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Abstract
Deep Reinforcement Learning (DRL) algorithms
have demonstrated significant performance bene-
fits compared to traditional heuristics in various
systems and networking applications. However,
concerns surrounding their explainability, gener-
alizability, and robustness pose obstacles to their
widespread deployment. In response, the research
community has explored the application of formal
verification techniques to ensure the safe deploy-
ment of DRL algorithms.

This study focuses on DRL algorithms with dis-
crete numerical action spaces, which are com-
monly utilized in systems and networking do-
mains but have been under-explored when it
comes to formal analysis. We investigate two
fundamental properties: monotonicity and robust-
ness. We employ formal methods to verify these
properties beyond the confines of the training
set, thereby enhancing generalization and vali-
dating robustness. To explore the effectiveness
and tractability of the proposed verification ap-
proach, we implement a proof of concept using
Gurobi and present a case study involving two
systems and networking DRL algorithms.

1. Introduction
Deep Reinforcement Learning (DRL) algorithms have gar-
nered significant interest within the systems and networking
communities, as they have demonstrated significant perfor-
mance benefits compared to traditionally handcrafted heuris-
tics. For example, DRL-based methods have been applied
to adaptive video streaming (Mao et al., 2017), job schedul-
ing in data processing clusters (Mao et al., 2019), network
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congestion control (Lan et al., 2019), device placement for
distributed machine learning (Bojja Venkatakrishnan et al.,
2019), network planning (Zhu et al., 2021), buffer man-
agement (Wang et al., 2022), and resource management in
multi-tenant environments (Alcaraz et al., 2022).

Despite the performance benefits of DRL-based approaches,
they suffer from explainability, generalizability, and ro-
bustness issues which cast doubts on their deployment in
real-world systems and networks (Hamadanian et al., 2022;
Eliyahu et al., 2021). Specifically, a DRL model’s decision
is based on a Deep Neural Network (DNN) that operates
as a black box and does not provide any explanations of
the rationale behind its behavior. As such, there is a risk
of unexpected and/or undesirable actions in scenarios that
are different from those present in the training set (Yan
et al., 2020; He et al., 2022). Moreover, empirical evidence
suggests that DNNs are susceptible to vulnerabilities in
robustness, as minor perturbations in the input can yield
substantial alterations in the output. Such behavior signifi-
cantly erodes the reliability and trustworthiness of the DRL
algorithms (Chakravarthy et al., 2022; Dethise et al., 2021).

To address these concerns, the research community has
started to explore the use of formal verification to guaran-
tee the safe deployment of DRL algorithms in the systems
and networking domain (Eliyahu et al., 2021; Amir et al.,
2021; Dethise et al., 2021). These efforts formally model
the DRL algorithm and the desirable properties and perform
a rigorous analysis of the input space to either prove that a
property always holds or identify concrete counter-examples
in which the property is violated. Such counter-examples
indicate that the DRL model’s training has not been suf-
ficient; either the training process should be prolonged or
more data needs to be added to the training set. Additionally,
counter-examples can also help identify situations where
manual intervention is needed to override the DRL algo-
rithm (Eliyahu et al., 2021).

While formal methods tools and techniques are known to
have limited scalability, their application to DRL algorithms
used in systems and networking has shown promising re-
sults. This is mainly because the DRL algorithms in this
context are typically trained on structured input, in con-
trast to raw data (e.g., raw pixels in computer vision). As
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such, the sizes of the DNNs are much smaller, making them
more tractable to analyze. Moreover, it is much easier to ex-
press the desirable properties of the DRL algorithm in terms
of constraints over the model’s input and output variables
(Eliyahu et al., 2021).

In this study, we focus on DRL algorithms with a discrete
numerical action space as they come up in numerous sys-
tems and networking applications and have not been sys-
tematically studied in prior work. Examples include but are
not limited to selecting bitrate for video streaming (Mao
et al., 2017), determining congestion window size (Lan et al.,
2019), allocating a number of executors to a Spark job in a
cluster (Mao et al., 2019), and managing resource allocation
among tenants in a multi-tenant environment (Alcaraz et al.,
2022). We focus on two main categories of properties:

• Monotonicity properties specify that the output should
increase/decrease as one of the input features increases.
Such properties are common in system and network com-
ponents for which DRL algorithms are being proposed.
For instance, suppose a DRL algorithm uses network
packet loss rate as an input feature to decide the conges-
tion window size. If the loss rate in the network increases,
we expect the DRL algorithm to decrease the congestion
window size. We encode monotonicity properties by com-
paring the model’s output in two different scenarios that
differ only in one feature.

• Robustness properties specify that small differences in
the input should not lead to significant variations in the
output. For instance, minor fluctuations in the packet
loss rate should not result in substantial changes to the
congestion window size. We follow a similar approach
for encoding robustness – we compare the model’s output
in two distinct scenarios that are within a bounded L∞
distance from each other.

We use two algorithms, one for resource allocation among
tenants in a multi-tenant environment and one for selecting
bitrate for video streaming, as case studies. Specifically, we
specified one robustness and two monotonicity properties
for each algorithm and verify the formulated properties for
one algorithm. These case studies help demonstrate the
effectiveness and feasibility of our proposed verification
approach while pointing out potential scalability limitations
associated with larger DNN sizes.

2. DRL Algorithms with Numerical Action
Space

A DRL algorithm interacts with a system in a sequential
manner. It makes decisions based on the current state of
the system in each iteration, aiming to maximize the ac-
cumulated sum of rewards it receives from the system in
future iterations (Sutton & Barto, 2018). The system’s state

is represented by a vector of features. In the system and
networking domain, these features can include performance
metrics such as throughput, latency, packet loss rate, re-
source utilization (CPU, memory), or power consumption.
This state vector is provided as input to the DRL algorithm,
which generates the next action to be taken.

One of the core components of a DRL algorithm is its DNN
which consists of several layers connected through activa-
tion functions. The output layer of the DNN provides a
score per action for them to be selected in a given input
scenario. In deterministic contexts (which constitute the pri-
mary focus of this paper), the argmax of the output layer
is simply chosen as the action of the DRL algorithm.

The space of possible action values varies depending on the
specific application. Here, we consider discrete numerical
action spaces. That is, each action represents one of the
several valid values for a parameter in the target system
or network. For example, Pensieve (Mao et al., 2017) is a
DRL algorithm used to determine the bit rate, or resolution,
of the next video chunk to be streamed over the Internet.
To accomplish this, the last layer of the DNN consists of
neurons that correspond to the possible bit rates. During
each decision step, the values of these neurons are evalu-
ated to determine the scores of the corresponding actions.
Ultimately, the DRL selects the action associated with the
neuron having the highest score as its decision. This pa-
per focuses on such DRL algorithms with numerical action
space as they have not been systematically studied before
despite their presence in various systems and networking
scenarios

3. Encoding the Model and Properties
In this section, we present how the DRL model and prop-
erties of monotonicity and robustness are mathematically
formulated as a Mixed-integer Linear Program (MILP). An
MILP formulation allowed us to flexibly mix integer and
real variables and explore the tractability of analyzing our
properties of interest. That said, we plan to investigate for-
mulations in other mathematical frameworks in the future
to find the one best suited for analyzing monotoniciy and
robustness properties.

3.1. Model Encoding

In this paper, we focus on encoding DNNs with fully con-
nected layers, ReLU activation functions, and a Softmax
output layer, following the literature (Eliyahu et al., 2021;
Dethise et al., 2021). We discuss potential extensions to
other architectures in Section 6.

In fully connected layers, the value of neuron j in layer
i (xj

i ) is a weighted linear summation of the neurons in
the previous layer after ReLU is applied to them (yji ), as
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explained in Equations 1 and 2. The coefficients a and b are
learnable parameters that are determined during training.

xj
i =

|Xi−1|∑
t=1

at,ji yti−1 + bji (1)

ReLU is a piece-wise linear function that captures non-
linearities of the model as defined in Equation 2.

yji = ReLU(xj
i ) =

{
xj
i , xj

i ≥ 0

0, xj
i < 0

(2)

To encode a ReLU function, we introduce 2 auxiliary
variables, zji ∈ {0, 1} and sji ∈ R+ as defined in Equa-
tions 3a-3c.

yji − sji = xj
i (3a)

zji = 1 ⇒ sji = 0 (3b)

zji = 0 ⇒ yji = 0 (3c)

Finally, Softmax function normalizes logits (output of the
one-to-the-last layer) to produce the score (probability) of
each action in the output layer as presented in Equation 4.
Here, we assume |Xl−1| = n.

Softmax(Xl−1)j =
ex

j
l−1∑n

k=1 e
xk
l−1

(4)

Softmax is not a linear (and not even a piece-wise linear)
function. However, as we discuss next (Section 3.2), our
properties of interest are not dependent on the actual values
in the output vector, but their relative order. Softmax pre-
serves that ordering (that is ∀i, j ∈ {1, 2, · · · , n} : xi

l−1 ≤
xj
l−1 ⇒ Softmax(Xl−1)i ≤ Softmax(Xl−1)j). As

such, in deterministic scenarios where the action is sim-
ply the argmax of output, we can safely ignore Softmax
and choose the argmax of logits as the output of the model.

Our encoding of the the argmax of the logits Xl−1 is
captured in equations 5a-5e. We assume the logits have
bounded values: ∀i ∈ {1, · · · , n} : |xi

l−1| ≤ M . The aux-
iliary variable m captures the maximum value among xis
and t is the argmax.

m ≥ xi
l−1, i = 1, · · · , n (5a)

m ≤ xi
l−1 + 2M(1− qi), i = 1, · · · , n (5b)

n∑
i=1

qi = 1 (5c)

n∑
i=1

iqi = t (5d)

m ∈ R, q ∈ {0, 1}n, t ∈ {1, · · · , n} (5e)

Figure 1. Property encoding scheme.

The only way to satisfy the first three constraint sets (5a-
5c) is to have m as the maximum value and and qk = 1
for k = argmaxi=1,··· ,n xi. Then t reads the argmax in
Equation 5d.

3.2. Property Encoding

Encoding monotonicity and robustness properties requires
comparing the model’s decision in two interrelated sce-
narios. Specifically, as illustrated in Figure 1, we encode
two instances of the target model which are fed with two
different sets of input. The base scenario is defined as
X1 = T = {Ti : i = 1, · · · , N} and the second scenario
is X2 = T + S which is the base scenario shifted by slack
variables S = {Si : i = 1, · · · , N} that are constrained in
accordance with the property of interest. That is,

X1,i = Ti, i = 1, · · · , N (6a)
X2,i = Ti + Si, i = 1, · · · , N (6b)

Finally, the argmax of the logits of each DNN, L1 and L2,
are compared to verify the property of interest.

Now we formally define target properties. A DRL algorithm
with a numerical action space is robust if the output of the
corresponding DNN to the input X does not change more
than d when a perturbation ϵ with maximum L∞ norm of
l is added to the input. This is mathematically defined as
follows:

∀X, |ϵ|∞ ≤ l : |DNN(X)−DNN(X + ϵ)| ≤ d (7)

On the other hand, the output of a DRL algorithm is mono-
tonically increasing with respect to its i-th input feature if
the output of its DNN to an arbitrary input X is equal or
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greater than that to the input of X + d−→ei , d > 0. The
mathematical formulation goes as follows:

∀X, d > 0 : DNN(X) ≤ DNN(X + d−→ei ) (8)

The decreasing case is formulated in a similar manner.

4. Case Studies
In this section, we discuss how the monotonicity and robust-
ness properties apply to two DRL algorithms, CMARS, for
resource allocation in a multi-tenant environment, and Pen-
sieve, for bitrate selection in adaptive bitrate video stream-
ing. We further analyze CMARS against those properties.

For the analysis, we considered using one of the existing
specialized verification engines that have been developed
for DNN verification, including Marabou (Katz et al., 2019)
and CROWN (Wang et al., 2021). However, for our specific
encoding, we were unable to use the current user interfaces
of these tools for binary and integer variables, which we
needed to compute and compare the argmax of the DNN’s
output layer. As a result, we used Gurobi, an MILP solver,
as our back-end.

4.1. Resource allocation in a multi-tenant environment

In next-generation mobile networks, network resources are
allocated among different tenants1 according to their specific
performance requirements defined as service-level agree-
ments (SLAs). To increase resource efficiency, different
algorithms have been proposed with the goal of minimizing
resource consumption while satisfying SLAs.

Inspired by (Alcaraz et al., 2022) and independent of
this project, we have developed a DRL algorithm, called
CMARS, which decides the number of radio resource blocks
to allocate to a tenant in a mobile network. Previously real-
ized performance statistics of a tenant, aggregated statistics
of other tenants, network status, and amount of available
resources are fed to the DRL model which will then decide
the corresponding tenant’s resource allocation as its action.
That is, the set of possible actions includes integer variables
from zero to the total amount of available radio resource
blocks in the network.

The aggregate statistics from other tenants encompass three
distinct features: the total number of users utilizing IoT
service type, the average traffic volume of users employing
constant bit rate service, and the average traffic volume of
users utilizing variable bit rate service. Additionally, the
network status measures the wireless link quality between
users and the cell in terms of signal-to-noise ratio (SNR).
To incorporate channel quality into the DRL algorithm, the

1A tenant is a group of network users under the same entity.

Figure 2. CMARS queries execution time.

average SNR values of the corresponding users for each
tenant are calculated and provided as input to the DNN.
Furthermore, all input features are normalized within the
range of zero to one, according to the anticipated operational
behavior of the system.

In the context of CMARS, there are two relevant mono-
tonicity properties. First, we expect it to allocate an equal
or greater amount of resources when the demand of other
tenants decreases (Multiplexing Gain). Particularly, we use
negative slack variables in the second encoded DNN’s input
features that correspond to the statistics of other tenants
while other slack variables are kept zero. We then check
for the argmax of the output of the second DNN not to
be less than that of the first one. Second, if the quality
of the wireless channel between the tenant’s users and the
corresponding cell tower drops, more resources should be
allocated for the same level of demand to maintain the re-
quired performance (Channel Compensation). Here, we use
negative slack variables for the network status feature of
the second DNN, and check that the argmax of the output
of the second DNN is not less than that of the first one.
For robustness, we check that when the input features are
slightly perturbed (using slack variables, as described in
Equation 7), the allocation of resources should not undergo
significant changes. All of these properties can be encoded
using the proposed method in Section 3.

We encoded CMARS and the above properties as described
in Section 3 for a DNN with 19 input features, a fully-
connected layer with 32 neurons, and an action size of 30. In
this case, Channel Compensation was the only property that
held true. For the Multiplexing Gain property, the counter-
example alluded to a corner case but important scenario that
was not part of the training set. The counter-example for
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the Robustness property was a surprising scenario in which
a perturbation of L∞ = 0.0001 led to a difference of 16
resource units (out of the total of 30 resource blocks) in the
action. We envision such counter-examples to be leveraged
to improve the algorithms further to enforce the violated
properties (see Section 6 for more details).

To assess the scalability of the formulation and Gurobi, we
conducted experiments by altering the model’s size in terms
of action size and the number and size of hidden layers.
Specifically, we examined a scenario with a single hidden
layer and an action size of 15. The average execution time
(averaged over 10 runs) for various verification queries is
illustrated in Figure 2. The findings indicate that the pro-
posed approach is viable for small DNNs. When the number
of hidden layers is increased to two, and 32 neurons are uti-
lized in each hidden layer, the execution time amounts to
0.87 seconds. However, for a larger number of neurons in
hidden layers, the execution time gets prohibitively large
(e.g., hours). We plan to investigate whether other formula-
tions or using other backends could lead to improvements
(see Section 6 for more details).

4.2. Bitrate selection in adaptive bitrate video streaming

To optimize user quality of experience in video streaming,
video clients employ adaptive bitrate algorithms (ABR) that
dynamically selects the bitrate (resolution) at which the
next video chunk (say, a 4-second video segment) should be
downloaded from the server. The goal is for the bitrate to be
high but with low rebuffering and low bitrate oscillations.

Pensieve (Mao et al., 2017) is a DRL-based ABR algorithm
that takes the following as input: the network throughput
measurements for the past k video chunks, the download
time of the past k video chunks, the current buffer level, and
the number of chunks remaining in the video. In the output,
Pensieve’s DNN will give the chosen bitrate for the next
video chunk to be streamed, which can be any of 300, 750,
1200, 1850, 2850, 4300 kbps, pertaining to video modes in
240, 360, 480, 720, 1080, 1440p.

There are two relevant monotonicity properties for Pensieve.
First, when the measured network throughput increases, the
algorithm should not decrease the bitrate (Capacity Utiliza-
tion). Second, in order to prevent interruptions in video
playback, when there are fewer video chunks stored in the
buffer, the selected bitrate should either remain the same or
be lower compared to situations where there are more video
chunks in the buffer (Rebuffering Avoidance).

This algorithm, at the surface, is quite different from
CMARS, but similar monotonicity and robustness properties
can be encoded following the same approach in Section 3.
This provides an encouraging indication of the usefulness of
formalizing these properties and the approach in Section 3

among the DRL algorithms with numerical action space in
the system and networking domain.

5. Related Work
The authors of (Eliyahu et al., 2021) present a formalization
of natural safety and liveness properties for deterministic
DRL algorithms used in systems and networking, expressed
as a set of constraints on the input and output of the embed-
ded DNN. They use model checking to identify a scenario
where the property does not hold. Similarly, (Dethise et al.,
2021) investigates the property of adversarial robustness,
calculating the minimum amount of required input perturba-
tion size to alter the output.

However, these proposed methods only analyze what the
output of the DRL algorithms should be for a certain input
in a constrained subset of the input space. For example, the
property formulated in (Eliyahu et al., 2021) specifies that
the RL model should not select the worst resolution when
the network condition is excellent. That is, in contrast to this
work, they do not study the relationship between changes in
the input and the changes in the output over the entire input
space, and cannot be used to analyze the monotonicity and
robustness properties defined in this work.

6. Discussion and Future Work
Scalability. In our proof of concept, we used Gurobi which
is a general-purpose solver because binary and integer vari-
ables are not supported in specialized DNN verification
engines. However, we observed a prohibitively large veri-
fication time as we increased the DNN size. As such, our
natural and immediate next step is to investigate these scala-
bility issues by exploring other formulations and backends
(e.g., extending specialized DNN verification engines to
support binary and integer variables). Specifically, we plan
to explore specialized techniques for DNN verification, such
as using optimized decision procedures, parallelization, and
abstraction-refinement techniques to encode robustness and
monotonicity properties (Singh et al., 2018; Tjeng et al.,
2017; Zhang et al., 2022).

Other DNN architectures. In this paper, we focused on
encoding DNNs with fully connected layers, ReLU acti-
vation functions, and a Softmax output layer, following
the literature (Eliyahu et al., 2021; Dethise et al., 2021).
However, our general approach to property encoding, i.e.,
capturing monotonicity and robustness properties through
comparing the output of two interrelated scenarios, is not
tied to this specific architecture. We plan to investigate other
architectures that come up in systems and networking DRL
algorithms, encode them in suitable verification engines
(e.g., (Ostrovsky et al., 2022)), and analyze them against
our proposed properties.
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Property Enforcement. Verification can help us find sce-
narios in which a DRL algorithm does not behave as desired
and/or expected. To further enforce the algorithm to meet
the desired properties of monotonicity and robustness, we
envision three different approaches.

First, one can inject the counter-examples into the training
set to reinforce the desired behavior around those points in
the model (Tan et al., 2021). Second, the ratio of mono-
tonicity and robustness properties violations in a few sam-
ples around the input state of an iteration can be calculated
(Chakravarthy et al., 2022) and fed to the DRL model as
a cost value, following a Constrained DRL approach. The
benefit of this approach is that it distinguishes the desired
properties from the original goals of the DRL, making it pos-
sible to explicitly explore any potential trade-off between
the two. Finally, one could try to proactively set an increas-
ing/decreasing relationship between an input feature and the
output of the DNN. We plan to look into whether it is possi-
ble to constrain the DNN to be trained to be within a class
of functions that are increasing/decreasing with respect to a
subset of their input features.

Probabilistic comparative verification. The Softmax does
not lend itself well to common encodings given that it is
not linear or piece-wise linear. In deterministic contexts
where the final action is determined by the argmax of the
DNN, we can forgo Softmax and compare the final actions
(Section 3). However, without encoding Softmax, we are
unable to compare the final probabilities output by the DNN,
which could be useful in scenarios where the choice of
action is probabilistic. Overcoming this challenge will pave
the way for verifying probabilistic DRL algorithms and
probabilistic comparative verification.

7. Conclusion
In conclusion, this study focused on the application of for-
mal verification techniques to ensure the safe deployment of
DRL algorithms, specifically targeting those with discrete
numerical action spaces commonly found in systems and
networking domains. By concentrating on the fundamental
properties of monotonicity and robustness, the investigation
employed formal methods to verify these properties beyond
the limitations of the training set.
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