. For an external vertex, this equals
the number of institutions it communicated with.

Fig. 2: Three graphs created over 3 consecutive time windows.
Grey: Benign External IP; Orange: Early detection of MIA;
Red: MIA.

• Outdegree weighted by number of connections
(ODW (connection)): the summation of all the
conn_count weights of all the outgoing connections
of an external vertex.

• Outdegree weighted by number of vertices (ODW (ip)):
the summation of all the vert_count weights of all
the connections of an external vertex.

• Adjacency list (V (adj)): the adjacency list associates
each external vertex with the collection of its neighboring
institution vertices.

C. Tracking External IPs over time

Institutions periodically share their connection logs. To analyse
the activities of external vertices over time we discretize the
logs. We divide the time into windows. Each window is l hours
long. We analyse the connections of each window separately.
For each window W (t) at time t we create a graph G(t) and
extract the four features as described in the previous section.

In Soteria we track the features of each external vertex
of the latest N windows. N and l are configurable and we
evaluate the efficiency of our approach while varying these
two parameters in Section IV. Figure 2 shows an example of
collecting logs from three institutions and dividing the time
into three windows. A graph is built for each window.

We track the adjacency list (V (adj)) of an external IP
starting from the window it becomes active even if this extends
to more than the N latest windows. To avoid analysing a
previous time window graph, we compute the cumulative
adjacency list V (cumltv) at t for external vertex Vx as
follows:

Vxt(cumltv) =

{
Vxt(adj) if t = 0
Vx(t−1)(cumltv) ∪ Vxt(adj) if t > 0

(1)
where t = 0 is the first window Vx becomes active. Vxt(adj)
is the adjacency list of Vx at time t. |Vxt(cumltv)| is the count
of all institutions contacted by Vx since it began.

For each external IP, we track OD, ODW (connection),
ODW (ip), and |Vxt(cumltv)| of the latest N windows in a
N × 4 matrix.
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D. Detecting Multi-Institution Attacks

We found that linear regression is effective in identifying
vertices that will launch a multi-institution attack. Linear
regression fits the data to a straight line that relates one
independent variable t to a dependent variable Y .

F (t) = Y = B + tS, (2)
where t is the time window and Y is the feature of interest.
F (t) is the linear regression function that approximates Y . B
is the value of F (t) at t = 0 and S is the slope. S approximates
the growth rate of a feature.

For each Vx, we keep track of OD, ODW (connection),
ODW (ip), and |Vxt(cumltv)| over N windows. For each Vx

we fit each feature to a linear regression line. In doing so we
can predict the future outcome of each feature. To fit the linear
regression line we minimize the Residual Sum of Squares
(RSS); a measure of the discrepancy between the data and
the linear regression function.

RSS =

N∑
t=1

(Y (t)− F (t))2 (3)

We identify an IP as a MIA if it contacts p(inst) institution
or more. We set p(inst) to 3 in our study. To predict if an IP
Vx will become an MIA we predict if Vx will contact more
than p(inst) of institutions in the current or a future time
window. To identify a current or future MIA we use:

Vx is

{ MIA if |Vxt(cumltv)| ≥ p(inst) or
F|Vx(cumltv)|(t+ n) + k ≥ p(inst)

not MIA otherwise
(4)

where F|Vx(cumltv)|(t+ n) is the predicted number of institu-
tions Vx will contact by the time window t+n. k is a constant
that is used to tune the prediction.

In addition to predicting which node will become an MIA,
we use linear regression to compute the slopes or the growth
of the features for each external vertex. The growth of these
features is used in the following steps in the Soteria pipeline.

• Vxt(cumltv): The cumulative set of institutions Vx con-
tacted throughout its lifetime till time t.

• S|Vxt(cumltv)|: Growth of the cumulative number of in-
stitutions Vx connects to throughout its lifetime till time
t.

• SODx : Growth of the number of institutions connected to
Vx per time window.

• SODW (connection)x : Growth of the number of outgoing
connections of Vx per time window.

• SODW (ip)x : Growth of the number of internal IPs com-
municated with per time window.

E. Severity Estimation

The attack detection step may identify hundreds of potential
MIAs. Tasking security analyst to analyse these potential
attacks in a timely manner is a daunting task. The severity
estimation step computes a severity indicator for each potential
MIA and uses it to identify the most severe MIAs. This step

helps the security analyst to prioritize analysing attacks with
high severity indicators.

The severity indicator uses all the static and growth features
computed in the previous two steps of the pipeline. The
severity estimation technique should have three properties.
First, given the large number of external IPs, the severity
indicator should be efficient to compute. Second, it should
maintain the linearity of each feature, i.e., if feature X for IP1
is larger than X for IP2, this relation should be represented
in the severity estimation mechanism. Third, it should tolerate
highly skewed data.

We first considered normalizing each one of the seven
features (three static and four growth) to the range [0, 1]. Adja-
cency list V (adj) and cumulative adjacency list Vxt(cumltv)
are not included in the calculation but the size of these lists
are included. The classical normalization approach of a feature
X is:

Xnorm V = XV −X.min
X.max−X.min (5)

where XV is the value of a feature X for IP V and Xnorm V

is the normalized value of XV . X.min is the smallest value
for the feature among all IPs in the data set. X.max is
the largest value for X in the data set. While this approach
is simple, it is not effective. This is because this approach
does not handle highly skewed data well. For instance, the
majority of attackers would create hundreds of connections,
while an aggressive attacker may create hundreds of thousands
of attacks which significantly skews X.max and stretches the
bounds of normalization. This causes the majority of values to
be placed on the lower end of the normalized range and makes
it hard to differentiate between attacks since the normalized
values are very close.

To overcome this shortcoming, we use a robust scaler, as
shown below:

Xnorm V =

{ 0 XV < X.Q1

1 XV > X.Q3
XV −X.Q1

X.Q3−X.Q1
otherwise

(6)

where XV is the value of a feature X for IP V and Xnorm V

is the normalized value of XV . The robust scaler finds the
quartile for each feature X. X.Q1 and X.Q3 are the values
of the first and third quartiles. The employeed Robust Scaler
normalizes the skewed values less than the first and greater
than the third quartiles to the values 0 and 1, respectively, then
it normalizes the values between the first and third quartiles
to the range [0, 1]. This approach effectively handles highly
skewed data.

The normalized values of all features per external IP are
added. To give an indicator with values in the range of [0, 1],
the aggregated value is then normalized. This approach effec-
tively computes the severity indicator, preserves the linearity
of the features, and handles skewed values.

F. Predicting Future Targets

In the next step we try to predict, for each MIA, which
institution will be targeted next. Our first attempt to predict
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Fig. 3: Design of the model for next target prediction.

the future targets of each attack explored techniques to predict
which institutions are often targeted together. We experiment
with the co-occurrence matrix model which is successfully
used in recommendation systems to predict the items that
occur together. Our results show (Section IV) this approach is
not effective in predicting future targets. This is because Co-
occurrence matrix can only capture the relationship between
institutions and does not capture the sequence of the attack,
neither does it capture the future possible growth of the attack.

We also explored using the Long Short Time Memory
(LSTM) model [18]. LSTM is effective in predicting se-
quences of events. This approach captures the growth of an
attack and uses it to predict the next targets. This approach
achieved better results than the co-occurrence matrix model
but did not achieve high accuracy. This is because attackers
do not always attack institutions in the same order and we
need it to learn slight variations to these sequences. To
overcome this challenge, we resorted to using bidirectional
LSTM with an attention mechanism (ABiLSTM). ABiLSTM
learns a sequence of events in both directions, forward and
backward, to better predict targets despite variations in the
order in which institutions are attacked. It also better capture
relationships between institutions in a specific window and
across time windows.
Model Design. Figure 3 shows the network structure of the
ABiLSTM model we use. The model has the following stages:
input encoding, BiLSTM network, attention mechanism, and
an output layer. The rest of this subsection details the design
of each of these stages. The presentation in the rest of this
subsection is geared toward readers versed in ML methodology
and can be skipped without loss of context.
Input Encoding. We first encode V (cumltv) for each external
IP using multi-hot encoding. For each time window, we create
a bit map of size M which is the total number of institutions.
An index in the bitmap corresponds to an institution. A bit is
set if the institution has ever been contacted by this IP address.
Since we look into the last N time windows, the input to the
model is an M ×N array representing V (cumltv) in the last
N time windows.
BiLSTM Model. Figure 3 shows the structure of the ABiL-
STM model. The BiLSTM model uses an M × 2 array of
LSTM cells organized in M pairs. One LSTM in a pair learns
the forward direction of a sequence while the other learns the
backward direction. The output of the two LSTM blocks is

concatenated. The pairs are organized in a stack (Figure 3).
Each LSTM cell has three gates: input gate (it), output gate
(ot), and forget gate (ft), where t is the window timestamp.

Equation 7 shows the input gate of a cell while Equation
8 generates a candidate vector. The combination of the input
gate and the candidate vector controls the information stored
in a cell at the current time window t.

it = σ(Zi[ht−1, xt] + bi), (7)

Čt = tanh(Zc[ht−1, ht, xt] + bc), (8)

where xt represents the input of that cell at time t, ht

represents the output of the cell at time t and position m in
the LSTM stack, ht−1 represents the outputs value one time
step before the current time and ht(m−1) with the output value
of the cell underneath it. Similarly, ct and ct−1 represent the
memory unit at time t and t − 1. σ represents the sigmoid
activation function, and tanh represents the tangent function.
Zi and Zc represent the weight matrices, and bi and bc are the
bias values.

To decide whether to discard information from the previous
time step and from the lower LSTM block a forget gate is
used as shown below:

ft = σ(Zf [ht−1, ht, xt] + bf ). (9)
The memory value for this time step is calculated using

Equation 10. Note that we use the memory value ct−1 from
the previous time step.

ct = ft⊗ct−1 + it⊗Čt (10)

The output gate determines the value of the next hidden
state. This state contains information on previous inputs. First,
the output gate uses a sigmoid function to decide which portion
of a cell state to return (Equation 10). We take the output of
the output gate and perform the hadamard product (⊗) with
the output of the tanh function of the memory value.

ot = σ(Zo[ht−1, ht, xt] + bo) (11)

ht = ot⊗ tanh(ct) (12)

ht is the hidden state of the cell which is shared with the
next layer of the model and the next LSTM cell. The output
of the BiLSTM model will be a concatenation of the outputs
of both direction models, which will hence forth be denoted
as ht.
Attention Layer. The BiLSTM hidden layer outputs ht

through the activation function to obtain the correlation co-
efficient ut using Equation 13.

ut = tanh(Zaht + ba) (13)

Where Za represents the weight matrix, and ba represents
the bias values. First, we assign weights that demonstrate the
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importance of each output of the hidden layer by obtaining
the weight coefficient at:

at =
exp(ut)∑N
j=1 exp(uj)

(14)

Then we calculate the product of the weight coefficient and
the output of the hidden layer to obtain the output vector v of
the attention layer, as shown in Equation 15.

v =
∑
N

atht (15)

Dense and Output Layer. Finally, the prediction result is
obtained through the output layer using a sigmoid function.
The output layer contains as many neurons as there are
institutions, each will produce an output for an institution.
The model outputs the probability that each institution will
be targeted. Because this is a classification problem we need
to convert probabilities into binary values. Therefore, we can
simply round the probabilities into integers using a threshold.
This threshold is tuned to provide better predictions. This gives
us a multi-hot encoding vector, similar to the input matrix. We
reverse the encoding we did on the input which gives us a list
of institutions that are most likely to be targeted next.

G. Dashboards and Reporting

The last step of the pipeline creates a dashboard and reports to
present the findings to the security analysts. All the static and
growth features as well as the severity metric are presented
to the institutions. The severity metric is used to order the
external IPs. The display of the list of MIAs is customised for
each institution. The list of MIAs is split into three groups: a
list of MIAs already targeting institutions, a list of MIAs that
are predicted to attack in the near future, and the rest of the
MIAs.

IV. EVALUATION

In our evaluation, we evaluate the accuracy of Soteria in
detecting future attacks, its accuracy in identifying the next
targets, and the impact different configurations have on the
detection performance.

A. Evaluation Setup

Dataset Details. Our dataset includes the ZEEK connection
logs from 52 Canadian institutions connected to the CANARIE
backbone network. We use the data collected over six days
between the 25th and 30th of January 2022. The dataset consists
of over 15.5 billion connections.

There were over 12 million unique external IP addresses
initiating a connection to any of the institutions during the
six days. Out of the 12 million, 2.7 million of them initiated
connections to multiple institutions. The number of connec-
tions from external IP addresses per day fluctuates across the
six days with noticeable drops during the weekends. The drop
could be interpreted as a result of the institutions being less
active during the weekends. Figure 4a shows the number of
connections per hour.

(a) Number of connections per
hour during the six days.

(b) CDF of the lifespan of an Ex-
ternal IP and the attack progress.

Fig. 4: Life span of external IPs.

Each external IP is tracked from the moment it starts it
first connection to an institution until it stops communicating
with any institution. For external IPs that communicate with
multiple institutions, Figure 4.b shows the life span and attack
progress of external IPs. Life span is the total time the external
IP was active. It is the time period between its first connection
and last connection that IP made in the data set. The life span
of 70% of the external IPs is less than 3 days. Fifty percent of
the external IPs had a life span of less than one day. For each
external IP we extract the full list of institutions it contacts.
The attack progress line in Figure 4b shows the progress an
external IP makes in contacting institutions in this list. The
figure shows that an attacker contacts 70% of its target list
within the first 24 hours.
Data Preprocessing. To simulate a stream of updates from
institutions we split the connections into time windows. Given
that a large percentage of attacks complete within 24 hours,
we vary the window size l from 1, 3, 6, and 12 hours. Each
window contains all the connections for that given time period.
To simulate a real workload we split the data and then feed
the data to the pipeline for analysis.

When we train the model we use multiple windows as input.
Unless otherwise specified we use the current windows and 2
previous windows as input.

B. Labeling Multi-Institution Attackers

Unfortunately, the attackers in our dataset are not labeled.
We attempted to utilize public databases to label our data
but we found them unreliable as there is a high degree
of false positives (i.e., an IP is recycled and is no longer
malicious such as the case with malicious actors using cloud
services) and false negatives (i.e., threat has not been reported
by anyone). To overcome this shortcoming of our dataset
we select 387 random samples of external IP addresses that
contacted 3 or more institutions. We manually inspect the
logs and interactions with each one of the IP addresses and
identify MIAs. We found 369 real multi-institution attacks and
18 benign IP addresses. This indicates that 95% of external
IP addresses that contact multiple institutions are malicious
actors with a 95% confidence interval and a margin of error
of 5%. In this paper, if an external IP address contacts more
than 3 institutions we label it as MIA.
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Fig. 5: Recall and false alarm
of detecting MIA.

Fig. 6: Recall and false alarm
of detecting next targets.

Metrics. We use the following two metrics in our evaluation:
recall, which gauges how many of the true positive we have
detected, and false alarm, which gauges how many of the true
negatives we have misclassified as positives.

Recall =
TruePositives

TruePositives+ FalseNegatives
(16)

FalseAlarm =
FalsePositives

TrueNegatives+ FalsePositives
(17)

Testbed. We conduct our experiments using a 17-node cluster.
Sixteen nodes are used to ingest data and extract features.
These nodes have an Intel(R) Xeon(R) Silver 4208 CPU with
32 cores, 188GB of RAM, and 48TB of storage space. One
node is used to run the rest of Soteria pipeline. The node has
an Intel(R) Xeon(R) Gold 5120 CPU with 56 cores, 376 GB
of RAM, and a NVIDIA Tesla P40 GPU.

C. Detection of Future Multi-Institution Attacker

Using our dataset we measure the accuracy of our MIA
detection step. For this evaluation, we use a window size l
of 3 hours and we use a history N of 3 previous windows,
and try to predict if an IP address will become a MIA in the
next 24 hours. Figure 5 shows the recall and false alarm of
our attack detection step. The figure shows that our linear-
regression-based technique detected more than 95% of attacks
with lower than 15% false alarms. All false alarms have a
severity level of less than 25%, which are presented last in
the list of threats to search.

D. Predicting the Next Target

We use our dataset to measure the accuracy of predicting the
next target. We use a window size l of 3 hours and use a
sequence N of 3 windows. Figure 6 shows the recall and
false alarm of the next target prediction step. We compare the
performance of using ABiLSTM and co-occurrence matrix.
Figure 6 shows that our approach with ABiLSTM achieves
4.7 times higher recall rate. ABiLSTM achieves 95% recall
rate with 20% false alarm rate while the co-occurrence matrix
achieves only 20% recall rate with 15% false alarm rate.
This asserts our previous discussion that BiLSTM’s supersedes
co-occurence matrix due to its added ability to learn data
sequences and future growth of attacker.

Fig. 7: Performance using three look back windows.

E. Effect of Window Size

In this section, we evaluate the effect of window size l on the
accuracy and the speed the detection. We fix the number of
windows N to 3 and vary the window size l between 1, 3,
6, and 12 hours. Figure 7.a shows the recall and false alarm
rate for identifying future attacks. The results show a slight
variation in the recall rate with smaller window sizes having
better recall rates. Due to the shorter lifetime of the attackers
and their rapid attacking rates, smaller windows are able to
capture this type of behaviour. For instance, window size of
1 achieves 97% recall rate compared to 92% recall rate for
window size of 12. There is no significant change in the false
alarm rate. Figure 7.b and 7.c evaluates the effect of window
size on the accuracy of predicting the next target. We evaluate
both ABiLSTM and co-occurrence matrix. The figures show
that changing the windows size does not significantly change
the recall or the false alarm rate of ABiLSTM. For co-
occurrence matrix, changing the window size changes the
recall rate with the best being with a window size of 1,
achieving 26% and the worst being 20% with a window size
of 3. The results show under all window sizes ABiLSTM
achieves 3.5 to 7 times higher recall rate without a significant
increase in false alarm rate.

F. Effect of the Number of Windows

In the previous section, we kept the number of windows
N fixed but varied the window size l. This results in each
configuration processing a variable size of history. The number
of connections in 3 windows of a 1 hour window size is much
smaller than 3 windows of 12 hours windows size. In this
section, we set the look back time to 24 hours, regardless
of the window size. We use 24 windows with 1-hour long
windows, 8 windows with a 3-hours window size, 4 windows
with a 6-hours window size, and 2 windows of a 12-hour
window size.

Figure 8.a shows the recall and false alarm rate for identify-
ing future attacks. The results do not show a noticeable change
in the recall or the false alarm rate with different window sizes.

Figures 8.b and 8.c evaluates the effect of window size on
the accuracy of predicting the next target using both ABiLSTM
and co-occurrence matrix. Similar to the previous results the
figures show that changing the window size while using the
history size does not bring significant change to the recall or
false alarm of these techniques.
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Fig. 8: Performance while looking back for 24 hours.

Interestingly, there is no noticeable change in results for
both MIA detection and path prediction between fixing the
number N to 3 or fixing the look-back time to 24 hours.

In general, we see slight improvement in recall with smaller
number of windows and with smaller window sizes, which we
attribute to the quick nature of these attacks. The performance
gap between the smaller and larger windows is not large and
that is because our comparison so far compares performance of
predicting future attacks. This comparison does not highlight
that larger windows are unable to capture attack progress as
well as smaller windows. We evaluate the utility of different
configurations in the following subsections.

G. Speed of Attack Detection

We evaluate how early our technique can detect an attack. We
analyse the dataset and identify for each MIA the complete list
of institutions it will attack. Figure 9 shows a box plot of the
percentage of the MIA life at which Soteria detects the attack.
We compare two configurations: windows size of 3 with a
fixed number of windows of 3, and a windows size of 3 with
a total look-back period of 24 hours. Figure 9 shows that using
smaller window sizes allows for predicting the attack earlier.
With a window size of 1 hour detecting the attacks before 20-
40% of its life span compared to 75-85% with a window size
of 12. Surprisingly using a fixed number of windows achieves
better results. With a window size of 1, using 3 windows the
attack is detected at around 20% of its life span while when
using 24 hours the attack is detected when it is around 40% of
its life span on average. This is because smaller windows help
to detect an attack earlier, and a smaller number of windows
speeds up the detection step. Under all window sizes using a
fixed number of windows performs better on average.

V. CONCLUSION

We present Soteria a data processing pipeline for detecting
multi-institution attacks. Soteria can detect current and future
multi-institution attacks, rate the severity of the attacks, and
predicts its future targets. Our evaluation shows that Soteria is
able to identify future attacks and identify their future targets
with high accuracy. Soteria is currently deployed in production
as part of CANARIE IDS.

In the future, we plan to explore two directions. First, Tor
nodes are often used by multiple clients. This complicates
detecting MIAs. We plan to explore techniques to identify

Fig. 9: The attack detection speed. The box plot shows when
an attack is detected during its life span.

attacks originating from a Tor node. Second, an attacker can
use multiple IPs, we plan to explore techniques to identify
MIA using multiple IPs.
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