
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999 1599

A Generic Platform for Scalable Access
to Multimedia-on-Demand Systems

Raouf Boutaba and Abdelhakim Hafid,Member, IEEE

Abstract—Access to multimedia servers is commonly done
according to a client/server model where the end user at the
client host retrieves multimedia objects from a multimedia server.
In a distributed environment, a number of end users may need
to access to a number of multimedia servers through one or
several communication networks. Such a scenario reveals the
requirement for a distributed access platform. In addition, the
demand for multimedia information is increasing beyond the
capabilities of high performance storage devices. Therefore, load
distribution and scalability issues must be addressed while design-
ing and implementing the distributed access platform. This paper
introduces a scalable access platform (SAP) for managing user ac-
cess to multimedia-on-demand systems while optimizing resource
utilization. The platform is generic and capable of integrating
heterogeneous multimedia servers. SAP operation combines static
replication and dynamic load distribution policies. It provides
run time redirecting of client requests to multimedia servers
according to the workload information dynamically collected
in the system. To support multimedia-on-demand systems with
differing quality-of-service (QoS) requirements, the platform also
takes into account, as part of the access process, user QoS
requirements and cost constraints. This paper also presents an
application of the generic platform implementing a scalable
movie-on-demand system, called SMoD. Performance evaluation
based on simulation shows that in many cases SMoD can reduce
the blocking probability of user requests, and thus can support
more users than classical video-on-demand (VoD) systems. It also
shows that the load is better distributed across the video servers
of the system.

Index Terms—Load distribution, multimedia-on-demand, qual-
ity-of-service (QoS), scalability, service access.

I. INTRODUCTION

RECENT developments in computer and communication
technologies have rendered possible the provision of

multimedia-on-demand services. Typically, a multimedia
server reserves a certain amount of resources to deliver
a multimedia stream with certain qulaity-of-service (QoS)
guarantees. The above implies that a multimedia server
can support only a limited number of users depending on
its capacity, e.g., CPU, bandwidth, etc. A large number of
studies have concentrated on the performance of multimedia
servers. Most of the proposed approaches use costly storage
devices, supercomputers, and massively parallel memory and
I/O systems.

Manuscript received May 1, 1998; revised April 1, 1999.
R. Boutaba is with the Electrical and Computer Engineering Depart-

ment, University of Toronto, Toronto, Ont., M5S 3G4 Canada (e-mail:
rboutaba@comm.utoronto.ca).

A. Hafid is with the Electrical and Computer Engineering Department,
University of Western Ontario, London, Ont., N6A 5B9 Canada.

Publisher Item Identifier S 0733-8716(99)05599-7.

However, the demand for multimedia applications is in-
creasing even beyond the capabilities of high performance
multimedia servers. Therefore, the trend is toward replicating
multimedia servers. Future multimedia-on-demand environ-
ments are envisioned to be composed of a large number of
client hosts and a large number of heterogeneous multimedia
server instances connected through high-speed networks. The
majority of emerging multimedia applications, despite their
different logic, would be based on a client/server communi-
cation model. This paradigm requires a number of common
multimedia support services ranging from high-speed trans-
port to real-time storage and processing services. Today’s
challenge is particularly the provision of the system software
necessary to support and facilitate the creation, evolution,
and management of multimedia services and applications. In
essence, our work falls into this category. More specifically,
a system approach is proposed to address the management
of user access to distributed multimedia-on-demand systems
while optimizing resources utilization.

The shift toward distributed client/server architectures to
implement multimedia-on-demand systems stresses the re-
quirement for distributed access platforms to hide the individ-
uality and heterogeneity of media servers to end users. Such
access platform has to be scalable so as to support the ever
increasing number of users and their varying requirements.
In this paper, we introduce a scalable access platform (SAP).
SAP is a generic platform for scalable access to multimedia-
on-demand systems, designed to overcome the limitations of
current multimedia servers. It builds on existing heterogeneous
media server technologies to provide a uniform multimedia on-
demand system to end users. In addition, adding a new server
technology to SAP only requires a mapping between SAP’s
generic protocol and the server’s proprietary access protocol.

The scalability of SAP is addressed through a static repli-
cation of multimedia objects and a dynamic load distribution
across the multimedia servers in the system. Load distribution
is particularly important due to the nonuniform distribution
of users’ requests, which leads to load imbalances among
servers and poor utilization of the overall system resources.
Typically, highly loaded servers might reject some service
requests when lightly loaded servers are available. This leads
to inefficient utilization of the available server resources and
a higher blocking probability of users’ requests.

It is the objective of SAP to support scalable access to
multimedia objects while distributing the load across the
multimedia servers available in the system. SAP assumes
that the most frequently requested multimedia objects are

0733–8716/99$10.00 1999 IEEE

1600 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

replicated on a large number of servers. In addition, for each
user request, SAP supports the dynamic selection of the most
appropriate multimedia server to handle this request. Several
criteria are considered in the selection process including: the
user’s QoS requirements, the user’s host capabilities to display
the requested multimedia object, the cost constraints, and the
current workload of the multimedia servers. The result of the
selection process is the least loaded multimedia server in the
system, which satisfies the previous criteria. A user request is
rejected only if none of the servers in the system can satisfy
the request, which reduces the overall blocking probability of
service requests.

In order to reduce the overhead introduced by the load
distribution capability, i.e., the exchange of load information,
multimedia servers are aggregated into management domains.
This also reduces the complexity of the overall access manage-
ment task. Each domain is responsible for managing access to
the multimedia servers it aggregates, as well as for distributing
the load among them. The various domains are then brought
together into a hierarchy of domains to provide a system-
wide access. To allow for such organization of user’s access,
SAP introduces intermediate access agents and managers
between multimedia clients and servers. The managers are
hierarchically distributed in the system for directing user
requests to the most appropriate multimedia servers. Based on
the system state information exchanged in the frame of access
management and load distribution procedures, SAP is also
capable of recovering automatically from QoS degradations
and multimedia server failure.

The SAP platform is also generic in that it can be ap-
plied to support a variety of multimedia applications such as
video-on-demand (VoD) or news-on-demand. A demonstrator
application of the SAP capabilities has been implemented
and deployed to provide a scalable movie-on-demand system
(SMoD). Simulation-based performance measures show the
efficiency of SMoD compared to classical VoD systems. The
blocking probability of user requests is minimized, and the
overall SMoD availability is increased.

The paper is organized as follows. Section II discusses
related work, particularly emphasizing load distribution and
scalability issues. Section III addresses the building of a
middleware between media-on-demand clients and servers.
It describes the SAP platform designed for efficient load-
balancing and resource discovery. Section IV presents the
load distribution policies as defined for the access platform.
Section V describes the implementation and deployment of a
scalable SMoD using SAP. In Section V, we also evaluate
the performance of SAP/SMoD through simulations. Finally,
Section VI concludes the paper and gives directions for future
research.

II. RELATED WORK

The demand for multimedia information is increasing be-
yond the capabilities of high performance storage devices. It
leads to the necessity of replicating server instances, using
high-speed networks. This replication is intended to present
a uniform storage architecture to the client, by hiding the
distribution of servers [1]. In this perspective, load distribution

and scalability issues have to be addressed. This section
overviews classical approaches for distributing the load across
servers and presents some of the ongoing work addressing
scalability issues in multimedia-on-demand environments.

Load distribution algorithms can be classified into static
and dynamic. In static algorithms, task assignment decisions
are madea priori and are not changed during run time. In
contrast, dynamic algorithms use current system workload
information for run time assignment of tasks to appropriate
servers. Therefore, despite the higher run-time complexity,
dynamic algorithms can provide better performance than static
algorithms. Several existing resource optimization approaches
implement a dynamic load distribution algorithm [2]–[4]. One
crucial problem in distributed environments is the unavail-
ability of an accurate and timely global state information.
Therefore, the majority of load distribution approaches is
heuristic based, and hence, it provides suboptimal performance
only. Taxonomy of dynamic suboptimal heuristic-based load
distribution algorithms is given in [5].

Three issues have to be considered for the design of a
dynamic load distribution facility:

1) the load information collection policy, which refers to
the model adopted for the representation of the workload
information and the frequency at which the workload
state information is locally updated;

2) the load information exchange policy, which refers to the
way workload state information is disseminated among
the servers in the system;

3) the task placement policy, which refers to the task
assignment decision based on the workload information.

The workload of a server is commonly modeled as the
number of tasks currently supported by this server [6]. This
includes both executing tasks as well as those waiting for
execution in the server’s queue. The server’s processing speed
is also an important parameter for the evaluation of the
workload. Indeed, the time necessary for the execution of the
same task by different servers depends on the performance of
these servers. Therefore, the workload of a server is more
accurately computed as the number of processes currently
executed divided by the speed of the server [4]. However,
this load information model does not take into account the
size of the tasks in terms of processing time. Indeed, a server
executing a single processing power demanding task could
be more loaded than another server executing a number of
lightweight tasks. As we will show in the Section IV, general
QoS requirements associated with service requests can be used
to determine a more accurate workload information.

Most of existing policies for information exchange are
polling based. Polling can be initiated by a lightly loaded
server to locate a heavily loaded one, or it can be initiated by
a heavily loaded server to locate an idle one [4], [7]. The first
approach is called server-initiated polling, while the second
one is called client-initiated polling. Eageret al. [7] demon-
strated that none of these approaches performs consistently
over the whole range of system workload. A combination of
these two basic approaches is proposed in [2] where client-
initiated polling only occurs at low system workload, whereas

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1601

server-initiated polling is performed whenever appropriate.
Most polling-based load distribution policies use a polling
limit, usually defined as a function of the number of servers
in the system [2], to control the number of pollings. Indeed,
systems with a large number of servers involve a large number
of pollings leading to a high overhead in terms of network
bandwidth and CPU, which may cancel the performance gain
obtained via load distribution.

The previous considerations reveal a major deficiency of
polling-based load distribution algorithms, i.e., the lack of
scalability. This paper aims to show how scalability issues
can be addressed using the “divide and conquer” philosophy.
In our approach, the domain concept is introduced as a flexible
means for grouping servers according to geographical, orga-
nizational, or servers’ performance criteria. Other criteria for
grouping servers into domains and their tradeoffs are discussed
in [8]. The load distribution is based on a server-initiated
polling mechanism implemented for each individual domain.
The various domains are then organized into a hierarchy of
domains to provide a system-wide load distribution facility.
The size of the domains can be determined and/or changed to
modulate the overhead introduced by the polling compared
to the performance of the polling-based load distribution.
The domain hierarchy may contain as many domain levels
as necessary according to the size and nature of the overall
system, e.g., the number of servers, their distribution, the
network topology, etc.

The majority of task placement policies are threshold-based,
i.e., a server is considered a candidate for receiving and
processing new tasks if its workload is below the threshold [2],
[9]. However, using a single fixed threshold is not appropriate
in case of rapid load fluctuations. Indeed, rapid fluctuations,
up and down around the threshold, would base the decision-
making and induce frequent oscillations. Therefore, double
thresholds have been introduced to provide a tolerance of state
fluctuation [10].

In this paper, load distribution is limited to tasks cor-
responding to service requests issued by clients to retrieve
and display multimedia objects. However, the dynamic load
distribution components discussed earlier are relevant because
our approach combines both replication strategies with run
time redirecting of client requests. The latter are submitted
to multimedia servers according to the workload information
dynamically collected in the system. Server and file replica-
tion are the common mechanisms used to provide scalable
multimedia storage.

Multimedia storage architectures have recently been the
subject of numerous studies, particularly addressing the real-
time demands of audio and video. Several high performance
multimedia storage systems have been designed to increase
the bandwidth and storage capacity of single disks [11]–[14].
However, the scalability of such systems is limited since disks
cannot be incrementally added to provide higher bandwidth
and storage facilities [1]. Undergoing work addresses the scal-
ability issue of multimedia storage by replicating multimedia
servers in the system and by providing a uniform access
interface to end users. These approaches are similar to file
replication and placement techniques used in conventional file

servers, such as the static replication of all files on all servers
in the system [15] or the replication of the frequently ac-
cessed files on all servers [16]. However, the latter techniques
have been designed to retrieve classical data files, and are
not adapted for real-time access and retrieval of multimedia
objects, e.g., audio and video.

Few recent approaches have to be mentioned here as they
have particularly addressed the scalability issue for multimedia
storage architectures [17]–[19]. The work presented in this
paper falls into this category. Dan and Sitaram [17] defined
a static scheme for the placement of video objects based on
statistical information. This scheme is complementary to our
proposal, which provides a similar scheme for the replication
of multimedia objects. However, this scheme reduces load
imbalances but cannot eliminate them, since it implements
a static statistics-based replication algorithm. Therefore, our
approach adds a dynamic load distribution facility to the static
replication of frequently accessed multimedia objects.

In the Berkeley approach [18], storage management al-
gorithms have been defined for hierarchical distributed VoD
systems. The algorithms manage the distributed cache in video
servers and provide a video placement capability, which selects
a video server on which to place a requested video according
to the servers’ load, network load, and service-wait time.
The Berkeley VoD system is targeted for enterprise VoD
environments, and hence it emphasizes the provision of access
to a large number of videos by a small number of users. In
contrast, emphasis in our approach is on the rapid access to
a small number of multimedia objects by a large number of
users. A typical scenario in which our approach is suitable
is the provision of access to SMoD servers. In general, our
approach is suitable to provide access to commercial media-
on-demand servers targeting large numbers of users.

In the latter perspective, a scalable hierarchical video storage
architecture has been defined at Lancaster University [13],
which is based on a three-level distribution hierarchy sup-
porting both file replication and network node striping for
balancing the load across multimedia server instances. Net-
work striping implements the redundant arrays of inexpensive
disks (RAID) concept [20], but operates at the level of the
network. The striping technique consists to split individual
multimedia files into pieces and to distribute them across
server instances, therefore allowing the sharing of a stream
across these instances. Our approach is different in that it is
targeting continuous multimedia file servers and abstracts from
the storage details of multimedia objects.

Finally, commercial video servers are also available, for
example, from Microsoft [19], Oracle [21], and Silicon Graph-
ics [22], etc. These products basically support traditional
file system operations, but also support real-time file access
as well as the provision of data streams at a guaranteed
rate. While the Tiger Video file server from Microsoft is
built entirely of hardware components, Oracle and Silicon
Graphics use supercomputer and massively parallel memory
and I/O systems. Both approaches are not scalable. In contrast,
our approach promotes the use of hierarchically organized
multimedia servers distributed across the network. By means
of a load distribution facility, optimized access to server

1602 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

instances is provided by a software platform, which acts as an
intermediate service between multimedia servers and clients.
The previous products and others can be interfaced by our
SAP.

In general, our platform can be distinguished by the ob-
jectives pursued for its design. Indeed, SAP is intended to
be generic, capable of integrating heterogeneous multime-
dia servers by providing appropriate gateways, and scalable
in managing user access to multimedia-on-demand systems,
while optimizing resource utilization. A key aspect in the
design of SAP is to take into account user QoS requirements in
the access process, the objective being to support multimedia-
on-demand systems with differing QoS requirements. Among
the QoS constraints, only those related to the end systems
(client and server systems) capabilities are considered within
SAP. The platform builds on existing operating systems and
existing continuous media file systems to provide scalable
access with a better performance.

In this paper, the transport network capacity and access
requirements in terms of bandwidth are not considered. SAP
assumes that there are no delivery bandwidth constraints on
the communication network, e.g., between client hosts and
media servers. Although this is a rather simplistic assumption,
it allows us to focus on the system level of the platform. Some
research groups have addressed the bandwidth constrained
multimedia-on-demand systems including [10], [18], [23].
Another parameter used as part of SAP procedure is the cost
of user access to multimedia objects, which should include the
costs of retrieval and delivery. However, this paper does not
address pricing considerations; it only considers the cost as a
parameter during the negotiation of user access to a multimedia
object. An investigation of costs of storing and transporting
objects in distributed multimedia-on-demand systems is done
in [23].

III. SAP DISTRIBUTED ARCHITECTURE

Access to multimedia servers is commonly done according
to a client/server model where the end user at the client host
retrieves multimedia objects from a multimedia server. In a
distributed environment, a number of end users may need
to access a number of multimedia servers through one or
several communication networks. This scenario reveals the
requirement for a distributed platform to support user access
to multimedia objects according to their QoS requirements
while optimizing multimedia server resource utilization. For
that purpose SAP has been designed to act as a middleware
between media-on-demand clients and servers. SAP architec-
ture is distributed and contains two basic components. The
first one, at the client host, acts as the user access interface. It
controls user access to the requested multimedia objects and
checks if the required QoS parameters are satisfied. The second
component, at the server level, interfaces with the multimedia
objects’ storage server, e.g., a continuous media file server. It
manages access requests to the multimedia objects supported
by this server and keeps track of the server load information.
Hereafter, the first component will be referred to as the user
agent and the second one as the server agent. Furthermore,

depending on the networked system topology, the platform
can contain a number of additional management components
acting as intermediates between user agents and server agents.
These intermediate managers allow the directing of user re-
quests to the most appropriate servers in a transparent and
dynamic manner. Both user QoS requirements and multimedia
servers’ availability are taken into account in the process
of directing users’ requests. Note that in SAP, it does not
matter what the QoS parameters are exactly. These depend on
the features of the multimedia system to be accessed using
SAP; for example, in our implementation of a SMoD system,
described in Section V, the QoS parameters managed within
SAP and used to access a video object are the frame rate, the
colors, and the resolution. The user agent allows the user to
set these parameters at the access interface.

Two types of managers are defined for the platform, the
service access manager (SAM), and the domain manager. The
latter is responsible for a domain, grouping a set of multime-
dia servers according to different criteria, e.g., geographical
constraints. SAM is responsible for a set of domains grouped
according to organizational policies. It acts as a smart directory
service, gathering both functional and management informa-
tion on the multimedia domains and makes this information
available to domain managers and end users. Functional in-
formation concerns mainly the multimedia content supported
within the multimedia domains. Management information is
primarily used for managing user access to multimedia servers
by directing user requests to the appropriate domains based
on: load information, QoS requirements, and cost constraints.
The domain manager monitors the multimedia servers within
its domain through the server agents associated with these
multimedia servers. It collects state as well as load information
and performs the appropriate directing of user requests. It also
detects multimedia server failures whenever they occur. As
a result, SAM and domain managers support the appropriate
exchange of messages between user agents and server agents.
In addition, they maintain state information that allows the de-
termination of the most suitable multimedia server in response
to a user request.

The introduced agents and managers can be configured
(their number, location, and dependencies) to suit a given
physical topology or a given multimedia service provision
policy. Based on these agents and managers, the overall
SAP platform intervenes between users, i.e., client hosts, and
existing/future multimedia servers, i.e., server machines, to
increase service availability as well as to optimize resource
utilization.

Fig. 1 shows an example configuration of SAP, illustrating
the distributed feature of SAP. The example configuration
consists of a two-level hierarchy where the service access
manager is the root, domain managers constitute the first level,
and server agents are the leaves. However, the architecture
of SAP may contain as many domain levels as necessary,
according to the size and feature of the overall system, e.g.,
the number of servers, their distribution, the network topology,
etc. The performance of the overall system is also an important
design choice to determine the number of domain levels in
the access platform. Indeed, involving a large number of

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1603

Fig. 1. SAP distributed architecture.

intermediate domain managers in the decision making process
will affect the performance in terms the of response time.

Sections III-A–E present in detail the functions provided by
SAP components, as well as the messages exchanged between
them.

A. The User Agent

The user agent consists of three components: user interface,
QoS manager, and a client controller (as shown in Fig. 2). The
user interface consists of two main parts. The first one offers a
way to search and select a multimedia object from a database.
The second one allows the specification of the desired quality
for the presentation as well as access cost constraints. It also
allows the user to renegotiate the QoS parameters during the
multimedia object display.

Whenever a user selects a multimedia object with specific
QoS requirements, the user interface component invokes the
QoS manager, which starts by checking whether the client
machine characteristics, such as the screen size and color,
support the requested QoS. If not, the QoS manager sends
to the user a reject message, possibly with an alternative offer,
through the user interface. In this case, the user might abandon
the request, accept the alternative offer if any, or initiate a
renegotiation. If the specified QoS parameters conform to the
capabilities of the client host, the QoS manager invokes the
client controller together with its user requirements, i.e., QoS
and the client machine capabilities, like the available decoder.
The client controller builds a request message before sending it
to the domain manager. It then waits for a response at a specific
host port while initiating a timer. If the timer expires, or the

Fig. 2. User agent architecture.

user request is rejected by the multimedia-on-demand system,
a reject message is displayed at the user interface. Otherwise,
the client controller invokes the appropriate multimedia client
to display the multimedia object. This is done via a message
interpreter responsible for mapping SAP protocol data units to
a specific primitive that starts the corresponding multimedia

1604 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

client. The latter can be any of the available commercial or
research multimedia displays, like a video or an audio player.

During the multimedia object display, the user may ex-
perience a QoS degradation, manifested, for example, as an
unacceptable presentation quality. In such an occurrence, the
user agent notifies the appropriate domain manager asking
for an alternative server capable of delivering the multimedia
object with the contracted QoS. In the current implementation,
the state of the multimedia object display is registered at the
time the display is interrupted, e.g., the position of the last
video scene displayed. This allows the alternative server to
continue the delivery of a multimedia object started by another
server. The new server restarts the multimedia object display
based on the state parameters registered earlier.

The object-based design of the user agent allows for higher
flexibility and easier maintenance. As an example to support a
new multimedia application, one can integrate the appropriate
user interface without changing the existing objects of the user
agent.

B. The Server Agent

A server agent is delegated to represent a multimedia
server within SAP. The server agent continuously waits at
a specific service port for requests coming from its domain
manager. When a request is received, the server agent checks
first the capacity of the multimedia server to deliver the
requested multimedia object with the desired QoS. This leads
to either starting the delivery by the server or sending a
reject message to the user. The server agent is composed
of two main parts or functions. The first part deals with the
communication with other SAP components like the domain
manager and the user agent. The second part is related to the
multimedia storage server represented by the server agent in
the SAP. Its implementation is specific to the encapsulated
multimedia server. The advantage of this design is the ability
to change one multimedia server to another by changing
only the corresponding part in the server agent. Similarly,
supporting a new multimedia server by the SAP necessitates
the provision of the corresponding interoperability functions
at the server agent.

In the context of the SAP service requests management,
a server agent exchanges messages with the domain server
manager concerning its operational state and its availability.
This allows the SAP to detect faulty multimedia servers.
For this purpose, the server agent periodically notifies the
domain manager of its availability to handle service requests.
Notification frequencies need not be equal for all server agents
in the system. The notification frequency depends on a number
of factors, such as the reliability of the server; in addition, it
takes into account how much importance we place on these
factors. Such factors can be computed according to collected
statistics on the past behavior of the server.

The load information of a multimedia server, referred to as
the server availability, is computed as the number of service
requests the server can handle with a given QoS at a given
time. This highly depends on the internal implementation of
the multimedia server such as the processing architecture,
storage capacity, access performance, etc. The server agent

computes the load of the multimedia server it encapsulates,
based on the load model described in Section IV-A.

C. SAM

The role of the SAM is to redirect user requests to
the appropriate multimedia domain—that is, the domain
containing the most appropriate multimedia server to handle
the request. For this purpose, SAM maintains two state
information tables, namely SAMMMObject Table and
SAM Load Table. SAMMMObject Table contains two
attribute types: MMObjectId and List of Domains. For each
multimedia object identified by MMObjectId, it gives the list
of domains containing at least one instance of this object. Each
domain in the Listof Domains is identified by its DomainId.
SAM Load Table gives the load of this domain for each
domain, identified by a DomainId.

Upon receipt of a request from a domain manager or user,
SAM determines the domains with at least one multime-
dia server storing the requested multimedia object. It uses
SAM MMObject Table for this purpose. The load information
contained in SAMLoad Table is sorted from the lightly loaded
domain to the highly loaded one. According to these tables,
domain managers are successively requested to deliver the
multimedia object. A reject message is sent back if none of
the domains can satisfy the request.

The load information for each domain maintained by SAM
is received from the corresponding domain manager. The latter
computes the domain load as the weighted average sum of
the load levels of the various multimedia servers within the
domain.

D. The Domain Manager

Domains are logical structures used as flexible means for
clustering multimedia servers in order to control resources
utilization. Each domain contains a domain manager, which
maintains the global view of the encapsulated multimedia
servers. Based on global and timely knowledge of servers state,
a domain manager can offer end users better quality and fault
tolerant access to the multimedia objects supported by these
servers. The state information on a server concerns mainly its
operational state, e.g., out of service, and its availability, e.g.,
load, response time, etc.

As described previously, domains can be defined according
to geographical, organizational, and service performance as
well as other criteria. The various domains are organized into a
hierarchy of domains to provide a system-wide access to mul-
timedia objects. The domain structuring allows to reduce the
management complexity of the overall multimedia-on-demand
system. Indeed, a domain manager performs its management
task autonomously, but may cooperate with other domain
managers in the context of the global access management
task. The number and size of the domains can be determined
based on several factors, such as investment versus revenue for
the service provider and/or quality versus price of the offered
services to end users.

Similar to SAM, but within a single domain, the do-
main manager redirects user requests to the appropriate
server. It maintains mainly two state information tables,

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1605

namely, DMMObject Table and DLoad Table. Emphasis
is given on the load distribution capability. Therefore,
the state information is limited to servers’ load infor-
mation. DMMObject Table contains two attribute types:
MMObject Id and List of ServerMMO. It gives, for each
multimedia object identified by MMObjectId, the list of
servers storing a copy of the multimedia object together
with the QoS characteristics of this copy. Each item in the
List of ServerMMO is composed of the ServerId storing a
copy of the object and a list of QoS characteristics of the
object copy. DLoad Table gives the load of this server for
each server, identified by a ServerId.

Upon receipt of a request from a user agent or from SAM,
the domain manager determines from DMMObject Table the
servers storing the requested multimedia object with the QoS
characteristics required by the user and supported by the user
host. The domain manager compiles the load information
contained in DLoad List to determine the most appropriate
multimedia server with respect to the user request. For that
purpose, DLoad List is sorted from the lightly loaded server
to the highly loaded one. In practice, the domain manager
submits the user request to the server agent responsible for the
least loaded server containing a copy of the multimedia object.
This process is repeated until a server succeeds in delivering
the requested multimedia object or all the servers fail. In the
latter case, a notification is sent to SAM.

The load information for each multimedia server maintained
by the domain manager is received from the corresponding
server agent. The latter computes the load of the server it
is responsible for, based on the load model described in
Section IV-B.

E. Interactions Between SAP Components

The components described in the previous sections interact
with each other through a message passing mechanism to
provide the overall SAP function. The following signaling
messages are defined to support these interactions.

• ServiceInq (SenderId, UserId, MMObject Id, QoS,
Host Capabilities): this message is sent by the user agent,
SAM, a domain manager, or a server agent with the
following parameters. SenderId identifies the sender,
User Id indicates the IP address of the user’s host and
the used port number, MMObjectId uniquely identifies
the requested multimedia object, QoS indicates user QoS
requirements that can be directly expressed in terms
of human-perceptible quantities, and HostCapabilities
indicates the static capabilities of the user’s host, such
as the monitor size and resolution or the supported
compression schemes.

• ServiceRes (UserId, MMObject Id, Status): this signal
is sent by a server agent or a domain manager, in response
to ServiceInq(), with the three following parameters.
User Id, MMObject Id, and Status indicate whether the
user request can be supported (Status= ACCEPT) or not
(Status= REJECT).

• ServiceConf (UserId, MMObject Id, Status,
Proposition): this message is initially sent by a
server agent to the user with four parameters.

User Id, MMObject Id, and Status indicate whether
the user accepts the Proposition (Status= ACCEPT) or
not (Status= REJECT), and Proposition indicates how
the server agent can deliver the multimedia object (e.g.,
QoS characteristics) identified by MMObjectId.

• ServiceViol (SenderId, User Id, MMObject Id,
QoS, HostCapabilities): this signal is sent by a server
agent when the server cannot maintain the delivery of
the multimedia object (identified by MMObjectId) to the
user (identified by UserId) while satisfying the user QoS
requirements QoS. It is also sent by the user, identified
by UserId, when he/she notices a QoS degradation of
the presentation of the multimedia object identified by
MMObject Id.

• ServiceAlive (SenderId): this signaling message is sent
by a server agent, identified by SenderId, to its domain
manager. It is used to detect server failures.

• Add MMObject (SenderId, MMObject Id,
MMObject Characteristics): this message is sent by a
server agent to a domain manager or by a domain man-
ager to SAM when a new multimedia object is created.
It contains three parameters. SenderId, MMObject Id,
and MMObjectcharacteristics, which indicates the static
characteristics of the multimedia object, such as QoS
constraints (e.g., color and resolution) and compression
format (e.g., MPEG or MJPEG).

• DeleteMMObject (SenderId, MMObject Id): it is sent
by an agent server to a domain manager or by a domain
manager to SAM when an existing multimedia object is
deleted.

• UpdateMMObject (SenderId, MMObject Id,
MMObject Characteristics): this message is sent by a
server agent to a domain manager when the characteristics
of an existing multimedia object are altered.

• UpdateLoad (SenderId, Load Level): this signaling
message is sent by a server agent, identified by SenderId,
to a domain manager to report that the current load of the
server has reached LoadLevel. It is also sent by a domain
manager, identified by SenderId, to SAM notifying that
the current load of the domain has reached LoadLevel.

These primitives assume a global naming scheme in the
distributed system to uniquely identify the various involved
entities including multimedia objects and SAP components.
Some exchanges between SAP components using service
primitives are shown in Fig. 3. The exchanges shown are
only for illustration purposes and do not depict any specific
scenario.

IV. QOS SENSITIVE LOAD DISTRIBUTION

A. Load Model for Media Servers

One of the main criteria used to find the most appropriate
server to which to redirect users service requests is the load
of multimedia servers. Usually, a server’s load is computed
as the number of processes currently executed divided by the
server’s speed, or equivalently, the number of service requests

1606 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 3. Interactions between SAP components.

currently handled divided by the server’s speed (a function of
the CPU and disk access speeds).

In a multiservice environment supporting different QoS,
the load information, as defined earlier, does not reflect the
real load and may lead to inefficient placement decisions.
Indeed, the “least loaded server,” handling the smallest number
of service requests, may not correspond to the server which
has the smallest load volume. For example, a server running
a process that requires a large amount of resources, e.g.,
decoding and displaying a high resolution video, is effectively
more loaded than a server running tens of light processes,
e.g., text processing. Furthermore, there are no guarantees that
the selected least loaded server can support the user QoS
requirements.

To alleviate these limitations, we propose a scheme that
provides accurate information about the capacity of a server to
support a given request by performing extensive measurements
prior to service operation. This scheme allows to determine
the server which is lightly loaded, and it is able to support the
user request with the desired QoS.

In the proposed scheme, QoS requirements are grouped into
QoS classes. Each class represents a range of QoS parameters’
values. A service request is associated with a QoS class, and
thus, it requires a certain amount of resources from the server.
A load model with similar properties than the one described
here can be found in [24]. However, the model in [24] is
introduced to characterize the load of a network link in a
multiclass broadband environment.

At a given time, the state of a given server can be de-
fined as the set of service instances currently supported by
the server. Based on this classification, we can determine
through experiments the set of nonblocking, semiblocking, and
blocking states for a given server. A server is in a nonblocking
(respectively, blocking) state if it can (not) support new service
request(s) without affecting the service instances currently
supported. When the server is in a semiblocking state, certain
new service requests can be supported while others cannot.
This QoS classification and server states determination are
formalized as follows.

Let us define as the set of QoS classes a server can
support and the cardinality of .

Definition 1: is defined as the set of service instances
currently supported by server at time . It reflects the state
of a given server at a given time.

We note , where
is the number of currently provided service instances belong-
ing to QoS class and .

Definition 2: A finite state machine (FSM) that represents
a given server is a tuple (), where:

• is the set of states in which the server can still accept
new requests (nonblocking states);

• is the initial state of the server;
• represents the set of service requests submitted to the

server;
• is a set of received service termination requests

generated by users;
• is a transition

function.

The transition function operates as follows.
When the server receives a service request, for example
, belonging to QoS class at time , two options are

possible: either the server is in a blocking state and rejects the
request, or it is in a nonblocking state and processes this

request. In the latter case the server transits from stateto
.

When the server receives a service termination re-
quest at time , say , corresponding to a service
request of QoS class , it transits from state to

.
Fig. 4 shows a simple example of the FSM of a server

supporting only two classes of QoS and . The server
is said to be in state () when it is currently providing
service instances of class and service instances of class

.
According to the example FSM, states (3,2), (4,1), (2,3),

and (1,4) are blocking states (dark grey circles in Fig. 4),
which means that all new requests received by the server,
while in one of these states, are simply rejected. State (4,0)

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1607

Fig. 4. Example of FSM for a server supporting two QoS classes.

is a semiblocking state; that means that the server will reject
all new requests belonging to QoS class, but can provide
only one new service instance of QoS class. Similarly,
states (3,1), (1,3), and (2,2) are semiblocking states represented
by grey circles in Fig. 4. The remaining server’s states are
nonblocking, which means that the server can handle new
service requests from both QoS classes. For instance, if the
server is in state (1,2) and receives a service request of class

, it accepts this one and transits to a new state, namely (2,2).
White circles in Fig. 4 represent nonblocking states.

B. Domain Load

As stated previously, the target scalable access platform
introduces the domain concept as a means for grouping mul-
timedia servers to obtain aggregated views of the system
resources and hence a more easily manageable distribution
of the overall system load. Typically, domains are used to
redirect user requests to appropriate multimedia servers based
on the global state information maintained at these domains. In
addition to the load of each multimedia server in the domain,
we may need to compute the load of the domain as a whole.
This is particularly needed if a hierarchical domain structuring
is adopted for the system where domains can be members of
upper level domains. In this case the load of the domains is
used to decide the directing of service requests to the most
appropriate domain.

The load information of a domain is a function of the load
of the multimedia servers contained in this domain. In the
next section, a simple approach is used to compute a domain
load as the weighted average sum of the load levels of the
domain servers. The selection of the weights associated to
the various servers depends on several factors, such as the
reliability and availability of the servers. These factors can
be statistically determined based on the past behaviors of the
servers. In practice, the designer of the multimedia-on-demand
system assigns weights to the media servers involved in the
system. Weights are first statically assigned based on either
the designer servers’ exploitation policy or the characteristics
of the servers or both. The characteristics of the servers

are obtained from the server’s vendor specifications, such as
the performance of the server in terms of processing power,
storage capacity, access speed, and so on. The weights are then
dynamically adjusted according to statistics on the servers’
operation and behavior. The domain manager keeps track of
the servers’ past behaviors by maintaining in a log several
information attributes concerning the operational state, the
administrative state, the health, and the availability of each
server. Statistics are computed using the information in the log
and used to adjust the weights assigned to the servers, e.g., on a
day of the week or on a time of the day basis. The weights can
also be adjusted to reflect a new policy of the multimedia-on-
demand designer. The load information for each multimedia
server maintained at the domain is obtained from this server
according to the load model described in Section IV-A.

C. Information Exchange Policy

As mentioned in Section II, there are a number of ap-
proaches to exchange state information between the hosts
involved in the load distribution process. These mainly im-
plement a polling procedure, which may be initiated by a
client host or by a server. In the context of our domain-
based structuring of the multimedia-on-demand system, load
information exchange is based on a server-initiated polling
mechanism implemented for each individual domain. Several
variants of server-initiated polling can be envisaged for load
information exchange within a domain, which appear in the
following list.

1) Each server periodically sends notifications about its
current load.

2) A server notifies about its current load whenever it
changes.

3) The server sends notifications only when significant load
levels are reached.

In order to minimize the number of messages exchanged
in the system, the last policy is adopted for the exchange
of load information. According to the defined load model,
a server does not need to send a load update notification
each time it transits to a new state except if this one is a
blocking or a semiblocking state. Therefore, only the servers
capable of supporting user requests with the desired QoS will
be considered during task placement decisions.

The exchanged load information, referred to hereafter as
Load Level (LL), is expressed as

LL where

• is a Boolean that represents the server state with respect
to service requests belonging to. if the server
cannot support any new service request of class;
otherwise ; initially for .

• indicates the weight associated with (
means that , which in turn means that service
requests from require more server resources than those
from). Hence, the values of , for ,
depend on the classification of , in
terms of grade of service.

1608 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

D. SAP

The most frequently accessed objects are replicated on a
large number of servers. In this perspective, a replication
scheme such as the one proposed in [17] can be used.
The frequency of accesses to multimedia objects is equally
assigned to all objects statically at system startup. Access
frequency is then incremented each time the object is invoked.
The platform easily determines the access frequency for each
object as all requests go through the platform. This is done with
a reasonable overhead as the platform is designed to manage
access to a relatively small number of objects. Operations
defined as part of the SAP access protocol (Section III-
E), namely ADDMMObject, DELETEMMObject, and
UPDATE MMObject, allow to update the access frequency
and dynamically change the replication scheme.

Given a user request to access a multimedia object with
given QoS requirements, the role of SAP is to locate the
appropriate multimedia server to handle this request. A service
access policy is defined to guide SAP in the process of dynam-
ically locating the server capable of delivering the requested
multimedia object while satisfying user QoS requirements.
Several factors are taken into account by the service access
policy. These factors are:

1) load of the multimedia servers;
2) QoS characteristics of the multimedia object;
3) user QoS requirements and cost constraints.

The ultimate goal of SAP is to minimize the blocking
probability of user requests. Therefore, the SAP service access
policy is defined in such a way to avoid rejecting a user request
while there are servers in the system that might satisfy this
request. The following steps summarize the service access
policy implemented by SAP.

1) Identify the servers storing an instance of the requested
multimedia object; this gives a list of potential candidate
servers.

2) From the list in 1), select the server that has the
multimedia object variant satisfying the most user QoS
requirements and the server that has the lightest load.

3) Start displaying the multimedia objects; go to step 2) in
case the selected server experiences rapid load fluctua-
tion leading to a violation of the service agreement.

A more detailed description of two hierarchical SAP service
access policies is given in [25].

V. IMPLEMENTING A MOVIE-ON-DEMAND

APPLICATION USING SAP

Based on the generic SAP, we have developed an applica-
tion called SMoD to increase the availability of video servers,
by providing users with an enhanced access to video movies.
SMoD supports a dynamic selection of a video server (VS)
that is able to deliver the requested movie with the desired
QoS. Upon receipt of the user request to play a movie, SMoD
dynamically determines the VS that satisfies the two following
conditions:

1) if it contains the requested movie: the movie QoS
characteristics should match user QoS requirements and

user host display capabilities. For instance, if the user
requires TV frame rate to play the movie, and the user
host machine supports only MPEG decoding, a server
storing the requested movie under MJPEG format or at
15 frames/s is not considered by the domain manager.
Metadata on movies, such as resolution and compression
format, can be maintained by domain managers in a
centralized or distributed repository [25];

2) if it is the “least loaded” among the available VS’s.

A user request is rejected, it is only when none of the
existing video servers satisfies 1) and 2). SMoD also allows
automatic recovery, whenever possible, from QoS degrada-
tions during a movie presentation and to mask server failures.
The SMoD application is better explained by describing its
operation with an example, when a user wants to play a movie.
The operation of SMoD involves SAP components, as shown
in Fig. 1, and the interactions between them, as shown in
Fig. 3.

1) The user selects a movie to play using the user interface
provided by the user agent. The user interface allows
searching for a movie using key words as well as other
search attributes [26]. It also allows users to specify the
desired quality for the presentation of the selected movie
as well as the cost they are willing to pay.

2) The user agent sends a request to its domain manager.
3) Upon receipt of this request, the domain manager deter-

mines the video servers under its authority that store the
requested movie with the requested QoS characteristics.

4) Among the VS’s determined in 3), the domain manager
selects the least loaded VS according to load information
collection and exchange policies previously described.
The selected VS is then requested to deliver the movie.

5) The VS checks its resource availability and starts the
presentation if no major load fluctuations occurred in
the meantime. If movie delivery is not possible due to a
lack of resources, the domain manager is notified with
a reject message.

6) Whenever a request is rejected by a VS, the domain
manager asks the next lightly loaded VS to handle the
user request. This process is repeated until a VS succeeds
to deliver the movie or all the selected VS’s fail. In such
a case, the domain manager reports to the service access
manager about the unsatisfied user request.

7) SAM forwards the user request to the lightly loaded
domain in its load table. The domain manager of the
selected domain processes the request by performing
operations 3)–6). If all the domains managed by SAM
are unable to handle the request, SAM sends a reject
message to the user.

A. SAP/SMoD Prototype and Deployment Testbed

To evaluate the scalable access platform through the SMoD
application, we implemented an experimental prototype [28].
The prototype offers an interface to users to search and select
movies, specify their QoS/Cost requirements, and renegotiate
the desired QoS during a movie presentation. The current
prototype reuses the user interface developed for a news-on-

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1609

Fig. 5. Component profile window.

demand application [26]. Examples of the interface windows
available to the user are shown in Figs. 5 and 6. The pro-
file component window, as shown in Fig. 5, displays the
list of monomedia, time, and cost profiles. The user selects
the desired profiles by highlighting them. Each profile has
an associated customized profile window, which allows the
users to specify their requirements. Through scaling bars
and predefined values, the user sets the values for QoS
parameters, cost, and time, as shown in Fig. 6. For each QoS
parameter the user can set the desired value and the minimum
acceptable value.

In the current implementation, user agents (UA’s), server
agents (SA’s), domain managers, and the SAM are imple-
mented as Unix processes. These processes, except the UA
process, are in an idle state waiting for requests. Unix sockets
support communication between processes. When SMoD is
launched at a client host, the UA process is initialized and
enters an idle state waiting for requests from the user. After
the user selects a movie with specific QoS/cost requirements,
the UA process checks the validity of the user requirements
against the user host characteristics. This is done via a static
negotiation procedure that checks the ability of the client
machine to support the requested QoS. If the user requirements
and user host capabilities do not match, the UA process makes
an offer to the user in terms of QoS parameters’ values.

Fig. 6. Video profile window.

Otherwise, the UA process assembles the input data into a SAP
service access request and sends this request to the domain
manager process.

The domain manager process waits for a request by listening
at a specific port. Whenever a service request is received
at the domain manager port, it is processed and forwarded
to the appropriate SA process. The SA process sends the
signals specific to the video server in order to reserve the
resources necessary for the movie delivery. Only the server
resources are considered in this application. Future work is
envisaged to use network resources reservation protocols.
If enough resources are available to deliver the requested
movie, the SA process sends a confirmation message to the
UA process, which invokes the appropriate video client, i.e.,
playback program. Whenever the load level (LL) of the video
server, computed by the corresponding SA process, reaches a
high threshold, as described in Sections II and III, the SA
builds a notification message which is sent to its domain
manager for updating load variables. If the selected video
server is enable to process the movie delivery as requested
by the user, the SA process sends the appropriate signal
to the domain manager process. The overall procedure is
repeated until a SA process commits to deliver the requested
movie, or all the SA processes cannot handle the received
user request.

1610 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 7. Experimental testbed.

The prototype has been deployed on an experimental testbed
as it is shown in Fig. 7, which includes:

1) an OC3 Sonet ring at 155 Mbits/s;
2) two Sonet OC3 multiplexers with Ethernet cards;
3) three Ethernet segments at 100 Mbits/s;
4) a number of client hosts connected to the Ethernet

segments;
5) six video servers distributed in the network as shown in

Fig. 7.

Different types of existing VS’s are integrated in the testbed,
and accessed through the SAP/SMoD demonstrator applica-
tion. Among them there is a research VS, called continuous
media file server (CMFS), designed and implemented at the
University of British Columbia [27]. When the SA process
associated with CMFS receives a request from its domain man-
ager, it initiates the primitive “Activaterequest()” supported
by CMFS. This primitive allows checking whether there are
enough resources to:

1) retrieve in real-time the data, i.e., the movie satisfying
the user QoS requirements, to be transmitted over the
network to the user host machine;

2) open the network connection(s) to transmit the movie.

Activate request() returns a Status to indicate the success or
failure of the operation. In the former case, the SA process
initiates Playmovie(), and in the latter case, it sends a reject
message to the domain manager process. Activaterequest() is
a proprietary operation defined by CMFS and mapped by SAP
in the frame of the SMoD application.

Another example of VS integrated in the demonstrator
application, this one a commercial product, is VDOLive On-
Demand [28]. This VS is characterized by a fixed maxi-
mum number (MaximumNumber) of the concurrent users
it can support simultaneously. Therefore, the SA designed
to represent this VS within SAP maintains a state variable,
Numberof Users, incremented whenever a play out of a movie
is initiated. The SA decrements this variable whenever a movie
presentation terminates. When the SA receives a request from
its domain manager, it checks if Numberof Users is equal to

Maximum Number, in which case it sends a reject message
to the domain manager.

B. SAP/SMoD Performance Evaluation

Early simulation experiments have been conducted to eval-
uate the performance of SMoD compared to classical VoD
systems. The following parameters are used for the simulation.

• Number of users issuing requests (NU) over a given
period of time: a period of 6 h is selected for the
experiment.

• User request pattern in time (URP): the 6 h experiment
duration is divided into time slots with equal service
request probability for all time slots.

• Length of the requested movie (LSM): a process is used
to generate length values for the requested movies. LSM
is generated randomly within the limits of 60–90 min.

• Movie selection pattern (MSP): a pattern which indicates
how users select one of the available movies (e.g., from 50
different movies). Popular movies are usually requested
more frequently. The considered default MSP is that
80% of the users select the five most popular movies
(), 15% of the users select 25 less popular
movies (), and 5% of the users select the 20
least popular movies (). The most popular
movies are replicated on all the VS’s.

• VS capacity (VSC): in this experiment, only one QoS
class is supported by VS’s. VSC indicates the maximum
number of movies the server can deliver simultaneously.

• User access pattern with respect to different servers
(UAP): commonly, the majority of users request the
services of well-known servers (e.g., those proven to be
reliable and that offer a high-performance service).

• Load level (LL): communicated by a server agent to its
domain manager. LL above a certain limit (a threshold)
means that the VS is highly loaded and hence cannot
process any new service request.

The main metric used for the evaluation of SMoD is the
blocking probability computed as the number of rejected ser-
vice requests divided by the total number of service requests.
The server agent rejects a service request due to resource
shortage.

The simulations have been conducted in a testbed containing
six video servers as in Fig. 7. Two servers, VS1 and VS2, are
considered as high-performance servers with a capacity VSC

, and four servers, VS3, VS4, VS5, and VS6, are con-
sidered as regular servers with a capacity VSC . During
initialization, all servers are idle (LL %). At any time, a
server agent process is listening to the server port. Processes
implementing user agents model and simulate the generation
of users’ requests. They randomly issue service requests by
generating values for the parameters introduced previously,
i.e., URP, LSM, MSP, and UAP. The sum of the number of
requests generated by the various user agent processes is equal
to the total number of users considered during the experiments.
A large number of user agent processes are launched from
different locations, i.e., the testbed machines playing the role
of client hosts.

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1611

Fig. 8. Blocking probability V’s—number of user requests.

Also implemented as part of the testbed, three processes
realize the functions of domain managers. A domain manager
process is implemented for each of the three Ethernet segments
in the testbed. Therefore, domains have been created in this
demonstrator application according to the location criterion.
Finally, a process launched on one of the Ethernet segments
realizes the service access manager, i.e., SAM.

A number of measurements have been performed to evaluate
the blocking probability of service requests when using SMoD
and when using a classical VoD system. In a classical VoD
system, the user sends a request to a particular server by
explicitly supplying the address of this server. If the targeted
server is available, the user request is accepted; otherwise, it is
rejected. The measurements have been done while alternatively
varying the number of user requests, user access patterns,
and the proportion of requests received by high-performance
(respectively, low-performance) VS’s.

Fig. 8 depicts the percentage of requests rejected by SMoD
and a classical VoD system as a function of the number of
received requests during the 6 h experiment period. The curves
show that the number of rejected service requests using a
classical VoD increases more rapidly. This is a normal result
since in classical VoD systems most of the service requests will
hit the high performance server privileged by the users. The
high performance server becomes overloaded more quickly
and hence starts rejecting requests. On the contrary, in SMoD,
users’ requests are distributed by the platform transparently
to the users, which avoids overloading the high performance
server. In this experiment, 80% of user requests are sent to
the high-performance VS’s and 20% are submitted to the
remaining VS’s.

The curves in Fig. 9 indicate the percentage of requests
rejected by SMoD and VoD, respectively, depending on the
distribution of service requests across the various VS’s. The
percentage of requests received by high-performance and low
performance VS’s varies from zero to 100% during the 6 h
experiment period. These measures show that the variation
of user’s access patterns, in terms of requests submitted
to different servers, has an important impact when using a
classical VoD, while it has no impact when using SMoD.
This strengthens the advantage of using SMoD as it makes no
assumptions on user’s access pattern. Classical VoD in con-
trast tries to statistically or accurately estimate user patterns,
which continuously change. Note that the results obtained in

Fig. 9. Blocking probability V’s—user’s access pattern.

Fig. 10. Proportion of requests supported by VS1 and VS3 using SMoD
during the last 20 min of the experiment.

the experiments illustrated by Fig. 9 are straightforward. In
classical VoD, the users supply the address of the VS, while
in the case of SMoD they do not. Hence, the result is naturally
better in the case of SMoD. In other words, if SMoD gives the
user the possibility to select the VS, the blocking probability
will be the same as in a classical VoD system.

Figs. 10 and 11 show the distribution of requests served by
VS1 and VS3 using SMoD and classical VoD, respectively.
The graphs indicate the percentage of requests supported by
VS1 and VS3 in the last 20 min of the experiment. Two
assumptions are made for this experiment: first, the 1000
service requests are distributed along the duration of the
experiment; and second, the distribution of service requests
submitted to the high-performance VS’s and the remaining
VS’s is 80–20%. The curves demonstrate clearly that the load
is better balanced with SMoD as shown in Fig. 10, compared
to classical VoD systems as shown in Fig. 11.

In conclusion, the conducted experiments confirmed that
more users and service requests can be satisfied using the
SMoD application, which in turn relies on the SAP platform
to improve the availability and utilization of video servers.
The early simulation results consolidate the idea of building
a service access platform, which can accommodate a large
number of users for a reasonable cost. That is to provide a
means to integrate existing and future multimedia server’s
technology while distributing dynamically and transparently
the load across the servers. It is obvious that there is a price

1612 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 11. Proportion of requests supported by VS1 and VS3 using classical
VoD during the last 20 min of the experiment.

to pay using applications like SMoD. Due to the overhead
introduced by SAP processes, the response time of SMoD
is longer than the one of a classical VoD system. However,
we believe that the user can tolerate the small response time
extension introduced by SAP operation. Indeed, for most
applications, the average user will not notice this response time
extension. For example, the response time in SMoD remains
negligible compared to the average service duration (a movie
display is between 60–90 min).

VI. CONCLUSION AND DIRECTIONS FORFUTURE RESEARCH

A large number of studies are conducted on enabling
technologies for multimedia-on-demand systems. However,
these are mainly focusing on the performance of multimedia
servers. This can be typified either by emphasis on full hard-
ware implementations and utilization of super computer and
massively parallel memory and I/O systems, or more recently,
by the design of sophisticated distributed multimedia storage
systems supporting intelligent placement schemes for video
objects. Yet scalability of multimedia-on-demand systems is
still an open issue due to the ever-increasing interest and user
demand for multimedia applications.

This paper has presented a system approach to provide
scalable multimedia-on-demand systems capable of integrating
existing and future multimedia servers. It introduced a generic
distributed platform for the management of user access to
geographically dispersed multimedia servers. The basic idea
behind the design of the SAP is to introduce intermediate
access agents and managers between multimedia clients and
servers. The intermediate agents and managers are judiciously
distributed in the system so as to redirect user requests to the
most appropriate servers. The replication of different variants
of multimedia objects and the load distribution capabilities of
SAP allow it to handle more service requests and hence to
support more users while satisfying their QoS requirements
and cost constraints.

The platform is generic and flexible. It is independent of any
multimedia server technology and can support different types
of multimedia applications, such as VoD, news on demand, and

others. It can evolve easily to integrate new load distribution
policies, to support application-specific replication schemes or
to integrate new server technology. For example, integrating
a new multimedia server will simply consist of providing,
in the server agent, the software module which maps SAP
access protocol data units to the primitives of the encapsulated
multimedia server.

This paper has also shown an example application of the
platform to provide a SMoD. Early performance measures
have shown that SMoD is more efficient than classical VoD
systems because it reduces the blocking probability of user
requests. This allows for a higher user satisfaction and larger
revenue for the service provider. The measures have also
shown that the nonuniform distribution of user requests, which
is the major obstacle for scalability of VoD systems, has
almost no impact on SMoD. SAP overcomes the scalability
problem by providing a simple and easy-to-implement SAP.
The overhead introduced by SAP operation remains negligible
compared to the obtained gain. It affects the response time
in a way that is not noticeable by average users for most
applications.

For future work, the following extensions of SAP are
considered.

• Consider network resources and transport capacity as part
of the load balancing policy.

• SAP access protocol is hierarchical, i.e., at each level
the control is centralized which may lead to bottlenecks.
One option will be to add a logical ring structure and
the corresponding load distribution protocol at the server
agent and/or the domain manager levels of the hierarchy.

• It is more likely that every set of multimedia servers
made available to end-users belongs to a given service
provider. Mutual cooperation agreements can be made
between different service providers. This will necessitate
a federation of distinct SAP platforms realized at the level
of the service access managers.

• Despite the scalable access scheme provided by SAP,
a user request with specific QoS/Cost requirements can
be rejected by the system due to resources shortage.
One option is to provide a negotiation mechanism for
immediate delivery with a lower grade of service or
reservation of resources for future delivery.

• The implemented prototype is being enhanced to integrate
a Web browser as user interface and to extend CORBA
trading facility to implement SAP domain managers and
service access manager.

ACKNOWLEDGMENT

The authors wish to thank the reviewers and the editors for
their valuable comments that contributed to the improvement
of this paper.

REFERENCES

[1] D. Pegler, D. Hutchison, P. Lougher, A. Scott, and D. Shepherd,
“Scalability issues for a networked multimedia storage architecture,”
Multimedia Tools and Applications. [Online]. Available WWW:
http://www.comp.lancs.ac.uk/computing/users/phillip/scams.html.

BOUTABA AND HAFID: GENERIC PLATFORM FOR SCALABLE ACCESS TO MULTIMEDIA-ON-DEMAND SYSTEMS 1613

[2] D. Eager and E. Lazowska, “Adaptative load sharing in homogeneous
distributed systems,”IEEE Trans. Software Eng.,vol. 12, no. 5, pp.
662–675, 1986.

[3] N. Shivaratri, P. Krueger, and M. Singhal, “Load distributing for locally
distributed systems,”IEEE Trans. Comput.,vol. 25, pp. 33–44, Dec.
1992.

[4] T. Wang and R. Morris, “Load sharing in distributed systems,”IEEE
Trans. Comput.,vol. 34, pp. 204–217, Mar. 1985.

[5] T. Casavant and G. Kuhl, “A taxonomy of scheduling in general-purpose
distributed computing systems,”IEEE Trans. Software Eng.,vol. 14, no.
2, pp. 141–154, 1988.

[6] O. Kremien and J. Kramer, “Methodical analysis of adaptive load
sharing algorithms,”IEEE Trans. Parallel Distrib. Syst., vol. 3, pp.
747–760, Nov. 1992.

[7] D. Eager and E. Lazowska, “A comparison of receiver-initiated and
sender-initiated adaptive load sharing,”Performance Evaluation,vol. 6,
pp. 53–68, 1986.

[8] R. Boutaba, “A methodology for structuring management of networked
systems,” inProc. IFIP Trans.,1994, pp. 225–242.

[9] R. Mirchandaney and D. Towsley, “Adaptive load sharing in heteroge-
neous systems,”J. Parallel Distrib. Comput.,vol. 9, pp. 331–346, Aug.
1990.

[10] R. Boutaba and B. Folliot, “Load balancing in local area networks,” in
Proc. IFIP Trans.,1993, pp. 67–78.

[11] T. Chiueh and R. Katz, “Multi-resolution video representation for
parallel disk arrays,”ACM Multimedia,pp. 401–409, 1993.

[12] M. Kim, “Synchronised disk interleaving,”IEEE Trans. Comput.,vol.
C-35, pp. 978–988, Nov. 1986.

[13] A. Reddy and P. Banerjee, “An evaluation of multiple-disk I/O systems,”
IEEE Trans. Comput.,vol. 38, pp. 1680–1690, Dec. 1989.

[14] P. Lougher, D. Pegler, and D. Shepherd, “Scalable storage servers for
digital audio and video,” inProc. Inst. Elec. Eng. Int. Conf. Storage and
Recording Systems 1994,University of Keele, pp. 5–7.

[15] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M.
Williams, “Replication in the Harp file system,”ACM Symp. Operating
Systems Principles,Pacific Grove, 1991.

[16] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere, “CODA: A highly available file system for
a distributed workstation environment,”IEEE Trans. Comput.,vol. 39,
pp. 447–459, 1990.

[17] A. Dan and D. Sitaram, “An online video placement policy based on
bandwidth to space ratio (BSR),” inProc. ACM SIGMOD’95,San Jose,
CA, pp. 376–385.

[18] D. Brubeck and L. Rowe, “Hierarchical storage management in a
distributed video-on-demand system,”IEEE Multimedia, vol. 3, pp.
37–47, 1996.

[19] J. W. Bolosky, R. P. Fitzgerald, and J. R. Douceur, “Distributed schedule
management in the Tiger Video Fileserver,”SOSP,pp. 212–223, 1997.

[20] D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays of
inexpensive disks (RAID),”ACM SIGMOD,pp. 109–116, 1988.

[21] A. Larsen, J. Olkin, and M. Porter, “Oracle media server: Providing
consumer based interactive access to multimedia data,”ACM SIGMOD,
pp. 470–477, 1994.

[22] M. Nelson, M. Linton, and S. Owicki, “A highly available, scalable ITV
system,”SOSP 15,pp. 54–67, 1995.

[23] C. Bisdikian, and B. Patel, “Cost-based program allocation for dis-
tributed multimedia-on-demand systems,”IEEE Multimedia,vol. 3, no.
3, pp. 62–72, 1996.

[24] J. M. Hyman, A. A. Lazar, and G. Pacifici, “A separation principle
between scheduling and admission control for broadband switching,”
IEEE J. Select. Areas Commun., vol. 11, pp. 605–616, May 1993.

[25] A. Hafid and R. Boutaba, “A scalable access scheme to multimedia doc-
uments with QoS guarantees,” inProc. IDMS’97,Darmstadt, Germany,
pp. 120–127.

[26] J. Wong, K. Lyons, R. Velthuys, G. Bochmann, E. Dubois, N. Georganas,
G. Neufeld, T. Ozsu, J. B. Skelle, D. Evans, A. Hafid, N. Hutchinson,
P. Inglinski, B. Kerherve, L. Lamont, D. Makaroff, and D. Szafron,
“Enabling technology for distributed multimedia applications,”IBM
Syst. J., vol. 36, no. 4, pp. 489–507, 1997.

[27] G. Neufeld, D. Makaroff, and N. Hutchison, “Design of a variable
bit rate continuous media file server for an ATM network,” inProc.
IS&T/SPIE’96,San Jose, CA, pp. 370–380.

[28] A. Hafid, P. Dini, M. Hafid, and R. Boutaba, “A scalable video-on-
demand system: Architecture and implementation,” inProc. ICCC’97,
Cannes, France, pp. 262–281.

[29] VDOLive On-Demand. [Online]. Available WWW: http://www.vdo.net/
corporate/awards.html.

Raouf Boutaba received the Engineer Diplomat
in computer engineering from the University of
Annaba, Algeria, in 1988, and the M.S. and
Ph.D. degrees from the University Pierre & Marie
Curie–Paris 6, Paris, France, in 1990 and 1994,
respectively.

Until 1995, he was Assistant Professor at Evry
University, France and was involved, as a member
of lip6 and PriSM Research Laboratories, in the
ESPRIT and ACTS projects funded by the European
Community. Between 1995 and 1997, he built and

led the telecommunication and distributed systems unit at the Computer
Sciences Research Institute of Montreal, Canada. He has been an Adjunct
Professor at the University of Montreal since 1996 and is currently a Visiting
Professor in the Communications Group of the Electrical and Computer
Engineering Department at the University of Toronto, Ont., Canada. His
research interests include integrated network and systems management and
its application in programmable/active networks. He has directed several
research projects sponsored by the computer and telecommunication industry
in these areas. He has served as a Guest Editor of international journals.

Dr. Boutaba started and chaired the first IEEE/IFIP Conference on
the Management of Multimedia Networks and Services (MMNS’97)
and cochaired the Fourth IEEE Workshop on Features Interaction in
Telecommunications (FIW’97), as well as MMNS’98.

Abdelhakim Hafid (M’98) received the M.S. and Ph.D. degrees in computer
science from the University of Montreal, Montreal, Canada, on quality-of-
service management for distributed multimedia applications, in 1993 and
1996, respectively.

He is an Assistant Professor in the Electrical and Computer Engineer-
ing/Computer Science Departments (a joint appointment), University of West-
ern Ontario, Ont., Canada and a Research Director of the Advanced Commu-
nication Engineering Centre (a venture established by UWO, Bay Networks,
Bell Canada). He is also an Adjunct Professor in the Department of Computer
Science, University of Montreal. From 1996 to 1997, he was a Research
Staff Member at the Computer Research Institute of Montreal (CRIM) in the
Telecommunications and Distributed Systems Division, working in the area
of distributed multimedia applications. From 1993 to 1994, he was a visiting
Scientist at GMD-FOKUS, Systems Engineering and Methods Group, Berlin,
Germany, working in the area of high-speed protocols testing. His current
research interests are in Internet and multimedia networking.

