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Abstract—Network slicing is a key enabler for 5G to support
various applications. Slices requested by service providers (SPs)
have heterogeneous quality of service (QoS) requirements, such
as latency, throughput, and jitter. It is imperative that the
5G infrastructure provider (InP) allocates the right amount of
resources depending on the slice’s traffic, such that the specified
QoS levels are maintained during the slice’s lifetime while
maximizing resource efficiency. However, there is a non-trivial
relationship between the QoS and resource allocation. In this
paper, this relationship is learned using a regression-based model.
We also leverage a risk-constrained reinforcement learning agent
that is trained offline using this model and domain randomization
for dynamically scaling slice resources while maintaining the
desired QoS level. Our novel approach reduces the effects of
network modeling errors since it is model-free and does not
require QoS metrics to be mathematically formulated in terms
of traffic. In addition, it provides robustness against uncertain
network conditions, generalizes to different real-world traffic
patterns, and caters to various QoS metrics. The results show
that the state-of-the-art approaches can lead to QoS degradation
as high as 44.5% when tested on previously unseen traffic. On
the other hand, our approach maintains the QoS degradation
below a preset 10% threshold on such traffic, while minimizing
the allocated resources. Additionally, we demonstrate that the
proposed approach is robust against varying network conditions
and inaccurate traffic predictions.

Index Terms—5G, Network Slicing, Resource Scaling, Con-
strained Reinforcement Learning, QoS

I. INTRODUCTION

With 5G, mobile networks are moving away from one-size-
fits-all towards a more programmable network architecture.
The adoption of Software Defined Networking (SDN) and
Network Function Virtualization (NFV) allows an infrastruc-
ture provider (InP) to virtualize its physical network resources,
and use them to create virtual isolated networks on top of
a shared physical network infrastructure. These on-demand
virtual isolated networks are also referred to as network slices.
Network slicing enables 5G mobile networks to host appli-
cations or services with diverse quality of service (QoS) re-
quirements. For example, enhanced mobile broadband (eMBB)
slices can be used for applications that require high throughput
but lenient latency constraints such as 4K video streaming.
On the other hand, ultra-reliable low-latency communication
(URLLC) slices can be used for applications that require high
reliability and very low latency such as remote surgery.

Whenever a service provider (SP) requests a slice from

an infrastructure provider (InP), it includes its peak traffic
and its required minimum quality of service (QoS) in the
service level agreement (SLA). The required resources for
maintaining a slice’s QoS depend on the slice type and its
traffic, which varies with time. The InP can guarantee the QoS
by allocating isolated resources to the slice based on its peak
traffic. However, this can lead to over-provisioning since the
actual traffic of a slice rarely reaches its peak [1]. In this case,
the majority of the allocated resources remain unused or under-
utilized. On the other hand, the InP can improve its resource
efficiency (RE) by predicting the future traffic of a slice,
and preemptively scaling its resources accordingly. However,
under-provisioning the resources, based on inaccurate traffic
prediction or imprecise modeling of the relationship between
allocated resources and QoS, can lead to a deterioration in the
QoS of the slice. As a result, a certain level of QoS degradation
is typically incorporated into SLAs, and the goal of InP is to
dynamically scale resources to maximize resource efficiency
while keeping QoS degradation under the specified limit. We
refer to this as dynamic resource scaling.

Several challenges need to be addressed to achieve effective
dynamic resource scaling. Mobile networks consist of multiple
domains including the radio access network (RAN), transport
and the core network, and the QoS obtained can be dependent
on the relative level of resources allocated in these domains.
The QoS achieved at any resource allocation also depends
on the state of the network at that time, e.g., the level of
interference by other slices or the state of the queues in the net-
work. Additionally, the QoS may be defined heterogeneously
for different slices serving different kinds of applications. For
example, the QoS may be defined in terms of the throughput
for an eMBB slice, and in terms of the latency for a URLLC
slice. Finally, even though some proposed solutions in the
literature require a dataset to be trained (e.g., [2, 3]), the
traffic that a slice experiences may be unknown during training
time. Therefore, given the uncertainty of network conditions
and future traffic, and the complex modeling of the end-to-
end network, it is challenging to design an algorithm that can
dynamically scale the resources of the slices while keeping
their QoS degradation under the agreed-upon threshold.

Several works in the literature model the mobile network
mathematically [4, 5]. Since it is quite challenging to accu-
rately model end-to-end network dynamics [6], these works are
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based on simplifying assumptions which makes them inappli-
cable to real-world networks. Another method commonly used
in the literature is to model the network as a queue and then
use simulation to calculate the metrics of interest [2, 3]. This
method can be too simple to model a multi-domain mobile
network, and complex user-level QoS metrics [6, 7]. Given a
network model, for resource scaling under QoS degradation
constraints, a number of works in the literature propose using
traditional deep reinforcement learning (DRL) algorithms such
as Deep Q-Learning [8, 3]. However, the reward function of
these methods needs to be carefully engineered to achieve
the desired tradeoff between QoS degradation level and re-
source efficiency, which is non-trivial. To circumvent these
problems, authors in [9] use constrained deep reinforcement
learning (CDRL) and online learning to dynamically scale the
resources. But online learning can be quite slow, and even
infeasible for slices with short lifespans.

In this paper, we propose using a regression-based model to
capture the behavior of an end-to-end network under different
conditions. This model is trained offline using a dataset gath-
ered by measuring the performance of an isolated slice in the
real network under diverse network conditions and different
amounts of allocated resources. Regression-based models,
such as neural networks, can learn complex relationships
between predictor and response variables, without requiring an
exact network model. For dynamically scaling the resources
allocated to the slice while satisfying QoS requirements, we
propose using CDRL with offline training. Although offline
training addresses the slow training problem of online training,
it must be generalizable to online traffic patterns not seen
during offline training. For this purpose, we utilize a risk-
constrained DRL algorithm coupled with domain random-
ization (DR). Risk-constrained DRL increases the chances
of meeting QoS degradation constraints under unpredictable
traffic and network conditions by constraining the risk rather
than just the expected value of QoS degradation [10]. DR
is also a common technique for bridging the simulation-to-
reality gap by randomizing the environment parameters during
training [11]. In addition, this RL agent is fed with the output
of an external traffic prediction module to avoid overfitting
to any specific traffic pattern. Although the current evaluation
is confined to the radio resource scaling and a single slice,
it demonstrates the efficacy of the proposed solution. The
contributions of this work are:

• We develop a novel framework for dynamic resource scaling
which consists of a regression-based network model, risk-
constrained DRL agent, and a traffic prediction module.
By training the RL agent offline using random traffic, we
have a generalizable agent that does not require any prior
knowledge of online slice traffic patterns.

• We evaluate the effectiveness of the proposed approach
against traditional, and constrained DRL-based models
which encompass the state-of-the-art. In general, the pro-
posed approach performs relatively better than others while
also showing generalization to previously unseen traffic and

network conditions.
• We assess the robustness of the proposed approach under

varying network conditions (e.g., queue congestion), and
inaccurate traffic predictions and demonstrate that it can
effectively scale resources even under worse-case scenarios.

• We show that our pre-trained model can be fine-tuned
for increased performance while meeting QoS degradation
constraint and maintaining its generalization capability.

The rest of the paper is organized as follows. In Section II,
we provide an overview of CDRL, and discuss the related
works. This is followed by a formal definition of the dynamic
resource scaling problem in Section III. Section IV delineates
the proposed solution. Finally, after showcasing the results in
Section V, we conclude in Section VI and instigate future
research directions.

II. BACKGROUND AND RELATED WORKS

A. Constrained DRL—A Primer

In both traditional and constrained RL, the sequential deci-
sion making and interaction of an agent with its environment
can be formally described using a Markov Decision Process
(MDP) and a Constrained Markov Decision Process (CMDP),
respectively. A finite-horizon MDP can be defined by the
tuple (𝑂, 𝐴, 𝑃, 𝑦, 𝜌0, 𝛾), where 𝑂 is the state space, 𝐴 is
the action space, 𝑦 : 𝑂 × 𝐴 → R is the reward function,
𝑃 : 𝑂 × 𝐴 × 𝑂 → [0, 1] is the state transition probability
distribution, 𝜌0 is the initial state distribution, and 𝛾 is the
discount factor that specifies the relative importance of future
rewards. When state transition probabilities are unknown, RL
can be adopted to find a policy 𝜋 : 𝑂 × 𝐴 → [0, 1] that
can maximize the expected discounted reward defined as
𝐽 (𝜋) = E(𝑜𝑡 ,𝑎𝑡 )∼𝜌𝜋 [∑𝑡 𝛾

𝑡 𝑦(𝑜𝑡 , 𝑎𝑡 )], where 𝑜𝑡 and 𝑎𝑡 are the
state and action at time step 𝑡, respectively, and 𝜌𝜋 denotes the
state-action distribution induced by following policy 𝜋. When
the action and state spaces are large and/or continuous, the
policy is learned using a parameterized deep neural network,
which is known as DRL.

CMDPs extend MDPs by adding cost functions 𝑐 : 𝑂 ×
𝐴 → R such that a CMDP is defined as (𝑂, 𝐴, 𝑃, 𝑦, 𝑐,
𝜌0, 𝛾). Following a policy 𝜋, the cost distribution can be
modeled as 𝑝𝜋 (𝑐 |𝑠, 𝑎). The expected discounted cost 𝐽𝑐 (𝜋)
is analogous to 𝐽 (𝜋) and is obtained by replacing the reward
𝑦 with cost 𝑐 in the corresponding equation, i.e., 𝐽𝑐 (𝜋) =

E(𝑜𝑡 ,𝑎𝑡 )∼𝜌𝜋 [∑𝑡 𝛾
𝑡𝑐(𝑜𝑡 , 𝑎𝑡 )]. In CMDPs, the objective is to

find an optimal policy that maximizes 𝐽 (𝜋), but also keeps
𝐽𝑐 (𝜋) under a certain pre-defined threshold 𝑐thresh. Formally,
this objective can be written as [12]:

𝜋∗ = max
𝜋
𝐽 (𝜋), (1)

s.t. 𝐽𝑐 (𝜋) ≤ 𝑐thresh.

There are numerous approaches for solving CDRL problems
(cf., [13]). In general, these methods are either based on
Constraint Policy Optimization (CPO) [12], or Lagrangian
relaxation [14, 15]. CPO builds upon the TRPO algorithm
[16] by adding constraint satisfaction, leading to a monoton-



ically improving policy that guarantees constraint satisfaction
throughout training. On the other hand, Lagrangian relax-
ation methods work by relaxing constraints using Lagrangian
multipliers, and updating decision variables and multipliers
in an iterative manner using gradient ascent/descent. SAC-
Lagrangian is one of these algorithms which is based on
the actor-critic framework [14]. It utilizes an actor network
to represent the policy, and two critic networks to learn the
expected reward and cost for any given state and action. These
critic networks are then utilized to update the policy network to
maximize the return while satisfying expected cost constraints.

Although the methods discussed above satisfy a constraint
on the expected value of the discounted cost distribution 𝑝𝜋 ,
they do not constrain its variation. In this case, there remains
a considerable probability of high-cost episodes. As a result,
such methods can not be used in safety-critical applications,
where it is crucial for the learned policies to be robust. For
this case, rather than the expected cost, the safety metric of
interest is defined in terms of the Conditional Value-at-Risk
(CVaR) of the cost, i.e.,

CVaR𝛼 = E𝑝𝜋 [𝐶 |𝐶 ≥ 𝐹−1
𝐶 (1 − 𝛼)], (2)

where 𝐹𝐶 (.) is the cumulative distribution function (CDF) of
𝑝𝜋 , and 𝛼 is the risk level hyper-parameter with smaller values
leading to more risk-averse policies. In this case, a policy is
safe if it satisfies a constraint on this new safety measure:
E𝑝𝜋 [𝐶 (𝑜𝑡 , 𝑎𝑡 ) |𝐶 (𝑜𝑡 , 𝑎𝑡 ) ≥ 𝐹−1

𝐶 (1 − 𝛼)] ≤ 𝑐thresh, ∀𝑡, (3)
where 𝐶 (𝑜𝑡 , 𝑎𝑡 ) is the discounted cumulative cost of policy 𝜋
from point (𝑜𝑡 , 𝑎𝑡 ).

To address this issue, Yang et al. [10] recently proposed
the Worst-Case Soft Actor Critic (WCSAC) algorithm that
extends SAC-Lagrangian by replacing the cost critic with a
distributional one. Specifically, they model 𝑝𝜋 as a Gaussian
distribution, and utilize two neural networks to predict its
mean 𝑄𝑐𝜋 (𝑠𝑡 , 𝑎𝑡 ) and variance 𝑉𝑐𝜋 (𝑠𝑡 , 𝑎𝑡 ) given a state-action
pair (𝑠𝑡 , 𝑎𝑡 ). The new safety measure, i.e., CVaR, can then be
calculated using a closed-form equation:

CVaR𝛼 = Γ𝜋 (𝑠𝑡 , 𝑎𝑡 , 𝛼) = 𝑄𝑐𝜋 (𝑠, 𝑎) + 𝛼−1𝜙−1 (Φ−1 (𝛼)), (4)
where 𝜙(.) and Φ(.) represent the probability distribution
function (PDF) and CDF of the standard normal distribution,
respectively. The policy can be updated by minimizing the
following KL-Divergence [17, 10]:

𝜋
′
= min

𝜋
DKL

(
𝜋(.|𝑠𝑡 )

�������� 𝑒𝑥𝑝( 1
𝛽
𝑄𝑟𝜋 (𝑠𝑡 , .)) − 𝑘Γ𝜋 (𝑠𝑡 , ., 𝛼)

𝑍 𝜋 (𝑠𝑡 )

)
(5)

where 𝜋
′

denotes the updated policy, 𝑄𝑟𝜋 (𝑠, 𝑎) denotes the
state-action value and 𝑍 𝜋 (𝑠𝑡 ) is a normalization factor. 𝛽 and 𝑘
are Lagrangian multipliers that are updated iteratively to deter-
mine the trade-off between the policy entropy, the reward, and
the safety measure. For a detailed exposition of the algorithm,
we refer to [10]. As WCSAC is able to satisfy a percentile-
based constraint (CVaR) over a QoS degradation distribution,
compared to expectation-based methods, it is more adaptable
to different traffic patterns and network condition scenarios.

B. Dynamic Resource Scaling

Dynamic resource scaling requires an accurate model of the
relationship between the allocated resources, traffic volume,
and achieved QoS. In this section, we present an overview of
the methodologies commonly used to model this relationship
and review state-of-the-art dynamic resource scaling works
that fall into these categories.

1) Resource Isolation

In this approach, QoS is defined in terms of resource
isolation that depends on a simple comparison between the
required resources and the resource allocation, i.e., P(𝑟𝑠𝑡 ≥ 𝑣𝑠𝑡 ),
where 𝑟𝑠𝑡 and 𝑣𝑠𝑡 respectively denote the amount of allocated
resource to a slice, and its minimum required resource to meet
the QoS threshold at a specific time 𝑡. This type of network
modeling requires 𝑣𝑠𝑡 to be known or easily predictable which
may not be feasible in practice. Additionally, this may be
undesirable for cases when the slices experience bursty traffic
since even if only a small amount of resources are allocated to
the slice during short periods of high traffic, high isolation can
still be achieved. Based on this model, Li et al. [4] optimize
the resource utilization at each time step while respecting
resource isolation constraints modeled by chance constraints.
These constraints are then approximated using a data-driven
approach, which converts the problem to a semi-definite pro-
gramming (SDP) problem that can be solved optimally.

2) Model-Driven QoS Isolation

This approach adheres to QoS isolation by calculating the
minimum required resources based on a given QoS threshold,
but only considers an abstract model of the network for
which there exists concrete theoretical groundwork. Queues
are one of the commonly used models in this category. In
this case, either queuing theory or queue simulation can be
utilized to compute different performance measurements for
the packets entering the queue. By defining the queue arrival-
rate in terms of slice traffic and determining the service-rate
based on resource allocation, the queuing-time for any packet
can be determined. The average queuing-time can represent
the QoS of a slice, defined as the packet latency. In general,
the drawback of this type of modeling is that it can only deal
with simple network-level QoS metrics which are based on a
single resource type, as it can be challenging to model the
service-rate of the queue based on multiple heterogeneous
metrics. Solutions based on queue simulation also suffer
from high computational complexity when the traffic volume
increases since they deal with the traffic at the packet-level.
Finally, queues might not be able to accurately model network
components such as RAN, as there can be additional factors
that affect the latency such as the presence of multiple queues,
channel effects or application-specific idiosyncrasies.

Some of the works that use a queue for modeling the
network include [18, 19, 2, 3, 8]. Papa et al. [18] and Kasgari
and Saad [19] assume the delay experienced by each slice can
be exactly modeled by considering an M/M/1 queue model.
The authors then leverage the Lyapunov optimization method



Fig. 1: Regression-Queue based network model

to minimize long-term resource usage under QoS constraints.
Li et al. [3] and Hua et al. [8] utilize queue-based simulation
and optimize the weighted sum of RE and SLA satisfaction
ratio. For this purpose, [3] utilizes Deep Q-learning, whereas
[8] leverages a combination of distributional DRL with gen-
erative adversarial network (GAN). However, in these works,
the trade-off between RE and SLA satisfaction ratio depends
on the weights assigned to these in the reward formulation,
which have to be manually tuned. As a result, these approaches
are not able to satisfy QoS degradation constraints. To ensure
these constraints, the authors in [2] propose constrained RL
for resource allocation. But this approach requires the slice’s
traffic to be known in advance and is unable to generalize to
previously unseen traffic patterns during testing.

3) Data-Driven QoS Isolation

In this method, QoS isolation is assured and the behavior
of the network is learned using data-driven approaches based
on historical data. As there is no public dataset available, this
mandates access to either a testbed or a production network
where slices can be easily created and scaled. Due to this
reason, there are only a limited number of works that utilize
this approach. This type of network modeling is classified
further into the following categories:

Regression-Queue Based: As shown in Fig. 1, this ap-
proach is also based on a queue, with the difference that a
regression model, learned using a network dataset, is used to
predict the service rate of the queue. Since multiple resources
can be used as the input to the service rate prediction model,
this type of network modeling is not restricted to only one
resource type. However, this approach remains constrained
by other drawbacks associated with queue-based model-driven
approaches. Liu et al. [7] used offline training based on this
model to minimize multi-domain resource utilization under
capacity and end-to-end delay constraints of slices. They relax
SLA satisfaction constraints and incorporate them into the
objective by utilizing the primal-dual Lagrangian method, and
train the model using conventional actor-critic DRL methods.
Although offline training reduces the time for the RL model
to converge in the real environment, similar to [2] it suffers
from low generalizability.

Online Learning Based: In this approach, rather than
modeling a network, the data from a production network
during a slice’s operation is leveraged to learn the resource
scaling algorithm. In a subsequent work to [7], Liu et al. [9]
proposed an RL-based approach with online-only training and
behaviour cloning, which can deal with various QoS metrics.
However, considering the granularity of updates in a real
network (i.e., around 15 minutes [9]), the adoption of this

method in a production environment is impractical due to the
long convergence time.

III. PROBLEM STATEMENT

Let 𝑇𝑇 𝐼 be the transmission time interval, i.e., small iso-
metric time intervals into which the time horizon is divided.
We define 𝑇Δ, consisting of 𝑁 TTIs, to be the decision
time interval (DTI), i.e., the minimum time interval required
between resource scaling decisions due to practical limitations
such as the time required for horizontally or vertically scaling
virtual machines (VMs). Let T denote the set of starting points
of all DTIs. For slice 𝑠 ∈ 𝑆, we denote the traffic at the DTI
starting at 𝑡 by column vector x𝑠𝑡 = [𝑥𝑠𝑡𝑛]𝑛∈[𝑁 ] , where 𝑥𝑠𝑡𝑛 ∈ N
is the traffic at the 𝑛th TTI within DTI starting at 𝑡. We also
define r𝑠𝑡 = [𝑟𝑠,𝑘𝑡 ]𝑘∈[𝐾 ] with 𝑟

𝑠,𝑘
𝑡 ∈ R to be the 𝐾 different

types of resources allocated to slice 𝑠 over DTI 𝑡. We assume
that the traffic, measured in users/sec, stays constant within a
TTI and the resources allocated to a slice are divided fairly
among all its users.

Let vector q𝑠𝑡 = [𝑞𝑠𝑡𝑛] ∈ R𝑛×1 represent per-user QoS of
each slice at DTI 𝑡, which can be determined using a network
model. We are interested in QoS degradation probability at any
point in time, which can be defined as the portion of traffic
that receives QoS below the minimum threshold, i.e.,

𝛽𝑠𝑡 =

∑
𝜏∈𝑇:𝜏≤𝑡 x𝑠𝜏⊺ 1[𝑞𝑠𝜏 ≤𝑞𝑠thresh ]∑

𝜏∈𝑇:𝜏≤𝑡 1𝑁 x𝑠𝜏
, (6)

where 1[𝑞𝑠𝜏 ≤𝑞𝑠thresh ] is an indicator vector whose 𝑛th element
equals to 1 only when 𝑞𝑠𝜏𝑛 ≤ 𝑞𝑠thresh, 1𝑁 is a 1-vector of
size 𝑁 and 𝑞𝑠thresh is the expected minimum QoS of slice
users. Finally, based on the introduced notations, the dynamic
resource scaling problem can be formulated as:

min
r

1
|𝑇 |

∑︁
𝑡 ∈𝑇

∑︁
𝑠∈S

𝜂⊺r𝑠𝑡

s.t. E

(
𝛽𝑠max(𝑇)

)
≤ 𝛽𝑠,thresh, ∀𝑠 ∈ 𝑆∑︁

𝑠∈𝑆
r𝑠𝑡 ≤ R, ∀𝑡 ∈ 𝑇,

(7)

where 𝜂 ∈ R𝑘×1 is the resource normalization vector, E is
the expectation over the distributions of QoS and traffic, R =

[𝑅𝑘]𝑘∈[𝐾 ] represents the capacities of resources, and 𝛽𝑠,thresh
is the acceptable 𝑄𝑜𝑆 degradation threshold for slice 𝑠.

IV. PROPOSED FRAMEWORK

In this section, we describe the proposed framework which
is shown in Fig. 2. It consists of three components: a future
traffic forecast module, an RL-based dynamic resource scaler
and a network model. Note that we do not expound on the
traffic prediction module, since it is a well-studied topic and
there are off-the-shelf packages available for it (e.g., [20]).

A. Network Model

We propose using a regression-based network model. Sim-
ilar to the state-of-the-art [8, 9], we assume that there are
only a limited number of standard slice types (e.g., URLLC,
eMBB, mMTC), and their QoS can be monitored by creating



Fig. 2: Overview of the proposed framework

isolated slices and scaling their resources. Compared to the
regression-queue based model in Section II-B3, the queue and
the service rate prediction model are replaced by a single
regression model. This regression model learns the function
𝑓 (𝑥, r) : N × R𝐾 → R × R, which maps the traffic 𝑥𝑠𝑡𝑛 and
resource allocation vector r𝑠𝑡 of 𝑛th TTI of DTI 𝑡 to Gaussian
distribution parameters 𝜇𝑠𝑡𝑛 and 𝜎𝑠𝑡𝑛. The QoS can then be
sampled using these parameters, i.e., 𝑞𝑠𝑡𝑛 ∼ N(𝜇, 𝜎). In this
method, we assume that the effect of past traffic on the QoS
is only transient, and can be subsumed by the distribution of
QoS around the mean. This is because it can be infeasible to
gather a dataset that correlates the past traffic as well as the
current traffic, and a resource allocation to a certain QoS.

Based on the complexity of the network (e.g., in terms of the
number of resources), a simple query-based method, a linear
regression model, or neural networks could be used to learn the
function 𝑓 (𝑥, r). To train this model, the dataset is gathered by
performing a grid search over different resource allocations at
different traffic levels, and measuring the corresponding QoS
under varying network conditions. As each QoS value sampled
from the Gaussian distribution N(𝜇, 𝜎) can be written as
𝜇 − 𝑑𝜎, we use the parameter 𝑑 ∈ R to represent network
conditions such as queue congestion and channel quality.
When 𝑑 is known, i.e., in deterministic network conditions,
the QoS vector at DTI 𝑡 can be computed as:

q𝑠,det
𝑡 (𝑑) =

[
𝜇𝑠𝑡𝑛 − 𝑑𝜎𝑠𝑡𝑛

]
𝑛∈[𝑁 ] . (8)

As opposed to queue-based models, the regression-based
model can deal with scaling heterogeneous resources, and can
predict different types of QoS. Additionally, the complexity of
this approach does not depend on the traffic volume and it is
not restricted to packet-level traffic.

B. Risk-constrained DRL-based Resource Scaling Algorithm

For dynamically scaling the resources allocated to a slice,
we propose using the WCSAC [10] algorithm trained using
the training loop shown in Fig. 2. Each step in an episode,
i.e., 𝑡 ∈ 𝑇 , corresponds to a DTI.

1) CMDP Formulation

At step 𝑡, the RL agent’s state 𝑜𝑡 includes the CDF of the
traffic of the next DTI over its TTIs, 𝐹𝑥𝑠𝑡𝑛 (.), and the QoS
degradation up until that time, 𝛽𝑠

𝑡−1, for each slice. Note that
since the traffic is in terms of users/sec, 𝐹𝑥𝑠𝑡𝑛 (𝑎) = P(𝑥

𝑠
𝑡𝑛 ≤ 𝑎)

is a discrete CDF which can be represented by a vector of
finite size. As opposed to existing works [7, 2], instead of
mean, we include the CDF of the future traffic in the agent’s

state space. This is because multiple different distributions can
have the same mean, and can lead the agent to learn spurious
correlations between actions in a given state and their effect on
the environment [21]. Additionally, 𝛽𝑠

𝑡−1, which is calculated
using Eq. (6), acts as a feedback mechanism for the agent to
adjust the resource allocation for the future DTIs based on the
effect of past actions on QoS degradation. The agent’s action
𝑎𝑡 corresponds to the resource scaling decision r𝑠𝑡 for each
slice and we define the reward function as:

𝑦(𝑜𝑡 , 𝑎𝑡 ) = 1 −
∑︁
𝑠∈𝑆

𝜂⊺r𝑠𝑡 . (9)

Finally, the cost function is defined as the marginal QoS
degradation where the denominator is the sum of traffic over
the episode, as shown below:

𝑐(𝑜𝑡 , 𝑎𝑡 ) =
x𝑠𝑡 ⊺ 1[𝑞𝑠𝑡 ≤𝑞𝑠thresh ]∑
𝜏≤𝑚𝑎𝑥 (𝑇) 1𝑁 x𝑠𝜏

. (10)

2) Training

Fig. 2 shows how WCSAC algorithm is integrated with the
network model and future traffic prediction module during
training and testing. To make the learned policy generalizable
across different traffic patterns and network conditions, we
utilize uniform DR during training. For this purpose, at the
start of each episode, the traffic for each DTI, x𝑠𝑡 , is generated
by sampling i.i.d from a randomized distribution, i.e., 𝐹𝑥𝑠𝑡𝑛 .
By randomizing the traffic distribution and sampling the QoS
from the network model distribution during training, the risk-
constrained RL agent learns to maximize the reward while
keeping the QoS degradation under the specified threshold
𝛽𝑠thresh even in the worst-case scenarios. These extreme condi-
tions can arise due to congestion in the network, interference
by other slices, or a specific traffic pattern (e.g., bursty) that
may require higher resource allocation.

Since the future traffic, x̂𝑠𝑡 , is unknown during testing, an
external traffic prediction module is used to predict its CDF.
The QoS degradation during testing can be computed using
actual slice traffic, and by utilizing either the offline network
model or actual QoS reported by users. Note that by including
the future traffic distribution in the state space, the agent is
not confounded by the varying effect of different resource
allocations under varying traffic levels.

V. EXPERIMENTS

A. Testbed and Simulation Setup

To gather the required dataset for creating a realistic network
model, we deploy the SDRAN-in-a-Box (RiaB) [22] on an
Intel NUC PC. RiaB utilizes Kubernetes to deploy end-to-end
SD-RAN components that include EPC, emulated RAN and
user equipment (UE), and ONOS RAN Intelligence Controller
(RIC). The testbed can be used to create slices, associate
UEs to them, and scale their allocated resources dynamically.
However, there are limitations on the number of UEs per slice
and the granularity of resource allocation. To circumvent the
former restriction, we count the number of parallel connec-
tions made by an emulated UE as the slice’s users. For the



Fig. 3: Regression-based network model

latter, we allocate radio resources in intervals of 10% of the
total resource capacity. For simplicity, during evaluation, we
consider a single type of slice (i.e., eMBB) and resource (i.e.,
radio resource in Mbps), and thus we omit the subscript 𝑠 and
𝑘 in the subsequent sections. The slice is tailored for eMBB
services by deploying an image download application over it.
We define the QoS of the slice in terms of frames per second
(Fps), i.e., the number of times the image can be downloaded
from a local server within a second.

To gather the QoS dataset, we perform a grid-search over
the alterable parameters by varying the traffic from 1 to 5
users/sec, and the corresponding resource allocation from 10%
to 80%. To encompass different network conditions, we repeat
this grid-search multiple times and gather the data for 30
seconds for each point in the grid per iteration. Fig. 3 shows
the corresponding network model. The shaded area around the
mean represents the distribution of QoS achieved at different
network conditions. The network model is fed with this data
to predict the distribution of 𝑄𝑜𝑆 at any traffic and resource
allocation. In this paper, we learn the network model using a
simple query-based model that returns the mean and standard
deviation of the QoS as the size of the grid is small.

For training and testing the different scaling approaches,
we set the QoS threshold and the acceptable QoS degradation
threshold, i.e., 𝑞thresh and 𝛽thresh, to 2.0 Fps and 10%, respec-
tively. As we can see in Fig. 3, 80% bandwidth allocation
is required to have no (i.e., 0) QoS degradation under the
highest traffic rate (i.e., 5 users/sec) and worse-case network
conditions which occur at around 𝑑 = −2. For WCSAC,
we set the risk level hyper-parameter 𝛼 to 0.1. DTI and
TTI are set to one minute and one second, respectively. As
discussed previously, we assume the traffic varies across TTIs,
but remains constant within each TTI. For testing, we utilize
the real-world traffic pattern of Internet events in Milan from
the Telecom Italia dataset [1]. We scale this traffic pattern
to represent the traffic of 1 to 3 users/sec and add truncated
Gaussian noise N(0, 0.752) to create dynamic traffic within
each DTI. We refer to the resulting traffic curve as the
dataset traffic throughout this section. The reported results are
averaged over 100 episodes of 10 minutes in length to ensure
statistically stable results.
B. Comparative Approaches

For evaluating the proposed framework comprising the
regression-based network model, WCSAC algorithm and de-
scribed training paradigm, we implement a number of DRL-
based approaches, and a heuristic method. These approaches

encompass the baselines and emulate a number of the solutions
proposed in contemporary literature. For training and testing
these methods, we utilize the proposed regression-based net-
work model for a fair comparison.

1) DRL-based

Avg-CPO, Avg-PPO: A number of DRL-based works in the
literature train the RL agent on the same traffic pattern which is
also used during testing [2, 7, 8, 3]. Clearly, these approaches
fail to perform well if the test traffic varies from the training
traffic. To encompass both constraint-aware and traditional
DRL approaches presented in these works, we implement the
CPO [12] and the PPO [23] algorithms and refer to them as
Avg-CPO and Avg-PPO, respectively. For Avg-CPO, the reward
and cost are the same as the ones used for WCSAC, described
in equations (9) and (10). Since a cost constraint cannot be
incorporated with PPO, we formulated its reward function as
the sum of the reward and the cost used for WCSAC, weighted
by 𝑤RE and 𝑤QoS, respectively. The values for these weights
are manually fine-tuned. Some of these works assume that
the RL agent learns to scale the slice resource allocation only
based on past traffic information [7, 2]. This requires the RL
agent to predict the traffic trend in addition to resource scaling.
However, for a fair comparison, we include the CDF of the
future traffic in the RL agent’s state.

WC-CPO: As described in Section II-A, CPO is designed
to constrain the expected cost under a specific limit while
learning actions that maximize the reward. To make this
approach risk-aware, i.e., robust to different traffic distributions
and network conditions that arise during testing, we leverage
cost-shaping to ensure that the QoS degradation stays below
𝛽thresh for all scenarios. For this purpose, in addition to the
per-step cost in Eq. (10), the agent is given an additional
cost at the end of each episode. This cost is an exponential
function of QoS degradation that is in excess of the threshold,
i.e., 𝛾(𝑒 [𝛽max(𝑇 )−𝛽thresh ]+ − 1) where [𝑥]+ denotes the maximum
of 𝑥 and 0, and 𝛾 is a scaling factor which controls the
degree of risk adverseness. Since the average cost is affected
significantly by this exponentially weighted cost component,
the agent learns to keep the QoS degradation for scenarios
giving rise to high QoS degradation under the threshold. We
refer to this CPO-based approach with the shaped cost function
as worst-case CPO, and denote it by WC-CPO.

2) Heuristics-based

Pred-Alloc: As an upper bound for evaluating DRL-based
approaches, we also implement a simple heuristic. This al-
gorithm is based on two simplifying assumptions. First, it
assumes the traffic in any DTI to be constant and equal
to the peak of the curve predicted by the traffic prediction
module. The second simplification is that it considers some-
what extreme and deterministic network conditions, i.e., at
any given traffic and resource allocation, the QoS vector is
equal to 𝑞𝑑𝑒𝑡𝑡 (−2) defined in Eq. (8). These assumptions make
the resource allocation at each DTI trivial since it can be
calculated using a simple grid-search. However, it can lead
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Fig. 4: Training process of different methods; (a),(b) are trained on the dataset traffic, and (c),(d) are trained on randomized traffic.

to significant over-provisioning and non-optimal results. We
refer to this approach as Pred-Alloc.

C. Training Performance

For training, we use two dense layers each having 64 neu-
rons for the policy network for the different algorithms. The
learning rates can differ across methods and are determined
experimentally. We train Avg-CPO and Avg-PPO on the dataset
traffic. For Avg-PPO, we set 𝑤𝑅𝐸 to 1, and tune 𝑤𝑄𝑜𝑆 to
achieve a nearly optimized tradeoff between resource alloca-
tion and QoS. Fig. 4a and Fig. 4b show the mean bandwidth
allocation and mean QoS degradation of these methods during
the training phase. We observe that Avg-PPO is able to keep
QoS degradation under 10% with 𝑤𝑄𝑜𝑆=100. When evaluated,
on the same traffic distribution as the one used for training
(cf., Table I), Avg-CPO and Avg-PPO (𝑤𝑄𝑜𝑆=1, 𝑤𝑅𝐸=100)
achieve the same mean bandwidth allocation of 37.2%, and a
mean QoS degradation of 8.42% and 8.3%, respectively. This
bandwidth allocation is 12.8% lower than Pred-Alloc, which
allocates a 50.8% mean bandwidth in this scenario.

Fig. 4c and Fig. 4d show the training progress of WC-
CPO and WCSAC approaches on the randomized traffic. The
shaded area around the curves denotes the minimum and
maximum of the corresponding quantities. The variation range
of mean bandwidth and QoS degradation represent the ability
of the two approaches to operate under different network
conditions and traffic distributions. As reported in Table I,
when evaluated on dataset traffic, WC-CPO and WCSAC lead
to a mean bandwidth allocation of 52.5% and 39%, and a
mean QoS degradation of 1.06% and 6.73%, respectively. In
this scenario, the respective approaches lead to 2.5% higher,
and 11.8% lower bandwidth allocation compared to Pred-Alloc.

TABLE I: Evaluation Performance of Different Approaches

Method Dataset Traffic Offset Dataset Traffic
BW allocation(%) QoS degradation(%) BW allocation(%) QoS degradation(%)

Avg-PPO 37.2 8.3 39.7 40.8
Avg-CPO 37.2 8.42 39.4 44.5
WC-CPO 52.5 1.06 53.9 8.98
WCSAC 39 6.73 56 7.19
Pred-Alloc 50.8 1.01 77.7 0.995

D. Generalization to Unseen Traffic Pattern

To assess generalization, we offset the traffic curve by 2
users/sec, i.e., the trained agents are evaluated on the dataset
traffic that represents 3 to 5 users/sec. The results are reported
in Table I. In this scenario, Avg-CPO and Avg-PPO lead to
similar mean bandwidth allocation of 39.4% and 39.7%, but
a mean QoS degradation of 44.5% and 40.8%, respectively.
The results assert that these methods over-fit to the training
traffic pattern and are unable to generalize to previously unseen
traffic, leading to high QoS degradation beyond the threshold.
Note that, in this scenario, although Pred-Alloc leads to a
high bandwidth allocation of 77.7%, it keeps the mean QoS
degradation 𝛽max(𝑇) under 1%. WC-CPO and WCSAC lead to
a mean bandwidth allocation of 53.9% and 56%, and a mean
QoS degradation of 8.98% and 7.19%, respectively. Although
resulting in better generalization than the previous approaches,
these results show that WC-CPO overfits to the worse-case
traffic scenarios due to the exponential cost, while WCSAC
adapts well to both average and worse-case scenarios.

E. Robustness to Varying Network Conditions and Inaccurate
Traffic Predictions

First, we evaluate the proposed approach, on the dataset traf-
fic, under different network conditions. To control the severity
of network conditions (i.e., from favorable to worst-case),
we assume them to be deterministic. In this case, 𝑞𝑑𝑒𝑡𝑡 (−3)
and 𝑞𝑑𝑒𝑡𝑡 (+3) represent worst-case and best-case network
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Fig. 5: WCSAC performance at different net-
work conditions (𝛽thresh = 10%)
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Fig. 6: WCSAC performance with inaccurate
traffic prediction (𝛽thresh = 10%)
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Fig. 7: WCSAC avg. BW and QoS degrada-
tion during fine-tuning on deterministic net-
work condition 𝑞𝑑𝑒𝑡𝑡 (+1) with 𝛽thresh = 10%

conditions, respectively. In Fig. 5, the horizontal lines show
the bandwidth allocation and QoS degradation when the QoS
is randomly sampled using the network model output, while
the curves show their trend under static network conditions
with varying 𝑑. Evidently, as the network conditions aggravate,
both the QoS degradation and bandwidth allocation increase.
The QoS degradation stays within the threshold 𝛽thresh as long
as 𝑑 ≥ −1.5. For 1.5 < 𝑑 < 3, the QoS degradation is
slightly higher than the threshold. Finally, at 𝑑 = −3, the
QoS degradation hits 30.4%. This is expected since WCSAC
constrains only the CVaR of the cost distribution at a given risk
level (i.e., 𝛼) under the limit. On the other hand, as network
conditions become more favorable, it results in an increase in
resource efficiency and a decrease in QoS degradation.

Subsequently, we evaluate the sensitivity of the proposed
approach to inaccurate traffic prediction. For this purpose,
we use dataset traffic but introduce truncated Gaussian noise
N(0, 𝜎2

𝑛𝑜𝑖𝑠𝑒
) to the traffic probability distribution, at each step.

After normalization, this resulting CDF is fed as the state to
the RL agent. In Fig. 6, the horizontal lines show the resource
allocation and the QoS degradation when the traffic prediction
is fully random (i.e., 𝑥𝑡𝑛 ∼ U(1, 5)), while the curves
show these metrics as 𝜎𝑛𝑜𝑖𝑠𝑒 increases. We can observe that
when prediction inaccuracy increases (i.e., for higher 𝜎𝑛𝑜𝑖𝑠𝑒),
both the QoS degradation and bandwidth allocation increase.
However, even with fully randomized traffic prediction, the
proposed approach shows a QoS degradation that is only
13% higher than the threshold 𝛽thresh. This is attributed to
the RL agent taking the current QoS degradation level into
account when allocating resources, which acts as a feedback
mechanism and allows the agent to allocate higher resources
even if the traffic prediction is inaccurate.

F. Fine-tuning Performance

In a production network, the online data regarding a slice’s
traffic pattern and the network condition can be used to
continuously improve the network model and resource scal-
ing algorithm with fine-tuning. Since the traffic pattern and
network conditions do not change during testing, learning to
adapt to other scenarios is not required during fine-tuning.
Therefore, we train the WCSAC algorithm with 𝛼 = 0.99
(i.e., risk-neutral), and at a lowered learning rate for 500
epochs. Fig. 7 shows the bandwidth allocation and the QoS
degradation when WCSAC is fine-tuned on the dataset traffic

with a favorable and deterministic network condition, i.e.,
𝑞𝑑𝑒𝑡𝑡 (+1). The optimal bandwidth allocation is achieved within
250 epochs while maintaining QoS degradation below the set
threshold of 10%. We evaluate the fine-tuned model using
the best checkpoint during training. Evaluation results on the
dataset traffic show a mean bandwidth allocation of 29.7%
and a mean QoS degradation of 7.85%. Compared to previous
results in Fig. 5, there is 7.8% less bandwidth usage while
maintaining QoS degradation under the threshold. We also
test this fine-tuned algorithm on the dataset traffic offset by
2 users, with randomly sampled network conditions, which
leads to a mean bandwidth allocation of 56.9% and a mean
QoS degradation of 9.06%. Comparing these to the results in
Table I, we can conclude that the gain in performance during
fine-tuning comes at only a slight cost to the generalization
ability of the algorithm.

VI. CONCLUSION

In this work, we developed a novel framework utilizing
a risk-constraint DRL algorithm, a regression-based network
model and a traffic prediction module, for dynamically scaling
slice resources in a 5G network. We proposed a regression-
based network model to learn the distribution of QoS at any
resource allocation and traffic, and utilized that to train the
RL agent offline. To achieve generalization, the RL agent is
fed with future traffic and current QoS degradation level, and
is trained on randomized traffic. Our results show that the
resulting RL agent is able to show similar performance as RL
agents trained on the exact test-time traffic. Furthermore, it is
able to maintain its performance across different real-world
traffic patterns. Additionally, we demonstrated the agent’s
robustness under extreme network conditions and inaccurate
traffic prediction. Finally, we showed that fine-tuning can be
used to improve the performance further when the network
condition or the slice traffic pattern is known in advance.
As a future direction for this work, we intend to extend the
evaluations over multiple types of resources and slices. We
also plan to validate the algorithm on an expansive 5G testbed.
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