;:‘ Multimedia Tools and Applications, 16, 99-136, 2002
' © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Distributed Video Production: Tasks, Architecture
and QoS Provisioning™®

RAOUF BOUTABA rboutaba @bbcr.uwaterloo.ca
Department of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario N2L 3G1, Canada

NED NING REN, YASSER RASHEED AND ALBERTO LEON-GARCIA
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, Ontario M5S 3G4, Canada

Abstract. In this paper, we apply a top-down approach to describe the architecture components of Distributed
video production (DVP) systems. We first introduce the concept of a Distributed video production environment
and describe typical DVP tasks involved. We then propose a generic layered functional model that captures the
characteristics of the DVP architecture. Subsequently, we identify system and network performance parameters
and discuss possible network protocol stack realizations for the transport of DVP traffic. Finally, we propose a
quality of service-sensitive model for resource allocation and optimization.

Keywords: Distributed video production, real-time video, MPEG2, quality of service, ATM, internet protocol
and network adaptation

1. Overview

Advances in networking and computing technologies have made modern multimedia sys-
tems a reality. Applications such as videoconferencing and video-on-demand will become a
part of our everyday life in the near future. The standardization of high definition television
(HDTV) is the result of developments in multimedia technology, and signals the beginning
of a new era in the broadcasting industry. High quality programs with interactive user in-
terfaces will be delivered to homes over a large number of channels, resulting in radical
changes to viewer experiences.

The booming multimedia technology has also placed great demands on today’s video
production industry. Not only higher program quality and more complex special effects are
required to satisfy new viewer-expectations, but a larger quantity of program contributions
are also required in a short period of time. The new requirements must be satisfied by
revolutionary changes to production facilities.

Production equipment used in today’s video production facilities is usually very expen-
sive. Most equipment are specialized to a set of dedicated tasks and interconnected by
cables, which results in expensive equipment centralized to a single physical location—the
studio. However, the task of video production is distributed in nature. Production resources

*This project is partially funded by the Canadian Institute for Telecommunication Research (CITR).

100 BOUTABA ET AL.

and live video contributions usually come from more than one physical location, e.g. daily
news, sports events or even weather forecasting. The actual shootings of footages do not al-
ways happen inside of the studio, however editing and final touch-ups of the programs need
to be done inside the studio—where equipment belongs. Moreover, this production process
is not a single person’s task, but rather requires cooperative working of personnel from each
stage of the production, such as the communication between scriptwriters and the director,
cooperation between cameramen and editors, . . . etc. Therefore, the operational nature of
video production requires a distributed cooperative environment. Furthermore, equipment
inside each studio is dedicated to the workloads that are local to the studio, and therefore
may not be fully utilized. Every studio needs to purchase its own expensive switcher, editor,
recorder and other complex equipment. In case the studio does not have the right equipment
to perform a certain task, the work would then have to be contracted-out to other production
houses where it could be properly performed. This contracting-out process is expensive and
has a long turn-around time. It is also unreliable to some extent since certain production
decisions have to be made by the contracting studio while the program is being processed
there.

The development of new high-speed network technologies is promising to provide quality
of service (QoS) guarantees to high bandwidth applications. On the other hand, the devel-
opment of MPEG?2 standards enables flexible digital representation of high quality video.
The combination of these two technologies is expected to provide a solution to the problem
existing in the production industry today: the lack of support for distributed cooperative
working environment and the inefficient utilization of expensive studio equipment.

In this paper, we discuss a distributed video production (DVP) approach, which replaces
cable connections in traditional studios with high-speed network connections. Since the
network is not restricted to connecting local studio equipment, it can also interconnect
equipment from remote studios, therefore enabling users at different physical locations
to work on a single task, jointly over the network. This creates a distributed working
environment for the production process. Production resources such as video processors,
devices for storage, compression, mixing and special effect may then be distributed around
the network in the form of various servers as shown in figure 1. These resources can
all be shared remotely among different users, thus ensuring effective utilization of the
resources and removing the need for each studio to own its dedicated equipment. The
DVP environment will therefore enable broadcasters to improve economic efficiency and
time-to-market of broadcast program productions.

1.1. Objectives
The objectives of this paper are threefold:

e Identify different distributed video production tasks and their related quality of service
requirements

e Propose a layered architecture for distributed video production systems and identify
typical system and network requirements

e Propose a QoS-sensitive model for resource allocation and optimization

DISTRIBUTED VIDEO PRODUCTION 101

Multi-point Collaboration Server

T\

Production Server

L— y- 4
= Local

l t - / Studio

——

o Backbone Local
Rendering Server Network _
e sudie
[— / Local

Video Server
Studio

T

Figure 1. A typical distributed video production system.

1.2. Outline

The paper is organized as follows. In Section 2, we introduce the distributed video production
environment and identify the different tasks performed in DVP applications. In Section 3, we
present a general architecture for distributed video production environments. Subsequently
in Section 4, we discuss QoS requirements for DVP applications including bandwidth, delay
and error requirements, present possible protocol stack realizations for the transport of DVP
traffic over high-speed networks and discuss the suitability of different network adaptation
protocols for DVP applications. Finally in Section 5, we propose a QoS-sensitive model for
resource allocation and optimization in a DVP environment.

2. Distributed video production tasks

In this Section, we describe several typical tasks performed in a traditional production
studio. We then discuss how these tasks may be carried out in a distributed video production
environment and present a possible setup for the DVP version of each task.

2.1. Editing

Editing is one of the most common tasks performed in a studio. Its main purpose is to
arrange footages together and form the final presentation program. At the time of writing
this paper, computer-based non-linear editing is becoming the standard. Analog video is
digitized, stored on computer disks and processed digitally. The random access nature of

102 BOUTABA ET AL.

computers enables editors to arrange footages in a dynamic fashion, making the non-linear
editing process more efficient and flexible than traditional linear editing.

The editing process usually consists of two phases: the off-line phase and the on-line
phase. During the off-line phase, producers and editors experiment with various footage
arrangements, and create a draft model of the final program in the form of an edit decision
list (EDL). The EDL contains information about how footages are connected together and
what switcher effects should be used to connect them. These effects include cutting, wiping,
dissolving, fading and keying, etc. During the on-line phase, the final program is created;
effects are performed according to the EDL. In addition, complex digital effects (computer
graphics and animations), that may have not been rendered for the off-line version, are also
performed.

We discuss two possible situations for editing tasks in a DVP setting. In the first scenario,
which we call “local editing” (see figure 2), the local studio possesses its own high qual-
ity editing system, and can therefore perform editing (especially on-line editing) locally.
However, the local studio might not have all the footages required for the edit. In this case,
missing footages stored in a digital format on a remote video server may then be retrieved,
as they are needed in the edit. Typically, the edit would be in the form of cuttings between
programs stored on the server and programs generated locally. A good example is a news
program showing a reporter announcing news events inside the studio, and subsequently the
sequence changes to previously recorded footages about the event. The previously recorded
footages might be physically stored on the remote DVP video server. The local studio issues
command signals to the DVP video server and controls the program stream that is sent back,
as shown in figure 2. The command signals include instructions such as play, pause and
search. The program stream sent back to the local studio includes video, audio and data
streams. Possible content of the data stream includes time codes, synchronization signals
and meta-data. The latter includes description about each portion of the program such as the
date and time the scene was created, location of the scene and notes made by the director
at the time of shooting etc.

DVP Video Server
A

Command
Signal

Local
Studio

Figure 2. DVP local editing.

DISTRIBUTED VIDEO PRODUCTION 103

DVP Production Server DVP Video Server

A
y

/— @
: < 1 :
- o

b

v

@ <::l Locally generated program stream
@ <4— Command signal
Server generated program
* Edited program stream
Local
Studio

Figure 3. DVP remote editing.

The second scenario of editing in a DVP environment is remote editing. In this case, the
local studio does not possess local high quality editing equipment. Therefore, the actual
editing will have to be done remotely. In a conventional studio setup, this would result in a
time consuming contracting process as mentioned earlier. A solution is to use a production
server in a DVP environment as shown in figure 3, where locally generated program streams
are delivered to a DVP production server, along with command signals to control the editing
process. The production server may request additional program streams required by the edit
from a DVP video server. The editing process is then carried out on the production server
under the control of the local studio, and the final edited program is sent back to the
studio.

2.2. Keying

Keying is the process of displaying different sources of videos at various positions of the
screen at the same time. A key is an “electronic hole cut into a picture, and the area cut
away is filled with a different video source” [6]. One example of a key is the digital effect
box over a newscaster’s shoulder. While the person is describing a news event, graphics
or video footages related to the event can be displayed in the box. In this case, the keying
equipment cuts a “hole” in the studio camera’s video signal and fills it with the graphics or
video footages from another source.

Studios that do not have high quality keying equipment available locally may use remote
keying techniques in the DVP environment. Video streams that have to be keyed together
can be transported to the production server through the DVP transport network. The keying
operation is carried out there on the production server and the resultant video is delivered
back to the studio.

In some cases, local studios may only have the foreground video clips available but not
the background clips. An example could be a news program where a footage of a reporter
in the foreground is shot in the studio while the background is composed of news event

104 BOUTABA ET AL.

. < ',:I Locally generated program stream
DWP Production Server o Prog

A= <= Keyed program stream

I ’ <$:I! Background program Stream

I 4+— Command signal
S) Local
DVP Video Server Studio

Figure 4. DVP remote keying.

clips located on a remote DVP video server. In this case, the production server has to obtain
the background clips from the video server, mix them into the foreground stream using
information carried by the key signal and return the result back to the local studio (see
figure 4).

2.3. Virtual studio production

Virtual studio production allows mixing of live video with synthetic or natural imagery.
An example is a footage of live actors shot in the studio, mixed with computer generated
graphics or outdoor scenarios that create the illusion that the performing is actually carried
out on the artificially generated set. The combination of the live video and the artificial
background is also called a “virtual set.”

In virtual studio production, various techniques are used to synchronize the foreground
camera with the background camera (or virtual camera if the background is computer ren-
dered). These techniques involve feeding the virtual camera with movement information
and such that it matches changes in the foreground. The differences lie in how this tracking
information is derived. Some approaches involve installing sensors on the foreground cam-
era to record movement, zooming and focusing information of the camera. The tracking data
is sent to the background-rendering computer and the virtual camera attempts to match the
movements of the foreground camera according to changes in these parameters. This tech-
nique enables synchronization between live and artificial video objects. Other approaches
utilize optical tracking techniques that place special markers in the foreground set such as
on the blue wall. Markers must be blue as well, however they may have a different shade
than the blue color of the wall. Image processing tools use the position of these markers
as references and calculate the camera tracking information. The background set is then
re-rendered according to the tracking information, while the blue markers are keyed out
from the final video by keying devices.

In the case where local studios do not have virtual studio production equipment, this
task can be executed in a remote fashion within the DVP environment. A possible setup is

DISTRIBUTED VIDEO PRODUCTION 105

<,:I Locally generated program stream
DV P Production Server

<+— Command signal
<::| Tracking data
.{:};3 Virtual set stream

* Program stream with virtual set

DVP Renderi :\ | :
] enderng server o
. Tracking Data Studio

Figure 5. DVP virtual studio production.

shown in figure 5. The local studio sends the foreground video stream to the DVP production
server; the studio also specifies parameters of the background set in the command signal.
The production server chooses a rendering server according to the type of background
set that has to be rendered, and identifies the rendering server to the local studio. Upon
reception of information about the rendering server, the local studio transmits tracking
data and rendering parameters to the rendering server. The rendering server processes the
request and delivers rendered set to the production server where they are mixed with the
live foreground video and transported back to the local studio.

2.4. Distributed joint production

Another possible production task that can be performed in the DVP environment is the
distributed joint production. In this scenario, several geographically dispersed studios can
jointly work on a program production. An example is a remote news interview program
where people involved in the program are located in different studios. The DVP environment
allows a distributed interview to be carried out among them. The distributed production
process may utilize DVP resources such as various DVP servers available on the DVP
transport network, therefore allowing more advanced remote productions to be carried out
in the DVP environment. More details of the distributed joint productions are discussed in
Section 3.2.4.

In this section, we presented a brief description for typical tasks performed in distributed
video production. Based on these production tasks, we present next a preliminary model
for a layered architecture for the DVP environment.

3. Architecture of distributed video production systems

The objective of this section is to discuss the architecture components of DVP systems
and propose a preliminary functional model that can capture the system characteristics and

106 BOUTABA ET AL.

requirements. In our model, we take into consideration the different DVP tasks (explained in
Section 2), their system requirements, in addition to the computational, storage and network
transport resources needed to support them. In our work, we adopt a layered model in order
to highlight the separation of functions in each layer of the architecture.

Distributed video production systems consist of local studios and a set of remote servers
interconnected through a high-speed backbone network, as was shown in figure 1. Local
studios connect to the backbone network through a DVP interface system. Different types of
DVP servers exist, each with different functionality. Possible servers include media servers
that provide storage for media clips, rendering servers that provide graphics and animation
rendering, production servers that are responsible for production tasks and multi-point
production servers for coordination of remote joint productions. This DVP architecture is
potentially scalable by adding new servers to the network to satisfy increasing usage demand
or the emergence of new task requirements. We first discuss local studios in Section 3.1, then
explain our proposed model for the architecture of DVP servers in the following section.

3.1. Local studio and DVP interfacing system

Most of conventional studios are currently migrating their analog infrastructure to digital,
in an attempt to leverage the advantages of digital compression, storage and transmission
technologies. In a digital environment, traditional analog routing and switching devices are
replaced with a high speed Local Area Network (LAN) [3], thus enabling local studios to
communicate locally and potentially utilize remote production resources.

A DVP interfacing system connects the local studio LAN to the backbone network, as
shown in figure 6, and provides local studios with the ability to query and request services
from remote DVP servers. DVP interfaces resemble subscriber terminal units (STU) in
a video on demand (VoD) system in hiding the actual physical location of the remote
server; control workstations on the local studio LAN use DVP remote resources without
realizing these resources are actually remote to them. The DVP interface may also adapt
to heterogeneous technologies used in different studios by resolving compatibility issues
between local equipment and signal formats used on the DVP backbone network. DVP

Tape machine .. L Switcher Production
- Program Control Workstation
\ / Server
Camera . f =

Control Workstation

Interfacing

%

Transmitter

Figure 6. Local studio and DVP interfacing system.

DISTRIBUTED VIDEO PRODUCTION 107

interfaces therefore hide the details of the DVP system from the local studio technology.
Finally, the local studio DVP interface is responsible for negotiating and matching QoS
guarantees from both environments. QoS requested by local workstations are translated and
communicated to remote systems on the DVP backbone network.

3.2. DVP servers

In our architectural model, various types of DVP servers share a common layered architec-
ture from a functional point of view. We divide our generic layered server functional model
into three levels, namely, the application, system and transport levels. The application level
consists of application software that provides clients with required services, while the sys-
tem level represents hardware components that support the application software, and finally,
the transport level includes functions such as network and storage device interfaces. Each
server has a management backplane that performs system management functions including
operation control and resource partitioning.

For every DVP server type, the relative levels may perform different functions. In the
following sections, we first describe our layered functional for a generic DVP server, then
explain the role of each type of servers in detail.

3.2.1. Server architecture. 'We divide the generic DVP server into four entities: the three
levels mentioned above in addition to the management back plane, as shown in figure 7. The
application level represents the service layer, which contains software that provides each
DVP server with various service capabilities, such as editing, rendering, keying, network
access interfaces, . . . etc. Some service layer functions supporting basic server functionality
may be common to all DVP server types, such as network access and management interfaces.
Meanwhile, other functions of the service layer may be unique to each individual server and
specifically designed according to services the server has to provide. Examples are editing,
rendering, keying and production software suites.

The system level consists of functional systems and coding/synchronization layer. The
functional system is composed of the necessary hardware components that support software

Management Plane
A
' ™

} Service Scheduling Plane

Application Level {

System Resource
Management Plane

System Level

Network Resource
Management Plane

Adaptation Layer

Transport Level {

Figure 7. DVP server architecture.

108 BOUTABA ET AL.

applications. Functional systems are in general distinct for each server, depending on the
tasks the server has to perform. Examples are dedicated hardware equipment capable of pro-
viding storage, rendering and multi-point control capabilities. The coding/synchronization
layer is responsible for proper coding and decoding of streams as they are passed between
the system level and the transport level. This layer is also responsible for inter- and intra-
media synchronization. Delay jitter introduced by the transport network, storage system and
other server systems are compensated at this layer using appropriate buffering techniques.
Examples of coding/synchronization layers include the MPEG coding/systems layer and
real-time transport protocol (RTP). More details on the coding and synchronization are
presented in Section 4.

The transport level is divided into an adaptation layer and an interfacing layer. The
adaptation layer performs the necessary mapping between the application and the network
packet formats, in addition to adapting the QoS delivered by the network to the level of QoS
requested by the application. Examples of adaptation layers include TCP and UDP for IP
networks, and AAL1, AAL2 or AALS for ATM networks. The interfacing layer consists of
the network transport system, which includes software interfaces (e.g., sockets) in addition
to hardware network interface cards (e.g., Ethernet or ATM). More detail on the adaptation
and interfacing layer is presented in Section 4.

3.2.1.1. Resource management plane. Each server has a management back plane that can
handle system and network resource management functionality. The management system
is divided into three planes according to the three system architecture levels we described
above (application, system and transport levels). The three management planes are service
scheduling plane, system resource management plane and network resource management
plane as shown in figure 7.

The service-scheduling plane receives resource utilization information for system and
network resources. Based on the resources available throughout the system and from the
network, it provides a list of currently available services to local studios. This service list
is communicated to the local DVP interface. Service requests originating from local studio
sites are granted, modified or denied based on availability of resources. We describe the
service scheduling in more detail in Section 5.

The system resource management plane manages DVP’s resources on a system-wide
basis. It is different from conventional system management modules due to the fact that
DVP deals mainly with multimedia data. The plane takes the unique high capacity, real-
time and continuous characteristic of multimedia data into account while managing the
system. The system management plane contains a multimedia operating system which
deals with issues such as real-time CPU scheduling, memory management, 1/O scheduling
and multimedia file system management. The system resource information is passed to the
service-scheduling plane, and is used to make admission decisions for service requests.

3.2.2. Server functionality. 'We have defined four types of servers in the last section, which
share similar system components with distinct functional systems as shown in figure 8.
Following is a discussion of the role of each of these servers.

DISTRIBUTED VIDEO PRODUCTION 109

Management Plane Management Plane Management Plane Management Plane
gej‘_ geA gej‘_ geJ\h

Application Level {

System Level {

Transpon Level

DVP Production Server DVP Rendering Server DWP Media Server DVP Multi-point
Collaboration Server

Figure 8. DVP servers layered functional model.

3.2.2.1. Production server. The production server supports day-to-day production tasks
required in a typical studio. These tasks include various types of wiping, dissolving, keying
and non-linear editing as was discussed in Section 2. Depending on the capacity of the server,
the production server may have hundreds of input and output ports in order to accommodate
the needs of connected users such that all users can be served simultaneously. Each user
issues production commands to the system as if it was local to them. These commands
are then transmitted by the local DVP interface to the production server, along with video
footages originated from the user site. Video streams and command streams enter the
production system through a reserved input port for the user and are processed or mixed
with video footages from other sources, such as a video server. The processed streams are
finally sent back to the user through an output port.

The input and output ports, server and network resources must all be reserved prior to the
beginning of a production operation. User specified QoS requirements are translated by the
DVP interface at the local studio and communicated to the server. Management mechanisms
in the server keep track of available server resources and decide whether user requested
QoS could be accommodated.

3.2.2.2. Rendering server. The rendering server is responsible for providing computer-
generated graphics, as requested by users. Rendering needs of DVP are usually satisfied
by powerful processors inside the rendering server. The rendering tasks include generating
text characters, studio logos, digital effects, real-time animations and virtual sets. Some
of these tasks are very complex in nature and especially if performed in production quality,
they would require enormous amounts of computational power, let aside the multi-user
and multitasking environment the rendering server has to support. Graphics-specialized
processors are likely to be customized to support the heavy processing needs.

3.2.2.3. Media server. Media servers store large collections of footages, serving as a media
database for daily production needs of the DVP facility. Storage systems usually have large
capacities in order to support high quality media. In addition, in order to satisfy the real-time
characteristics of production tasks, the storage system must be able to access and serve data
inreal-time. The requirements for media storage and real-time data access are similar to VoD
servers. This will likely result in a similar design for storage systems in DVP media servers.

110 BOUTABA ET AL.

In order to reduce the amount of storage space required, media streams may be stored
in compressed formats. Compression algorithm such as MPEG-2 attempt to reduce file
sizes while effectively preserving media quality. Layered coding may be used in order
to accommodate the heterogeneous quality requirements existing in the DVP environment.
Unlike media quality required in VoD environments where users are commonly satisfied with
broadcast quality images, the quality requirements encountered in DVP are heterogeneous,
depending on different operations each users performs. A user constructing an EDL in
an off-line editing process may not need high image quality, therefore only a few base
layers of the video program may suffice to reconstruct basic quality images. On the other
hand, a user performing a final edit or live-broadcast may require production or broadcast
quality, consequently more layers of the program would be needed for reconstruction into
full production quality images. The layered coding approach can potentially accommodate
heterogeneous quality requirements without trans-coding, thus avoiding possible quality
degradation at the expense of increased coding overhead associated with the layered format.
Data placement algorithms should consider the layered media file formats while storing
them.

3.2.2.4. Multi-point collaboration server. The multi-point collaboration server (MCS)
enables multi-site joint productions. Its role is similar to MCU (Multi-point control unit)
in a videoconferencing. In order to support interconnections among multiple sites, each
geographical region has a MCS assigned, to which local studios in the region initiate
multi-site production requests. The MCS contacts the rest of the participants to set up the
session. Participants include other MCSs and servers. The MCSs decide how the multi-point
connections are established and how media streams are interchanged between sites. MCSs
are also responsible for managing distributed sessions by monitoring on-going sessions,
performing multi-point information distribution and group cooperation control.

We will use a remote interview example in order to illustrate the role of MCSs and some
of their similarities to MCUs in videoconferencing. In this example, three local studios
wish to participate in an interview, a production server processes the interview footages and
adds effects such as cutting between views of participants. For each of the three studios,
the DVP system also forwards streams from the other two sites to them. This allows the
participants to communicate with each other (figure 9). In addition, in order to enhance the
viewing experience of the program further, a computer generated background or a virtual set
may be added to the scene. This would create the illusion that participants are side-by-side
co-existing in the virtual set. In this case, keying information has to be transmitted from
the studios to the production server, which indicates which part of the shot belong to the
background and can be keyed out (key signals are not shown in the figure for simplicity). A
rendering server generates the required virtual set, and the final produced footages is stored
on a video server.

Local studios send their full quality media streams to the MCSs, which are then forwarded
to the production server. Each person in the interview needs to see and hear participants
of other sites, but it is not necessary for them to receive full quality streams since a low-
resolution image and telephone quality voice stream are adequate for the purpose. For this
reason, MCS|1 can extract a low-resolution version of the stream originating from studiol

DISTRIBUTED VIDEO PRODUCTION 111

DVP Rendering
CIVEr

.
I
iﬁm;

z
=
2
w
>
£
2

./’.
DVP Production == High Qualiyy Stream
Server n = Low Quality Stream

D\«'P MCS 2

Region 2 /

Figure 9. Multi-point production with MCS.

and send it to MCS2 where it is mixed with low-resolution version streams from studio 2
and 3. The mixed low-resolution version is then forwarded to each studio by the MCSs.
This media mixing process is similar to audio and video mixing performed by MCUs in
videoconferencing.

MCSs are also coordinators for joint production. In figure 9, a MCS can grant production
control to one of the local studios to make it the host site for the production. For example,
when the control is granted to local studio2, it will be able to feed the production server
with camera control signals through MCS2. The camera control signal will then be used
to control all camera movements at the three local studios and also within the virtual set
created by the rendering server. Once studio2 is granted the right to drive all cameras,
it will be the host of the production process and production resources provided by other
sites; rendering server, production server, video server and local studios will all seem to be
local resources to studio2. Operators inside each local studio may communicate through
intercom or videoconferencing tools supported by communication channels established
between MCSs in order to make joint production decisions, while studio2 can carry out the
final production. Alternatively, the control right of the production may also be permanently
assigned to a host studio and passed among local studios dynamically. Each studio may

112 BOUTABA ET AL.

place a request for the control right, and the host studio decides which studio should be
granted the control right temporarily. When the studio finishes its task, the right is returned
to the host studio. The transferring and policing of control right is also coordinated by
MCS:s.

We discussed in this section the architecture of DVP systems and proposed a layered func-
tional model capable of capturing the DVP system characteristics. Our functional model
depends on the DVP task requirements and in particular, the system and network perfor-
mance requirements. In the next section, we discuss the network requirements in more detail
while elaborating on the transport network architecture.

4. Transport network and system requirements for DVP applications

The DVP system can be divided into three components: system hardware, system software
and network transport. In order to support the real-time and high bandwidth character-
istics of DVP traffic, there are certain requirements for each of system component. In
Sub-Section 4.1, we discuss the hardware and software requirements. Communication sup-
port issues are discussed in Section 4.2. These discussions serve as a baseline for DVP
system implementation requirements. Other requirements may be needed in the future in
order to obtain a complete set of network and system requirements.

4.1. DVP system requirements

4.1.1. Processing unit. Due to the high volume and real-time nature of media data, proces-
sors in DVP systems must be able to handle large amounts of data and thus require relatively
high processing capability. Currently two types of processors can be found in a multimedia
system [9]: dedicated multimedia processors and general-purpose processors with multime-
dia support. Dedicated multimedia processors are typically customized to perform specific
multimedia operations, and are designed to provide large capacity and high efficiency.
Complex and computationally intensive multimedia functions such as video/audio com-
pression, 3D processing and virtual reality requires support from these dedicated proces-
sors. Advanced general-purpose processors provide support for multimedia by extending
their instruction set to include multimedia instructions. These extended instructions can be
executed in parallel, and provide support for generic operations in multimedia processing.
An example is Intel’s MMX Pentium processor, which achieves 65% to 370% performance
improvements with extended multimedia support [22]. The emergence of these multimedia-
extended processors allows many multimedia functions to be implemented in software, and
significantly reduces cost and increases flexibility.

In order to support the high capacity demand of DVP applications, it is possible that
customized dedicated processors will have to be implemented in DVP servers. This will
enable servers to sustain large aggregated processing loads. Furthermore, these processors
can be customized to have a programmable architecture, which will enable DVP servers to
be more flexible in order to accommodate future application requirements. For end-systems
inside local studios, a mixture of general-purpose processors and dedicated processors can be
used. The general-purpose processors will be handling less demanding tasks, with dedicated

DISTRIBUTED VIDEO PRODUCTION 113

processors to back them up and support a few computationally intensive tasks. In order to
lower costs and achieve higher efficiencies, dedicated processors used in local studios
may not have to be programmable; flexibility can be achieved with software supported by
general-purpose processors. Since computational requirements for local studios may not be
as high as for DVP servers, the software and general-purpose processor combination should
be adequate for most tasks with supplement of a few dedicated processors.

4.1.2. System BUS. Inside a system, the bus links all components together, and is respon-
sible for transferring data between these components. A block of data usually has to traverse
the bus more than twice in order to be processed by different devices. Therefore, the bus is
one of the traffic concentration points in a system. In addition, bus speed is usually lower
compared to processor speed, this is because the physical length of a bus has to be long
enough in order to connect all devices together, however the top speed of bus operations is
limited by the maximum signal propagation delay on the wires. Also, as more devices are
attached to the bus, the total capacitance of the bus increases and this in turn slows down
signal propagation further. It can take more than 5 ns for a pulse to traverse a 300 mm bus
with a dozen boards attached to it [4], and this would limit the bus speed to within 100 MHz.
Since the speed of modern processors increases, while bus speed is not equally catching
up, bus speed is becoming a bottleneck for system performance.

For DVP applications that deal with continuous streams, large amounts of data have to be
exchanged between processor, memory and I/O devices. The amount of traffic involved is
likely to overwhelm the system bus. A possible solution to avoid congestion on the system
bus is to introduce local buses between high traffic devices, to serve as “expressways”
between high traffic devices and take a portion of the traffic off the main bus. However,
a local bus can only transfer data between devices attached to it. In case additional data
processing has to be performed by devices that are not on local buses, media data will still
have to go thorough the main bus, thus reducing flexibility in the application design.

Another possible solution is to replace the system bus with a switch architecture, also
known as crossbar or cross-point. Each system device is connected to other devices through
the switch upon request. Unlike in the conventional bus approach where a large number
of devices share a single communication path and only one of them can transmit data at a
time, the switch approach allows data transfers to occur between multiple pairs of devices
at the same time. This improves the overall system throughput. Furthermore, since a device
will be connected to only one other device (a switch port), the length of the wire needed
is shorter, and the total capacitive load on the wires is much smaller than a typical bus
with dozen of devices attached. These factors result in faster signal propagation and further
increases the communication speed of attached devices.

However, the switch architecture has its disadvantages. The complexity of the switch is
a square function of the number of devices attached, and thus the switch can not be used
to connect large numbers of devices. In such a situation, conventional bus architecture may
be a more economical choice despite its lower performance. More details about the switch
architecture mechanisms can be found in [10] and [23]. It is also possible that the switch
architecture would be used to support high-speed devices in DVP servers, while slower
devices may be connected by conventional bus architecture to reduce system cost.

114 BOUTABA ET AL.

4.1.3. Storage system. Storage devices in the DVP system must have large capacity and
high throughput in order to provide access to a large amount of media data in a short
time. Moreover, data blocks must be read or written in an uninterrupted fashion in order to
support the continuous nature of DVP media data. Special data placement, disk scheduling
and admission control techniques should be employed to allow continuous data access,
while disk arraying techniques should be applied in order to support high capacity and
throughput.

Magnetic disks are the most suitable medium for storing media data due to their short
access time, high transfer rate and random access capability. However, a single disk is not
sufficient to store large multimedia files, especially in a server environment, where many
files have to be stored and many users have to be served simultaneously. The solution is to
group a number of disk drives together and share the load. These drives operate in parallel
and thus the aggregated capacity and throughput of the disk group is proportional to the
number of disks in the group. This technique is used in the redundant array of inexpen-
sive disks (RAID) technology, where inexpensive drives are combined to increase both
storage throughput and capacity. The RAID technology also uses extra disks to store redun-
dant data information, this overcomes the unreliability associated with inexpensive drives.
Currently, there are eight level of RAID functionality defined, each level has its unique
characteristics to serve different aspects of system requirements. A summery of the RAID
technologies can be found in [24].

Data placement techniques are used in multimedia storage management in order to support
continuous data accesses. As mentioned earlier, the real-time nature of media files requires
data to be accessed in an uninterrupted fashion. If data segments of a file are placed on
the disk in a scattered manner, as in the case of conventional file systems such as disk
operating system (DOS), then during file access, extra disk seeks may have to be performed
to locate the next data segment. These intra-file-seek operations introduce jitter in the media
file access and thus increase the initial access delay and consequently buffer requirements
of the storage system. Therefore, in order to support real-time accessing, the structure of
data layout on the disk must be optimized. One possible approach is contiguous placement,
which places successive segments of a media stream consecutively on the disk. To retrieve
a particular stream, only one seek is required to locate the beginning of the file. However,
contiguous placement is likely to cause fragmentation. Constrained placement [25, 40] is
a variation of the contiguous placement method, which avoids fragmentation by leaving
constrained gaps between consecutive data blocks in a media stream. These gaps are used
to store other media streams, whose continuity can be ensured by adjusting their own block
size.

In addition, since data transfer rate of a disk is usually higher than the playback rate
of a single stream, a number of streams can be served simultaneously in a multiplexed
fashion. In order to ensure efficient resource utilization, as many streams as possible should
be served concurrently. However, admission control of services must be in place to prevent
overload, this is especially true for DVP servers where available resources are consumed
rapidly with increasing user requests. Moreover, multiplexed access and admission con-
trol alone may not be sufficient to guarantee optimal resource utilization, therefore parallel
file access must also be scheduled in an orderly fashion in order to maximize the overall

DISTRIBUTED VIDEO PRODUCTION 115

throughput while minimizing low seek time and latency. A number of disk scheduling al-
gorithms exist, however traditional algorithms which do not consider the real-time nature
of media data are not suitable for managing storage access in DVP systems. A multimedia
disk scheduling algorithm not only has to optimize disk throughput, minimize seek latency,
maintaining fairness among tasks and avoiding starvation, but also has to consider the start
time and deadline of real-time tasks. Details of real-time disk scheduling algorithms such as
scan-earliest-deadline-first and group-sweeping-scheduling can be found in [37] and [29].

4.1.4. System software. In order to achieve good utilization and obtain optimal perfor-
mance in the system, hardware resources must be properly managed by an operating sys-
tem (OS). System resources to be managed include processing power, memory space, I/O
bandwidth and storage space. An OS hides the physical characteristics of these devices and
provides simpler interfaces to user applications.

Traditional operating systems such as Unix are largely concerned with throughput, utiliza-
tion and fairness aspects of system management; resources are allocated mostly according
to fairness among applications. This makes them inappropriate for managing real-time
multimedia tasks, which have distinct priorities, based on each task’s urgency. A multi-
media OS [21, 37] should be able to manage a mixture of real-time and non-real-time
tasks. For real-time tasks, QoS guarantees are provided and are supported by mechanisms
that perform QoS specification, admission control, resource management, scheduling and
policing. QoS specifications are needed in order to indicate to the OS how many resources
a new task would require. Based on these QoS parameters, schedulability tests can check
whether there are enough resources to accommodate the new task. If the request can be ac-
cepted, the resource manager allocates the required capacity for the task and the scheduling
mechanism arranges for the execution of the task. A policing mechanism is required to pre-
vent tasks from over-using system resources. A multimedia OS should be able to deal with
both real-time and non-real-time tasks since they are both important to DVP applications.
While priorities are given to real-time tasks and their QoS requirements are being satisfied,
non-real-time tasks would have lower priority but they can not be neglected. Tasks should
be scheduled in a proper way such that it prevents starvation of non-critical tasks while
avoiding priority inversion of real-time tasks.

System resources managed by a multimedia OS can be partitioned into four categories:
process, memory, I/O and file management.

Process management is responsible for scheduling the execution of each task (or pro-
cess). Continuous-media processing has a periodic nature, this makes the specification and
scheduling of processing requirements easier. These periodic tasks perform repeated and
similar operations each with their own deadlines, the goal of the process manager is to
schedule as many tasks as possible while their deadlines are all met. The problem is how
to schedule the tasks effectively while maintaining a low scheduling overhead caused by
operations such as schedulability test. The two most important scheduling algorithms are
Earliest-deadline-first (EDF) and rate-monotonic. Both algorithms are preemptive and as-
sign priority to processes according to their deadline and request rate respectively. EDF is
a dynamic algorithm and it frequently recalculates process priorities, thus its scheduling

116 BOUTABA ET AL.

overhead is higher. The advantage of EDF is that its processor utilization can reach 100%
without failing task deadlines. The rate-monotonic algorithm is static since it fixes priority
of a task at the beginning, and this causes more context switching. However, since rate-
monotonic algorithms have less scheduling overhead, they are more suitable for a purely
periodic task environment. More details on process scheduling can be found in [37] and [35].

Memory management is responsible for assigning (and releasing) memory to processes.
Typically, virtual memory is also used to store less frequently used data, which may be
swapped between physical memory and storage by paging. However, media data in mul-
timedia systems are usually very large, a page fault would incur long swapping delay and
possibly lead to missing task deadlines. Therefore, memory swapping for real-time tasks
should be avoided. One possible approach is to lock the data in the memory and prevent
it from being swapped to the disk, however this technique should be used with care since
media data are large in size and memory space may be limited. Other approaches take
advantage of the periodic nature of media tasks and pre-fetches data into the memory.

1/0 management is responsible for ensuring efficient data transfers between 1/0 sub-
systems and main memory. Performance of 1/0O is limited by many factors such as bus
bandwidth and OS overhead. Traditionally, I/O devices are controlled by device drivers
that exist in the kernel space of the memory. When user applications place high-level re-
quests to an I/O device, such as reading a line, the request is translated into a system call into
the OS. The OS kernel breaks up the system call and places several low-level requests to the
device driver, and the I/O device is then reached through the device driver. This hierarchy of
operation requests result in overhead. Furthermore, when requested data are delivered back
from the I/O device, several copying operations have to be performed in order to transfer the
data thorough every level of the hierarchy. This results in inefficient operation and degrades
real-time performance of the system. Each data copying between kernel space and user
space would require a context switch between user and kernel processes, and these context
switches incur even more operations to swap processor register to memory and vice versa.

Itis clear that direct data transfers between I/O devices must be supported in a multimedia
system. Data exchange could occur at the device driver level in the kernel space without
going through the application space [19]. Of course, this is assuming that no application
level modification has to be performed on acquired data. It is also possible to make devices
“autonomous” [40], these devices would be smart enough to manage flow control and also
simple operations such as checksum, then data can be exchanged between devices without
going through the main memory at all. Moreover, Raghavan and Tripathi suggested grant-
ing applications direct access to I/O devices without going thorough the kernel. This would
save overheads associated with system calls and context/domain switches. However, issues
related to access control and run-time management must be carefully considered in such an
implementation.

File management is responsible for providing users with file access and making efficient
use of storage resources. The main difference of a multimedia OS file manager from con-
ventional file manager is related to the continuous, real-time nature of media data. These
issues have already been discussed in the storage management section.

DISTRIBUTED VIDEO PRODUCTION 117

4.2. Network transport requirements

This sub-section presents a preliminary quantification of network performance requirements
for typical multimedia applications. Transport network performance is usually measured
by three sets of parameters, namely bandwidth, delay and error/loss requirements. It is
clear from our discussion of DVP tasks in Section 2 that these tasks will place stringent
demands on the underlying transport networks due to their high quality requirements and
interactive nature. However, it is noteworthy that, similar to most multimedia applications,
the actual QoS parameters depend largely on specific implementations and media contents.
After consulting a number of references, we have collected a set of representative QoS
parameters for typical multimedia and video distribution services. These values reflect
general requirements likely to be encountered in distributed video production environments.

4.2.1. Bandwidth requirements. Bandwidth requirements in multimedia applications are
usually very demanding compared to most data applications. Multimedia, and in particu-
lar video information, requires relatively large amounts of bandwidth in order to achieve
proper QoS levels. The requirements are even more exigent in a video production environ-
ment, where uncompressed production quality video requires transport bandwidth of 166—
270 Mbps. The upcoming High definition Television standard further pushes these values up
to 1.5 Gbps. However, with the advancements in compression algorithms such as MPEG2,
standard definition TV production may be accommodated with lower bandwidth require-
ments. In Table 1, we attempt to summarize our findings in terms of bandwidth requirements
for typical multimedia applications likely to be encountered in DVP applications.

4.2.2. Delay, delay variation and inter-media skew requirements. The second set of per-
formance measures is concerned with delay performance. This includes constant delay,
variable delay and inter-stream (skew) performance parameters. It is a well-known fact that
real-time applications impose relatively more stringent requirements on network delay per-
formance, when compared with data applications. In particular, for interactive multimedia
applications, very low transport delays are sought in order to achieve proper end-to-end
quality of service.

Table 1. Bandwidth requirements for multimedia [24, 32, 39].

Application Characteristics Bit rate
Videoconference H.261 64 Kbps to 2 Mbps
VCR quality MPEG-1 1.2-1.5 Mbps
TV quality MPEG-2 MP@ML 2-10 Mbps
Postproduction MPEG-2 4:2:2@ML 10-50 Mbps
Uncompressed 166-270 Mbps
HDTV Compressed (distribution) 19.2-60 Mbps
Compressed (production) 270-300 Mbps

Uncompressed 1.5 Gbps

118 BOUTABA ET AL.

DVP applications scan a large spectrum of delay requirements. As an example, typical
videoconferencing applications may withstand 200-500 ms end-to-end, while an interactive
distributed joint production application may not tolerate more than 20—100 ms end-to-end
[32, 38]. This may in turn impose a bound on the maximum physical distance between
servers involved in such an application.

Delay performance is also measured based on delay variation or “jitter.” Jitter is a measure
of the difference in delay experienced by different packets in the network due to variation in
buffer occupancy in intermediate switching nodes. Another form of jitter is inter-stream jitter
or “skew”, which measures the difference in delay as seen by separate streams pertaining
to the same application (such as audio and video). In order to ensure proper intra-stream
synchronization, low delay variation is often required.

Jitter may be compensated using buffering techniques at the receiving end. However larger
the jitter, longer the buffering delay experienced, which in turn increases the overall end-to-
end delay. Therefore, low delay variation must be guaranteed for interactive applications,
which require small end-to-end delay by its nature.

Accurate delay variation requirements are not well defined and depend largely on specific
media types and system implementations (e.g., decoder design). A general guideline is that
for television quality video, jitter should be kept below 10 ms [11]. Additionally, the MPEG2
standard recommends decoders with £4 ms of jitter tolerance. Many comprehensive exper-
iments have been carried out in [36] to measure the human perception of inter-media skew,
and provide a general guideline of 80 ms for inter-stream synchronization for playback
application.

4.2.3. Transport error requirements. The third set of network performance measures is
concerned with bit errors and packet losses introduced in the network. Error requirements
for multimedia applications vary according to the application. However in general, occa-
sional transport errors may be more tolerable when compared with data applications where
error requirements are much tighter. This is due to the fact that multimedia information is
presented to the user at a relatively rapid rate, therefore single errors may not be perceivable
by the human eye. Nevertheless, we should note that this mostly applies to playback type of
applications. DVP tasks such as remote keying may require tight error bounds for the cam-
era tracking signals. Finally, compression algorithms add a multiplication factor to single
bit errors, depending on the location of the error. This translates into a trade-off between
bandwidth and error requirements.

Table 2 presents a summary of error requirements for typical multimedia applications in
terms of expected duration of operation with no errors. These values are in turn translated
to bit error rates at the physical transmission level.

4.3. The need for network adaptation techniques

Transport networks used in DVP environments may also be used for the transport of traffic
types other than real-time video, such as day-to-day file and electronic mail exchange. These
traffic types are rather of a non-real-time nature and may generally have different require-
ments. Moreover, it is obvious from our previous discussion that there exists a variety of

DISTRIBUTED VIDEO PRODUCTION

Table 2. Error rate requirements for multimedia applications [32].

119

Service Error requirements BER

Videoconferencing 30 min error free BER < le-6

MPEG-1 core 20 min error free BER < 4e-10

MPEG-2 MP@ML 30 min error free BER < 6e-11
“TV quality”

MPEG-2 MP@ML 1 hr error free BER < 2e-11
Postproduction

DVP applications, each with different bandwidth and QoS requirements, depending on the
tasks and components involved. In order to accommodate such a heterogeneous traffic mix,
while having a common network transport framework, application class-specific adaptation
functions need to be implemented. These adaptation functions would then perform the nec-
essary mapping between the application and the network QoS and performance parameters.
Network transport architectures and adaptation techniques are discussed next in detail.

Based on our previous discussion, it is clear that transport networks used for the real-
time traffic need to have special capabilities in order to deliver the required QoS for DVP
applications. In this sub-section, we present possible protocol stack realizations for DVP
based on the state-of-the-art and examine the different alternatives for network adaptation
techniques.

4.3.1. Possible protocol stack realizations for DVP. 1In order to understand the different
alternatives for a transport network to support DVP applications, we start by classifying the
different types of video information sources, then work our way down in the protocol stack,
identifying at each level the different protocol combinations and functionalities. Figure 10
shows examples of protocol stack realizations for DVP applications.

At the media encoder level, the encoder type may range from a constant bit rate (CBR)
encoder to a variable bit rate (VBR) encoder. The encoder may also be of a layered-type,

Media Layered
Encoder | CBR | VBR |
MPEG Systems Layer

RTP/RTCP |

Application -
Level Framing |
Network
Adaptation
Network isip | 1sip
Service Model] GS CLS

Network IP

Layer
Ethernet

Data Link
Layer (802.1)

UDP AALS AAL2 AALIL

Differential ATM
Services IP CBR

ATM ATM
nt-VBR CBR

AALS

ATM

Ethernet
(802.1p)

Figure 10. Protocol stack realizations for DVP networks.

120 BOUTABA ET AL.

generating several media layers, each of which falling into one of the previous categories.
Note that for a layered-type encoder, different layers may be passed to the level below as
individual streams, or alternatively, layers may be multiplexed to form a combined stream.

The next protocol level in the stack is the application-level framing layer. This is the first
layer to prepare the video information for transmission over the network. Typical functions
at this level include adding time stamps, sequence numbers, multiplexing identifiers and any
other information needed for proper recovery at the receiver. Examples of application-level
framing layers are the MPEG Systems layer [15] and the real-time transport protocol (RTP)
[33]. While essentially RTP and the MPEG Systems have many features in common, there
is still a possibility to use RTP to transport MPEG systems packets in order to provide full-
compatibility with systems using RTP as their default application level-framing protocol.
It should be noted that the encoder level and the application-level framing layer correspond
to the coding/synchronization layer in the DVP system architecture (figure 7).

Application packets are then passed to the network adaptation layer. We use the term
“network adaptation layer” in the figure to include ATM Adaptation Layers (AAL) and
IP transport protocols. This layer corresponds to the adaptation layer of figure 9. Network
adaptation protocols are intended to provide a level of adaptation of the QoS delivered by
the underlying network to the QoS requested by the application. The adaptation functions
are explained in detail in Section 5.2. In the case where RTP is used for application framing,
a network adaptation protocol is needed for encapsulation of RTP packets. This would
typically be either user datagram protocol (UDP) for IP or AAL type 5 for ATM networks.
For the MPEG Systems layer case without RTP, any underlying network adaptation protocol
may be used, although it would typically be an ATM network in the transport, hence an
ATM adaptation layer for the adaptation.

There are several alternatives for the transport network service class. We show the network
service in the figure for the purpose of relating the different adaptation layers and network
layer protocols. For IP networks, Integrated Services IP models such as the guaranteed
service (GS) [34] or the controlled-load service (CLS) [41] classes may be used to provide
the necessary QoS requirements, in which case the reSerVation protocol (RSVP) [5] would
serve as a signaling protocol. Alternatively, Differential-Services IP classes may be used to
provide higher priority for the video traffic over other less-demanding traffic types. For ISIP
and Differential-services IP models, the combination of RTP/RTCP over UDP is expected
to form the basis for real-time network adaptation. On the other hand, for ATM networks, it
is more likely that either a constant bit rate or a real-time variable bit rate connection would
be appropriate, as defined in the user-network interface version 4.0 [1].

The bottom two layers of figure 10 explore the network protocol layer and the data link
technology alternatives. When ATM is used as a network layer, it provides its own data
link layer mechanism. For IP networks, either the Ethernet 802.1p or 802.1q standard may
provide the data link layer for IP. The 802.1p standard provides priority scheduling features
for the switched Ethernet standards, while the 802.1q standard provides QoS support through
virtual LAN (VLAN) tagging. Alternatively, ATM may provide a data link layer for IP, in
which case AALS would be used to map IP packets onto ATM cells [20]. Various other
alternatives are proposed for the transport of IP over ATM, however it is out of the scope
of this paper to discuss these alternatives [14].

DISTRIBUTED VIDEO PRODUCTION 121

4.3.2. Network adaptation functions. 'We now focus our attention on the network adapta-
tion functions at various levels of the protocol stack. We use the term “network adaptation”
here to include the second and third level from the top in figure 10. In other words, this
includes application-level framing protocols such as RTP/RTCP and MPEG Systems, in
addition to IP transport and ATM adaptation layer protocols. In general, network adapta-
tion functions (at both application and network levels) are needed for two complementary
purposes: 1) mapping application traffic and QoS parameters to network-level performance
parameters, and 2) adapting the QoS delivered by the network to the QoS level requested
by the application. The adaptation functions are usually classified under four categories:

4.3.2.1. Timing recovery and synchronization. Timing recovery and synchronization func-
tions attempt to restore the temporal relationship between the packets constituting a real-time
information stream. This is achieved by means of time stamps or adaptive clock recovery
techniques at the receiver. Additionally, a playout buffer is used in order to absorb the jitter
introduced in the network. Note that the delay introduced in the playout buffer affects the
end-to-end delay of the connection and should not cause the overall delay to exceed the
tolerable delay bound. Another level of synchronization is inter-stream synchronization.
This function usually deals with synchronization between several streams pertaining to a
single application, such as in the case of audio and video or in the case of multi-layered
video streams.

4.3.2.2. Error/loss control. Packet errors and losses are mainly caused by bit errors and
buffer overflows in the network. Error control techniques are usually based on automatic
repeat reQuest (ARQ), forward error correction (FEC) techniques, or a combination of
both. For real-time applications with tight delay constraints, FEC techniques are usually
favored over their ARQ counterparts. Moreover, FEC schemes are usually coupled with
byte or packet interleaving in order to add robustness to the scheme, provided that the
interleaving/de-interleaving delay is kept within the tolerable amounts, as specified by the
application.

4.3.2.3. Stream multiplexing. Multiplexing is usually used in order to avoid inter-stream
synchronization problems by aggregating the different streams belonging to one or more
application and transmitting them over the network as one unit. This results in a reduction
in the inter-stream jitter to a relatively small and controllable amount. Multiplexing is also
used to achieve better network utilization by means of statistical multiplexing.

4.3.2.4. Shaping and flow control. Shaping is used to reduce the burstiness of the traffic,
and hence decrease the probability of packet loss due to buffer overflows inside the network.
However, shaping usually incurs delays, depending on the shaping interval technique and
parameters, which in return impose constraints on the amount of shaping that may be
applied.

Flow control provides means to adapt the application’s rate to the network congestion
level as it occurs. This feature relies on the applications being adaptive in order to function
properly. Shaping and flow control functions are not widely implemented in practical real-
time adaptation protocols.

122 BOUTABA ET AL.

4.3.2.5. Network adaptation protocols. This section provides a survey of the state-of-the-
art in ATM and IP network adaptation and transport protocols. This includes a survey on
AALI1, AAL2, AALS and RTP/RTCP. For details on MPEG2 systems, the reader is referred
to [15] and [16].

AAL type 1 was originally developed for CBR real-time connections. Timing recovery
and synchronization may be achieved by one of two techniques: synchronous residual time
stamps and adaptive clock recovery. Cell loss detection is achieved using a 3-bit sequence
number field. For cell error and loss correction, two FEC schemes with byte interleaving
have been defined [17]: a long interleaving scheme and a short interleaving scheme for
loss- and delay-sensitive applications, respectively. Both schemes use Reed-Solomon block
codes with erasure correction capabilities. The performance of AALI1 for the transport of
CBR MPEG?2 has been reported in [26] and [28].

AAL1 might also be successfully used for VBR traffic with a piece-wise nature [27].
This is achieved by sending special synchronization cells, identified by setting the user-
to-user bit in the cell header, to convey rate change indication to the AALI receiver. The
performance of this scheme is limited by the overhead introduced by these special cells in
the case of frequent rate changes.

AAL? has recently been developed, primarily designed for VBR voice with a strict end-
to-end delay constraint [8], with special emphasis on voice for mobile applications. Never-
theless, it may well be suited for VBR video and multimedia applications. AAL2 is divided
into a common part sublayer and a service specific sublayer. A CPS packet header contains
an 8-bit channel identifier for multiplexing, a 6-bit length indicator and a 5-bit header error
correction field for header error protection. AAL2 multiplexing capability is considered a
strong feature of the protocol, and is used for dynamic channel assignment for mobile ap-
plications. In order to use AAL?2 for the transport of MPEG?2 video, a video-specific SSCS
sublayer should be defined to include necessary timing and error control functions. At the
time of writing this paper, this is still an open research issue.

AALS development was originally driven by the computer industry, in search for an
efficient and reliable replacement for AAL3/4 for non-real-time VBR traffic. Due to its
wide availability in ATM products, AALS is now used in the transport of CBR MPEG2
over ATM [2] and [18]. Each AALS packet is segmented into one or more ATM cells,
the last of which is marked by setting its corresponding ATM user-to-user bit in the cell
header. The trailer cell contains a 32-bit CRC field for error detection, however, no error
correction mechanism is defined for AALS; one bit error may cause the entire AALS packet
to be discarded. AALS does not provide timing recovery and relies on the application to
react to any jitter introduced in the network. Another disadvantage of AALS is that cell
multiplexing is not possible. For the transport of CBR video, several packing schemes have
been proposed, the most popular of which is to pack every two MPEG2 Transport Stream
packets into one AALS PDU [2]. Although a null SSCS is used in this proposal, a video-
specific SSCS may be defined to provide necessary timing and error control. However, since
cell multiplexing is not possible, FEC schemes with interleaving might not be feasible. The
performance of AALS for the transport of CBR MPEG?2 video is reported in [12] and [39].

DISTRIBUTED VIDEO PRODUCTION 123

The real-time transport protocol (RTP) was primarily designed for multiparty multimedia
conferencing on the Internet [33]. RTP is an application-level framing protocol that provides
aframework for adding real-time support for multimedia applications over the existing best-
effort service model.

RTP and RTCP provide applications with time stamps, sequence numbers, payload type
identification, session participants information and QoS monitoring. RTP/RTCP do not pro-
vide length indicators and therefore rely on the underlying transport or AAL protocol (often
UDP or AALYS) to provide the necessary packet encapsulation. QoS monitoring is achieved
by having receivers transmit reports with their observed connection QoS. Error control was
not included in early implementations of RTP. This is currently being investigated in [30].

The implementation of RTP is often integrated into the application. RTP requires addi-
tional payload and application-specific documentation (e.g., [31] and [13]) for the transport
of MPEG video.

4.3.3. Comparison of network adaptation techniques. Table 3 summarizes the features of
the application and network-level adaptation techniques. No clear distinction can be made
between the different protocols. Furthermore, there exist redundant functions implemented
in more than one of them. This makes a choice even harder to achieve. However, it should
be noted that other factors might affect the choice for network adaptations such as compat-
ibility with existing equipment or availability of products. Moreover, in some situations,
redundancy is favored for adding robustness to the overall system.

5. DVP service provision: Service scheduling with QoS

5.1. Service access model

Access to DVP servers will be mainly done according to a client/server model where the
end user at the local studio executes DVP tasks such as retrieving multimedia objects from

a multimedia server. In such a distributed environment, a number of end users from several
local studios may need to access anumber of DVP servers through communication networks.

Table 3. Summary of network adaptation protocol capabilities.

MPEG systems AALIL AAL2 AALS RTP UDP
Time stamps Yes Yes No No Yes No
CRC error No SAR CPS Entire No Optional
detection header header packet
Sequence numbers 4-bit 3-bit 1-bit No 16-bits No
Forward error Optional Yes No No Possible No
correction (FEC)
Multiplexing Yes No Yes No Yes Yes
Encapsulation Yes Yes Yes Yes No Yes

Overhead >2.12% 2% <4% >8 bytes >12 bytes 8 bytes

124 BOUTABA ET AL.

This scenario reveals the requirement for an access model, which allows servicing users
according to their QoS requirements while optimizing DVP server resource utilization. For
that purpose, we have defined a DVP service access platform, which involves two basic
components. The first one, at the user host, acts as the user access interface. It controls user
access to the requested DVP server, and checks if the required QoS parameters are satisfied.
The second component, at the server end, interfaces with the DVP server. It manages access
requests to the server functionality and keeps track of the server load information. Hereafter,
the first component will be referred to as the user agent and the second one as the DVP server
agent. Furthermore, depending on the networked system topology, the access model can
involve a number of additional management components acting as intermediates between
user agents and DVP server agents. These intermediate managers allow the directing of
user requests to the most appropriate servers in a transparent and dynamic manner. QoS
requirements and DVP servers’ availability are taken into account in the process of directing
users’ requests.

Two types of managers are defined, the virtual studio access manager (VSAM), and the
domain manager (DM). The latter is responsible for a domain, grouping a set of DVP servers
according to different criteria such as geographical constraints, DVP server functionality,
or others. VSAM is responsible for a set of domains grouped according to organizational
policies. It acts as a smart directory service gathering both functional and management
information on the DVP domains and makes this information available to domain managers
and local studios. Functional information concerns mainly the DVP tasks and multimedia
content supported within the DVP domains. Management information is primarily used
for managing user access to DVP servers by directing user requests to the appropriate
domains based on: load information; QoS requirements; and cost constraints. The domain
manager monitors the DVP servers within its domain through the server agents associated
with these DVP servers. It collects state as well as load information, and performs the
appropriate allocation of user requests. It also detects multimedia server failures whenever
they occur. As a result, VSAM, and domain managers support the appropriate exchange of
messages between user agents and server agents. In addition, they maintain state information
that allows the determination of the most suitable DVP server in response to an end user
request.

The introduced agents and managers can be configured (their number, location, depen-
dencies) to suit a given physical topology or a given DVP service provision policy. They
intervene between local studios, i.e., user hosts, and existing (or future) DVP servers, i.e.,
server machines, to increase service availability as well as to optimize resource utilization.

Figure 11, shows an example configuration of Virtual Studio Access architecture, illus-
trating the distributed feature of the access model. The example configuration consists of a
two-level hierarchy where the virtual studio access manager is the root, domain managers
constitute the first level, and DVP Server Agents the leaves. However, the virtual studio
architecture may contain as many domain levels as necessary according to the size and fea-
ture of the overall system, e.g., the number of DVP servers, their distribution, the network
topology, etc. The performance of the overall system is also an important design choice to
determine the number of domain levels in the access platform. Indeed, involving a large
number of intermediate domain managers in the decision making process will affect the

DISTRIBUTED VIDEO PRODUCTION 125

Local Studio Local Studio

-

DVP Server DVP Server

I I |

|| (L 1!

11 (L [

Agent 1 | 1 1 1 1 Agent

1! ([1!
| RSN - I [NV | NIVEVE PRI NI S [N DS F
: DVP Server | : DVP Server ! : DVP Server | : DVP Server !

Access | Access 1 Access I Access I

! Primitives ! Primitives 1! Primitives I V| Primitives !
! || (L 1l |
! I DVP Server I 1! I DVP Server I 1 I DVP Server I B I DVP Server 1
I —d b e—d [S ——— 3 e—]

Figure 11. Virtual studio access architecture.

performance in terms of response time. The following subsections present in detail, the
functions provided by the virtual studio architectural components.

5.1.1. The user agent. The user agent consists of three components: user interface, QoS
manager, and a client controller (as it is shown in figure 12). The user interface consists of
two main parts. The first one provides the various DVP tasks such as a way to search and
select a video object from a video server. The second one allows the specification of the
desired QoS such as the quality for the presentation. It also allows to set the access cost
constraints and to renegotiate the QoS parameters during the DVP service provision, e.g.,
during a video object display.

Whenever, a user selects a DVP task with specific QoS requirements, the user interface
component invokes the QoS manager, which starts by checking whether the client machine
characteristics, such as the screen size and color, support the requested QoS. If not, the QoS
manager sends to the user a reject message, possibly with an alternative offer, through

126 BOUTABA ET AL.

User Interface \

QoS Manager
.* | Client Controller ~
- ,/ k ~
5
P / \ N
& ,r' LY ~
r (Y hY
s / \ iy

Message Interpreter

Protocol Processing Unit
(related to SAP)

Host Port

Figure 12. User agent architecture.

the user interface. In this case, the user might abandon the request, accept the alternative
offer if any, or initiate a re-negotiation. If the specified QoS parameters conform to the
capabilities of the user’s host, the QoS manager invokes the client controller together with
its user requirements, i.e., QoS, and user workstation capabilities like the available decoder
or operating system. The client controller builds a request message before sending it to the
domain manager. It then waits, at a specific host port, for a response while initiating a timer.
If the timer expires, or the user request is rejected by the DVP system, a reject message is
displayed at the user interface. Otherwise, the client controller invokes the appropriate DVP
client to display the multimedia object. This is done via a message interpreter responsible
for mapping virtual studio access protocol data units to a specific primitive that starts the
corresponding DVP client. The latter can be any of the available research and commercial
DVP tools such as audio/video players or other media processing software.

During the DVP service provision, the user may experience a QoS degradation manifested
for example as an unacceptable presentation quality. In such an occurrence, the user agent
notifies the appropriate domain manager asking for an alternative DVP server capable of
delivering the service with the contracted QoS. In the current implementation, the state of
the DVP task, e.g., a video object display is registered at the time the task is interrupted,
e.g., the position of the last video scene displayed. This allows the alternative DVP server

DISTRIBUTED VIDEO PRODUCTION 127

to continue the delivery of a service started by another server. The new DVP server restarts
the DVP task based on the state parameters registered earlier.

The object-based design of the user agent allows for higher flexibility and easier mainte-
nance. As an example to support a new DVP application, one can integrate the appropriate
user interface without changing the existing objects of the user agent.

5.1.2. The DVP server agent. A DVP server agent is delegated to represent a DVP server
within the virtual studio environment. The DVP server agent continuously waits at a specific
service port for requests coming from its domain manager. When a request is received, the
server agent checks first the capacity of the DVP server to deliver the requested service
with the desired QoS. This leads to either starting the delivery by the server, or sending a
reject message to the user. The server agent is composed of two main parts, or functions.
The first part deals with the communication with other components of the virtual studio
architecture like the domain manager, and the user agent. The second part is related to the
DVP server represented by the corresponding server agent in our access model. Its imple-
mentation is specific to the encapsulated DVP server. The advantage of this design is the
ability to change from one DVP server to another by changing only the corresponding part
in the server agent. Similarly, introducing a new DVP server in the virtual studio environ-
ment necessitates the provision of the corresponding interoperability functions at the server
agent.

In the context of the virtual studio service requests management, a DVP server agent
exchanges messages with the domain manager concerning its operational state, and its
availability. This allows the SAP to detect faulty DVP servers. For this purpose, the DVP
server agent periodically notifies the domain manager of its availability to handle service
requests. Notification frequencies need not to be equal for all DVP server agents in the
system. The notification frequency depends on a number of factors, such as the reliability
of the server. In addition, it takes into account how much importance we place on these
factors. Such factors can be computed according to collected statistics on the past behavior
of the server.

The load information of a DVP server referred to as the DVP server availability is
computed as the number of service requests the server can handle with a given QoS at a
given time. This highly depends on the internal implementation of the DVP server such
as the processing architecture, storage capacity, access performance, etc. The DVP server
agent computes the load of the DVP server it encapsulates based on the load model described
in Section 5.2.

5.1.3. The virtual studio access manager. The role of the virtual studio access manager
is to redirect user requests to the appropriate DVP domain. That is the domain containing
the most appropriate DVP server to handle the request. For this purpose, VSAM maintains
two state information tables, namely VSAM_DVPtask_Table and VSAM_Load_Table.
VSAM_DVPtask_Table contains two attribute types: DVPtask_Id and List_of_
Domains. It gives, for each DVP task identified by DVPtask_Id, the list of domains
containing at least one DVP server that supports this task. Each domain in the List_of_
Domains is identified by its Domain_Id. VSAM_Load_Table gives for each domain,
identified by a Domain_Id, the load of this domain.

128 BOUTABA ET AL.

Upon receipt of a request from a domain manager or a local studio, VSAM determines the
domains with at least one DVP server that can handle the request. It uses VSAM_DVPtask_
Table for this purpose. The load information contained in VSAM_Load_Table is sorted
from the lightly loaded domain to the highly loaded one. According to these tables, domain
managers are successively requested to deliver the multimedia object. A reject message is
send back if none of the domains can satisfy the request.

The load information for each domain maintained by VSAM is received from the corre-
sponding domain manager. The latter computes the domain load as the weighted average
sum of the load levels of the various DVP servers within the domain.

5.1.4. The domain manager. Domains are logical structures used as flexible means for
clustering DVP servers in order to control resources utilization. Each domain contains a
domain manager, which maintains the global view of the encapsulated DVP servers. Based
on global and timely knowledge of servers state, a domain manager can offer end users
better quality and fault tolerant access to the DVP services supported by these servers. The
state information on a DVP server concerns mainly its operational state, e.g., out of service,
and its availability, e.g., load, response-time, etc.

As described previously, domains can be defined according to geographical, organiza-
tional, service type, service performance, and other criteria. The various domains are orga-
nized into a hierarchy of domains to provide a system-wide access to DVP services. The
domain structuring allows reducing the management complexity of the overall virtual studio
environment. Indeed, a domain manager performs its management task autonomously, but
may cooperate with other domain managers in the context of the global access management
and service scheduling tasks. The number and size of the domains can be determined based
on several factors such as investment versus revenue for the DVP service provider, and/or
quality versus price of the offered services to local studios.

Similar to VSAM, but within a single domain, the domain manager redirects user re-
quests to the appropriate DVP server. It maintains mainly two state information tables,
namely D_DVPtask_Table and D_Load_Table. Emphasis is given on the load distri-
bution capability. Therefore the state information is limited to DVP servers’ load infor-
mation. D_DVPtask_Table contains two attribute types: DVPtask_Id and List_of_
DVPserver_DVP-task. It gives, for each DVP task identified by DvPtask_Id, the list
of servers supporting the requested DVP task together with the QoS characteristics. Each
item in the List_of_DVPserver_DVPtask is composed of the DVPserver_Id sup-
porting DVPtask_Id and a list of QoS charachteristics. D_Load_Table gives for each
DVP server, identified by a SVPserver_Id, the load of this server.

Upon receipt of a request from a user agent or from VSAM, the domain manager de-
termines, from D_DVPtask_Table, the DVP servers supporting the requested DVP task
with the QoS characteristics required by the user and supported by the user workstation.
The domain manager compiles the load information contained in D_Load_List to deter-
mine the most appropriate DVP server with respect to the user request. For that purpose,
D_Load_List is sorted from the lightly loaded server to the highly loaded one. In practice,
The domain manager submits the user request to the DVP Server Agent responsible for the
least loaded server supporting the requested DVP task. This process is repeated until a

DISTRIBUTED VIDEO PRODUCTION 129

server succeeds to deliver the requested service, or all the servers fail. In the latter case, a
notification is sent to VSAM.

The load information for each DVP server that is maintained by the domain manager
is received from the corresponding DVP Server Agent. The latter computes the load of
the DVP server it is responsible for, based on the QoS-sensitive load model described in
Section 5.2.

5.2. Multidimensional load model

5.2.1. QoS-sensitive load model of DVP servers. One of the main criteria used to find
the most appropriate DVP server to which to redirect users service requests, is the load
of DVP servers. Usually, a DVP server’s load is computed as the number of processes
currently executed divided by the server’s speed, or equivalently the number of service
requests currently handled divided by the server’s speed (a function of the CPU and disk
access speeds).

In a multi-service environment supporting different QoS, the load information, as defined
above, does not reflect the real load, and may lead to wrong placement decisions. Indeed, the
“least loaded server”, handling the smallest number of service requests, may not correspond
to the server which has the smallest load volume. For example, a server performing a task
that requires a large amount of resources, e.g., decoding and displaying a high resolution
video, is effectively more loaded than a server performing tens of light tasks, e.g., text
processing. Furthermore, there are no guarantees that the selected least loaded server can
support the user QoS requirements.

To alleviate these limitations we propose a scheme, which provides an accurate infor-
mation about the capacity of a server to support a given request by performing extensive
measurements prior to service operation. This scheme allows to determine the server which
is lightly loaded; and is able to support the user request with the desired QoS.

In the proposed scheme, QoS requirements are grouped into QoS classes. Each class
represents a range of QoS parameters’ values. A service request is associated with a QoS
class and, thus, requires a certain amount of network and system resources from the DVP
server.

At a given time, the state of a given DVP server can be defined as the set of service
instances currently supported by the server. Based on this classification, we can determine,
through experiments, the set of non-blocking, semi-blocking and blocking states for a given
DVP server. A DVP server is in a non-blocking (respectively blocking) state if it can (not)
support new service request(s) without affecting the service instances currently supported.
When the DVP server is in a semi-blocking state, certain new service requests can be
supported while others cannot. This QoS classification and server states determination are
formalized as follows:

Let us define CL as the set of QoS classes a DVP server can support, and n the cardinality
of CL.

Definition 1. St is defined as the set of service instances currently supported by server S
at time t. It reflects the state of a given DVP server at a given time.

130 BOUTABA ET AL.

We note St=(V(cl?), V(cl?), .., V(cl®)), where V(cl') as the number of
currently provided service instances belonging to QoS class c1*;1 <= i <= nandn =
Cardinal (CL).

Definition 2. A finite state machine (FSM) that represents a given DVP server S is a tuple
(s, s°, SR, TSR, T),where:

S is the set of states in which the DVP server can still accept new requests (non-blocking
states),

— SY is the initial state of the DVP server,

SR represents the set of service requests submitted to the DVP server,

TSR is a set of received service termination requests generated by local studios, and

T: S {s°} * SR — Sis a transition function.

The transition function T operates as follows:

When the DVP server S receives a service request, for example sr, belonging to QoS
class c1¥ attime t + §, two options are possible: Either the DVP server is in a blocking state
and rejects the sr request, or it is in a non-blocking state and processes this request. In the
latter case the DVP server transits from state St to St'=(V(clt),.., V(cl®)+1,..,
V(cl®)).

When the DVP server receives a service termination request at time t + 4, say tsr,
corresponding to a service request of QoS class c1¥, it transits from state St to St” =
(V(clh), .., V(ec1¥)-1,2 .., V(cl™)).

5.2.2. Domain load. As stated previously, our Virtual studio access model introduces the
domain concept as a means for grouping multimedia servers to obtain aggregated views of
the DVP network and system resources, and hence a more easily manageable distribution
of the overall load in the virtual studio. Typically, domains are used to redirect users’
requests to the appropriate DVP servers based on the global state information maintained
at these domains. In addition to the load of each DVP server in the domain, we may need
to compute the load of the domain as a whole. This is particularly needed, if a hierarchical
domain structuring is adopted for the system where domains can be members of upper level
domains. In this case the load of the domains is used to decide the directing of service
requests to the most appropriate domain.

The load information of a domain is a function of the load of the DVP servers contained
in this domain. In the next subsection, a simple approach is used to compute a domain
load as the weighted average sum of the load levels of the DVP servers in this domain.
The selection of the weights associated to the various DVP servers depends on several
factors, such as the reliability and availability of the DVP servers. These factors can be
statistically determined based on the past behaviors of the DVP servers. In practice, the
designer of the virtual studio assigns weights to the DVP servers involved in the Virtual
Studio. Weights are first statically assigned based on either the designer servers’ exploitation
policy or the characteristics of the servers or both. The characteristics of the DVP servers
are obtained from the server’s vendor specifications such as the performance of the server in
terms of processing power, storage capacity, access speed and so on. The weights are then

DISTRIBUTED VIDEO PRODUCTION 131

dynamically adjusted according to statistics on servers operation and behavior. The domain
manager keeps track of DVP servers past behaviors by maintaining, into a log, several
information attributes concerning the operational state, the administrative state, the health
and availability of each DVP server. Statistics are computed using the information in the log
and used to adjust the weights assigned to the DVP servers, for example on a day of the week
or on a time of the day basis. The weights can also be adjusted to reflect a new policy of the
Virtual Studio service provider. The load information for each DVP server maintained at
the domain is obtained from this DVP server according to the multidimensional load model
described previously.

5.2.3. Information exchange policy. There are a number of approaches to exchange state
information between the DVP servers involved in the load distribution process. These
mainly implement a polling procedure, which may be initiated by the client host or by
the server. In the context of our domain-based structuring of the virtual studio environment,
load information exchange is based on a server-initiated polling mechanism implemented
for each individual domain. Several variants of server-initiated polling can be envisaged for
load information exchange within a domain. Among them there are:

— Each DVP server periodically sends notifications about its current load.
— A DVP server notifies about its current load whenever it changes.
— The DVP server sends notifications only when significant load levels are reached.

In order to minimize the number of messages exchanged in the system, the last policy is
adopted for the exchange of load information. According to the defined load model, a DVP
server doesn’t need to send a load update notification each time it transits to a new state
except if this one is a blocking or a semi-blocking state. Therefore, only the DVP servers
capable of supporting user requests with the desired QoS will be considered during task
placement decisions.

The exchanged load information, referred to hereafter as Load_Level (LL), is expressed
as:

LL = ZWJ‘_ *bi,

where b; is a boolean that represents the server state with respect to service requests
belonging to c1t.b; = 0 if the DVP server cannot support any new service request of class
c1i; otherwise b; = 1; initially t; =1 for 1 ={1, ..., n}.

w; indicates the weight associated with c1* (w; <w; means that c1* < ¢173 which in turn
means that service requests from c13 require more server resources than those from c11).
Hence, the values of w;, for 1<=i<=n, depend on the classification of c1!, 1<=i<=n, in
terms of grade of service.

5.2.4. Service access policy. The most frequently invoked tasks are supported by a large
number of DVP servers. Similarly, the most frequently accessed video objects are replicated
on a large number of video servers. In this perspective, a replication scheme such as the
one proposed in [7] can be used. The frequency of accesses to video objects (respectively,
task invocations) is equally assigned to all objects (respectively, DVP tasks) statically at

132 BOUTABA ET AL.

system start up. Access frequency is then incremented each time the object or the task is
invoked. The Virtual Studio access architecture easily determines the access frequency for
each object as all requests go through it. This is done with a reasonable overhead as the
access model is designed to manage the invocation of a relatively limited number of tasks.

Given a user request to perform a DVP task with given QoS requirements, the role of the
access architecture is to locate the appropriate DVP server to handle this request. A service
access policy is defined to guide the access architecture in the process of dynamically
locating the DVP server capable of delivering the requested DVP service while satisfying
user QoS requirements. Several factors are taken into account by the service access policy.
These are:

1. load of the DVP servers;
2. QoS characteristics of the DVP task; and
3. user QoS requirements and cost constraints.

The ultimate goal of our access model is to minimize the blocking probability of user
requests. Therefore, we define the service access policy in such a way to avoid rejecting a
local studio request while there are DVP servers in the virtual studio, which might satisfy
this request. The following steps summarize the implemented service access policy:

1. Identify the DVP servers capable to perform the requested DVP task; this gives a list of
candidate DVP servers.

2. From the list in (1), select the DVP server which can perform the requested DVP task
while satisfying the most user QoS requirements, and which has the lightest break load.

3. Start the DVP service delivery (e.g., displaying a video object or executing a DVP task);
go to step (2) in case the selected DVP server experiences rapid load fluctuation leading
to a violation of the service agreement.

6. Summary and conclusion

Distributed video production systems are seen as a solution for most of the economical and
technical challenges that a current studio faces. In this paper, we presented a comprehensive
framework for DVP architectures. We described in detail typical DVP tasks and their related
system and network performance requirements. We proposed a layered architecture model
that captures the system and network characteristics of DVP environments. We finally
proposed a QoS-sensitive model for resource allocation and optimization for distributed
video production systems. Our architecture addresses several key issues in the design and
implementation of DVP systems. We believe that with the advancements in computational
and networking technologies, DVP systems will soon become a reality.

Acknowledgment

We would like to thank Mr. Leigh Chang and Mr. Richard Kupniki of Leitch Technology
for providing valuable feedback during this project.

DISTRIBUTED VIDEO PRODUCTION 133

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

217.

. ATM Forum Technical Committee, “Traffic management specification version 4.0,” ATM Forum af-tm-

0056.000, April 1996.

. ATM Forum Technical Committee, “Audiovisual multimedia services: Video on demand specification 1.1,”

ATM Forum af-saa-0049.001, March 1997.

. B. Bhatt, D. Birks, and D. Hermreck, “Digital television: Making it work,” IEEE Spectrum, Oct. 1997.
. A. Boxer, “Where Buses Can Not Go,” IEEE Spectrum, Feb. 1995.
. R.Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reSerVation protocol (RSVP)—Version

1 functional specification,” IETF RFC 2205, Sept. 1997.

. S.E. Browne, “Video editing: A postproduction primer,” 3rd edition, Focal Press: Boston, 1996.
. A. Dan and D. Sitaram, “An online video placement policy based on bandwidth to space ratio (BSR),” in

Proceedings of ACM SIGMOD’95, San Jose, 1995.

. Draft new ITU-T Recommendation 1.363.2, “B-ISDN ATM adaptation layer type 2 specification,” Madrid,

Nov. 1996.

. B. Furht, Processor Architectures for Multimedia. Kluwer Academic Publishers: Norwell, Massachusetts,

1998.

M.D. Hayter and D.R. Mcanley, “The Desk Area Network,” ACM Operating Systems Review, Vol. 25, No. 4,
1991.

D. Hehmann, M. Salmony, and H. Stuttgen, “Transport services for multimedia applications on broadband
networks,” Computer Communications, Vol. 13, No. 4, May 1990.

P. Hodgins, “Timing recovery for MPEG video over AALS,” M.A.Sc. Thesis, University of Toronto, Toronto
ON, Sept. 1995.

D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar, “RTP paload format for MPEGI/MPEG2 video,”
draft-ietf-avt-mpeg-new-01.txt, June 1997.

IETF, “Internetworking over NBMA working group home page,” <http://www. com21.com/pages/ietf.htm]l>
ITU-T Recommendation H.222.0|ISO/IEC 13818-1, “Generic coding of moving pictures and associated audio
information: Systems,” April 1995.

ITU-T Recommendation H.222.1, “Multimedia multiplex and synchronization for audiovisual communication
in ATM environments,” 1996.

ITU-T Recommendation 1.363.1, “B-ISDN ATM adaptation layer (AAL) specification, Type 1 and 2,”
1996.

ITU-T Recommendation J.82, “Transport of MPEG-2 constant bit rate television signals in B-ISDN,”
July 1996.

D. Kandlur, D. Saha, and M. Willebeek-LeMair, “Protocol architecture for multimedia applications over ATM
networks,” IEEE Journal on Selected Areas in Communications, Vol. 14, No. 7, Sept. 1996.

M. Laubach, “Classical IP and ARP over ATM,” IETF RFC 1577, Jan. 1994.

G. Lu, Communication and Computing for Distributed Multimedia Systems, Artech House: Norwood, MA,
1996.

A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for Multimedia PCs,” Communications of the ACM, Vol. 40,
No. 1, 1997.

T. Pfeifer, “Micronet machines—New architecture approaches for multimedia end-systems,” in Proceedings of
4th International Workshop of Network and Operating System Support for Digital Audio and Video, Lancaster
House, Lancaster, U.K., Nov. 1993, pp. 29-40.

S.V. Raghavan and S.K. Tripath, Networked Multimedia Systems: Concepts, Architecture, and Design,
Prentice-Hall, NJ, 1998.

P.V. Rangan, H.M. Vin, and S. Ramagathan, “Designing an on-demand multimedia service,” IEEE Commu-
nications Magazine, Vol. 30, July 1992.

Y. Rasheed and A. Leon-Garcia, “Implementation model and performance verification for AAL1 carrying
CBR MPEG?2 traffic,” IEEE ATM Workshop ’95, Washington DC, Oct. 1995.

Y. Rasheed and A. Leon-Garcia, “ATM adaptation layers for VBR MPEG?2 video,” Poster Presentation, CITR
AGM ’95, Vancouver BC, Oct. 1995.

134 BOUTABA ET AL.

28. Y. Rasheed and A. Leon-Garcia, “AAL1 with FEC for the transport of CBR MPEG2 video over ATM
networks,” IEEE INFOCOM ’96, San Francisco CA, March 1996.

29. A.L.N. Reddy and J.C. Wyllie, “I/O issues in a multimedia system,” IEEE Computer, Vol. 27, No. 3, March
1994.

30. J. Rosenberg and H. Schulzrinne, “An RTP payload format for generic forward error correction,” draft-ietf-
avt-fec-01.txt, Nov. 1997.

31. H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC 1890, Jan.
1996.

32. M. Schwartz and D. Beaumont, “Quality of service requirements for audio-visual multimedia services,” ATM
Forum, July 1994. ATM94-0640.

33. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time applica-
tions,” RFC 1889, Jan. 1996.

34. S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” IETF RFC 2212,
Sept. 1997.

35. R. Steinmetz, “Analyzing the multimedia operating system,” IEEE Multimedia, Spring 1995.

36. R. Steinmetz, “Human perception of jitter and media synchronization,” IEEE Journal on Selected Areas in
Communications, Vol. 14, No. 1, Jan. 1996.

37. R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications, and Applications, Prentice-Hall,
NIJ, 1995.

38. Task Force for Harmonized Standards for the Exchange of Program Material as Bit Streams, “First Report:
User Requirements,” European Broadcasting Union and Society of Motion Picture and Television Engineers.
April 1997.

39. C. Tryfonas, “MPEG-2 transport over ATM networks,” M.A.Sc. Thesis, University of California Santa Cruz,
Sept. 1996.

40. H.M. Vin and P.V. Rangan, “Designing a multi-user HDTV storage server,” IEEE JSAC, Vol. 11, Jan.
1993.

41. J. Wroclawski, “Specification of the controlled-load network element service,” IETF RFC 2211, Sept.
1997.

Raouf Boutaba is an Assistant Professor in the Department of Computer Science at the University of Waterloo
since 1999. Before he was with the Electrical and Computer Engineering Department of the University of Toronto.
Before that and for three years he was the Director of the Telecommunications and Distributed Systems Division
in the Computer Science Research Institute of Montreal. He has been an adjunct Professor at the University of
Montreal since 1995. Dr. Boutaba conducts research in integrated network and systems management, wired and
wireless multimedia networks, and quality of service control in the Internet. He founded and chaired the IFIP/IEEE
International Conference on the Management of Multimedia Networks and Services in 1997. He is the chairman
of the IFIP working group on Networks and distributed systems management and a member of the advisory
editorial board of the International Journal of Network and Systems Management Dr. Boutaba is the recipient of
the Premier’s Research Excellence Award in 2000.

DISTRIBUTED VIDEO PRODUCTION 135

Ned Ning Ren was born in Shanghai, P.R.China in 1972. He received a B.A.Sc and M.A.Sc degree in Electrical
and Computer Engineering from University of Toronto in 1996 and 1998. Ned has done research on distributed
multimedia application, system and resource management. He is currently working as a senior software engineer
on advanced VPN management platform in California.

Yasser Rasheed was born in Cairo, Egypt, in 1969. He received his B.Sc. in Electrical Engineering from Cairo
University, Egypt, in 1991 and received his M.A.Sc. and Ph.D. degrees in Electrical and Computer Engineering
from the University of Toronto, Canada, in 1995 and 2000 respectively. Yasser is currently holds the position of a
Staff Network Software Engineer at Intel Architecture Labs, Intel Corporation. His interests include high-speed
networking, media distribution in the homes, and Quality of Service.

Alberto Leon-Garcia received the B.S., M.S., and Ph.D. degrees in electrical engineering from the university of
Southern California, in 1973, 1974, and 1976 respectively. He is a Full Professor in the Department of Electrical
and Computer Engineering of the University of Toronto and he currently holds the Nortel Institute Chair in Network
Architecture and Services. In 1999 he became an IEEE fellow for “For contributions to multiplexing and switching
of integrated services traffic”. He teaches undergraduate and graduate courses in communication networks, and
conducts research in resources management of broadband networks and service end systems, switch and router
design, Internet performance, and wireless packet access networks. He is currently leading a team that is developing

136 BOUTABA ET AL.

a programmable network node that can be used for the rapid prototyping of packet network protocols. He is also
Director of the Master of Engineering in Telecommunications program. Dr. Leon-Garcia was Editor for Voice/Data
Networks for the IEEE TRANSACTIONS ON COMMUNICATIONS from 1983 to 1988 and Editor for the IEEE
INFORMATION THEORY NEWSLETTER from 1982 to 1984. He was Guest Editor of the September 1986
Special Issue on Performance Evaluation of Communications Networks of the IEEE SELECTED AREAS ON
COMMUNICATIONS. He is also author of the textbooks Probability and Random Processes for Electrical
Engineering (Reading, MA: Addison-Wesley), and Communication Networks: Fundamental Concepts and Key
Architectures, co-authored with Dr. Indra Widjaja and published by McGraw-Hill.

