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Abstract

Call admission control is a key element in the provision of guaranteed quality of service in wireless

networks. The design of call admission control algorithms for mobile cellular networks is especially

challenging given the limited and highly variable resources, and the mobility of users encountered in

such networks. This article provides a survey of admission control schemes for cellular networks and the

research in this area. Our goal is to provide a broad classification and thorough discussion of existing call

admission control schemes. We classify these schemes based on factors such as deterministic/stochastic

guarantees, distributed/local control and adaptivity to traffic conditions. In addition to this, we present

some modeling and analysis basics to help in better understanding the performance and efficiency of

admission control schemes in cellular networks. We describe several admission control schemes and

compare them in terms of performance and complexity. Handoff prioritization is the common character-

istic of these schemes. We survey different approaches proposed for achieving handoff prioritization with

a focus on reservation schemes. Moreover, optimal and near-optimal reservation schemes are presented

and discussed. Also, we overview other important schemes such as those designed for multi-service

networks and hierarchical systems as well as complete knowledge schemes and those using pricing for

call admission control. Finally, the paper concludes on the state of current research and points out some

of the key issues that need to be addressed in the context of call admission control for future cellular

networks.
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Call Admission Control in Mobile Cellular

Networks: A Comprehensive Survey

I. I NTRODUCTION

Starting in 1921 in the United States, police department experimental mobile radios began

operating just above the present AM radio broadcast band. On June 17, 1946 in Saint Louis,

AT&T and Southwestern Bell introduced the first American commercial mobile telephone service

(typically in automobiles). Installed high above Southwestern Bell’s headquarters, a centrally

located antenna paged mobiles and provided radio-telephone traffic on the downlink. In the

mid-1960s, the Bell System introduced the Improved Mobile Telephone Services (IMTS), which

markedly improved the mobile telephone systems. As early as 1947, it was realized that small

cells with frequency reuse could increase traffic capacity substantially and the basiccellular

concept was developed. However, the technology did not exist. In the late 1960s and early

1970s, the cellular concept was conceived and was then used to improve the system capacity

and frequency efficiency.

Each cell in a cellular network is equipped with a base station and with a number of radio

channels assigned according to the transmission power constraints and availability of spectrum.

A channel can be a frequency, a time slot or a code sequence. Any terminal residing in a cell can

communicate through a radio link with the base station located in the cell, which communicates

with the Mobile Switching Center (MSC), which is in turn connected to the Public Switched

Telephone Networks (PSTN) as shown in Fig. 1. When a user initiates or receives a call, the

user may roam around the area covered by the network. If the mobile user moves from one cell

to another, and the call from/to the user has not finished, the network has tohandoff the call

from one cell to another at the cell boundary crossing without user’s awareness of handoff and

without much degradation of the service quality.

With the development of digital technologies and microprocessing computing power in the late

1980’s and up to today, enormous interest emerged in digital cellular systems, which promised

higher capacity and higher quality of services at reduced costs. Historically, mobile cellular

communications have undertaken four evolution stages or generations, which are shown in
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Fig. 1. A cellular system with hexagonal cells.

Table (I) taken from [1]. Analog cellular systems belong to the first generation where the major

service provided is voice. Second generation cellular systems use digital technologies to provide

better quality of service including voice and limited data with higher system capacity and lower

cost. Third generation cellular networks offer multimedia transmission, global roaming across a

homogeneous wireless network, and bit rates ranging from 384 Kbps to several Mbps. Worldwide

migration to 3G is expected to continue through 2005 [2]. Meanwhile, researchers and vendors

are expressing a growing interest in 4G wireless networks that support global roaming across

heterogeneous wireless and mobile networks, for example, from a cellular network to a satellite-

based network to a high-bandwidth wireless LAN [2]–[4].

Quality of Service (QoS) provisioning in wireless networks is a challenging problem due to

the scarcity of wireless resources, i.e. radio channels, and the mobility of users. Call admission

control (CAC) is a fundamental mechanism used for QoS provisioning in a network. It restricts

the access to the network based on resource availability in order to prevent network congestion

and service degradation for already supported users. A new call request is accepted if there are

enough idle resources to meet the QoS requirements of the new call without violating the QoS
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TABLE I

EVOLUTION OF MOBILE COMMUNICATION SYSTEMS.

Property 1G 2G 2.5G&3G 4G

Starting Time 1985 1992 2002 210-2012

Representative Standard AMPS GSM IMT-2000 UWB

Radio Frequency (Hz) 400M-800M 800M-900M 1800M-2400M 2G-8G

Bandwidth(bps) 2.4K-3K 9.6K-14.4K 384K-2M 20M-100M

Multiple Access Technique FDMA TDMA, CDMA WCDMA OFDM

Switching Basis Circuit Circuit Circuit,Packet Packet

Cellular Coverage Large area Medium area Small area Mini area

Service Type Voice Voice, limited data Voice, data, limited multimedia Multimedia

for already accepted calls. With respect to the layered network architecture, different quality of

service parameters are involved at different layers. At physical layer, bit-level QoS parameters

such as bit energy-to-noise density describe the quality of service a mobile user receives. In

packet-based communication systems, packet-level QoS parameters such as packet loss, delay and

jitter characterize the perceived quality of service. However, most of the existing research on call

admission control in cellular networks have focused on an abstract representation of the network

in which only call-level QoS parameters, namely, call blocking and dropping probabilities are

considered.

The paper is organized as follows. Section II is an overview of some basic concepts which are

required for following the rest of the paper. Section III presents the basic modeling and analysis

techniques in cellular networks. Section IV identifies three different call admission control

problems based on the call-level QoS metrics and gives an overview of call admission control

in cellular networks. As the most general approach to admission control, handoff prioritization

techniques are reviewed in section V. We then discuss dynamic reservation schemes in section

VI and discuss two broad categories of existing admission control techniques, namely, local and

distributed admission control. Section VIII covers other important schemes such as those for

multi-services networks and hierarchical systems, complete knowledge schemes and the use of

pricing for call admission control. Finally, section IX concludes this survey.
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II. BASIC CONCEPTS

A. Call Dropping and Handoff Failure

When a mobile terminal (mobile user) requests service, it may either be granted or denied

service. This denial of service is known as call blocking, and its probability ascall blocking

probability (pb). An active terminal in a cellular network may move from one cell to another. The

continuity of service to the mobile terminal in the new cell requires a successful handoff from the

previous cell to the new cell. A handoff is successful if the required resources are available and

allocated for the mobile terminal. The probability of a handoff failure is calledhandoff failure

probability (pf ). During the life of a call, a mobile user may cross several cell boundaries and

hence may require several successful handoffs. Failure to get a successful handoff at any cell in

the path forces the network to discontinue service to the user. This is known as call dropping

or forced termination of the call and the probability of such an event is known ascall dropping

probability (pd). In general, dropping a call in progress is considered to have a more negative

impact from the user’s perspective than blocking a newly requested call.

According to the above definition, the call dropping probability,pd, and handoff failure

probability, pf , are different parameters. While the handoff failure probability is an important

parameter for network management, the probability of call dropping (forced termination) may

be more relevant to mobile users and service providers. Despite this fact, most research papers

focus on the handoff failure probability because calculatingpf is more convenient.

If H is the number of handoffs throughout the duration of a call then

pd = 1− (1− pf )
H , (1)

whereH itself is a random variable. Therefore, in average

pd = 1−
∞∑

h=0

(1− pf )
h Pr(H = h) . (2)

Finally, given the call blocking and dropping probabilitiespb andpd, the call completion prob-

ability (pc) is given by

pc = (1− pb)(1− pd) . (3)

Intuitively, call completion probability shows the percentage of those calls successfully completed

in the network.
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B. Channel Assignment Schemes

Channels are managed at each cell by channel assignment schemes based on co-channel reuse

constraints. Under such constraints, three classes of channel assignment schemes have been

widely investigated [5]–[7]:

1) Fixed channel assignment (FCA)

2) Dynamic channel assignment (DCA)

3) Hybrid channel assignment (HCA)

In FCA schemes, a set of channels is permanently assigned to each base station. A new call

can only be served if there is a free channel available in the cell. Due to non-uniform traffic

distribution among cells, FCA schemes suffer from low channel utilization. DCA was proposed

to overcome this problem at the expense of increased complexity and signaling overhead. In

DCA, all channels are kept in a central pool to be shared among the calls in all cells. A channel

is eligible for use in any cell provided the co-channel reuse constraint is satisfied. Although DCA

provides flexibility, it has less efficiency than FCA under high load conditions [7]. To overcome

this drawback, hybrid allocation techniques, which are a combination of FCA and DCA, were

proposed. In HCA each cell has a static set of channels and can dynamically borrow additional

channels. For comprehensive survey on channel assignment schemes, the reader is referred to

[5]. In this paper, we are interested in that networks where channel assignment is fixed.

C. Handoff Schemes

The handoff schemes can be classified according to the way the new channel is set up and the

method with which the call is handed off from the old base station to the new one. At call-level,

there are two classes of handoff schemes, namely hard handoff and soft handoff [8], [9].

1) Hard handoff: In hard handoff, the old radio link is broken before the new radio link is

established and a mobile terminal communicates at most with one base station at a time.

The mobile terminal changes the communication channel to the new base station with the

possibility of a short interruption of the call in progress. If the old radio link is disconnected

before the network completes the transfer, the call is forced to terminate. Thus, even if

idle channels are available in the new cell, a handoff call may fail if the network response

time for link transfer is too long [10]. Second generation mobile communication systems

based on GSM fall in this category.
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2) Soft handoff:In soft handoff, a mobile terminal may communicate with the network using

multiple radio links through different base stations at the same time. The handoff process

is initiated in the overlapping area between cells some short time before the actual handoff

takes place. When the new channel is successfully assigned to the mobile terminal, the

old channel is released. Thus, the handoff procedure is not sensitive to link transfer time

[8], [10]. The second and third generation CDMA-based mobile communication systems

fall in this category.

Soft handoff decreases call dropping at the expense of additional overhead (two busy channels

for a single call) and complexity (transmitting through two channels simultaneously) [10]. Two

key issues in designing soft handoff schemes are the handoff initiation time and the size of

the active set of base stations the mobile is communicating with simultaneously [9]. This study

focuses on cellular networks implementing hard handoff schemes.

D. Performance Criteria

In this subsection, we identify some commonly used performance criteria for comparing CAC

schemes. Although others exist, we will focus on the following criteria in this survey:

1) Efficiency:Efficiency refers to the achieved utilization level of network capacity given a

specific set of QoS requirements. Scheme A is more efficient than scheme B if the network

resource utilization with scheme A is higher than that with scheme B for the same QoS

parameters and network configuration.

2) Complexity:Shows the computational complexity of a CAC scheme for a given network

configuration, mobility patterns, and traffic parameters. Scheme A is more complex than

scheme B if admission decision making of A involves more complex computations than

scheme B.

3) Overhead:Refers to the signalling overhead induced by a CAC scheme on the fixed inter-

connection network among base stations. Some CAC schemes require some information

exchange with neighboring cells through the fixed interconnection network.

4) Adaptivity:Defined as the ability of a CAC scheme to react to changing network conditions.

Those CAC schemes which are not adaptive lead to poor resource utilization. In this

paper we only consider adaptivity to traffic load changes. Typically, CAC schemes make



7

admission decisions based on some internal control parameters, e.g. reservation threshold,

which should be recomputed if the load changes.

5) Stability: Stability is the CAC insensitivity to short term traffic fluctuations. If an adaptive

CAC reacts too fast to any load change then it may lead to unstable control. For example

during a period of time all connection requests are accepted until a congestion occurs and

then all requests are rejected. It is desirable that network control and management avoid

such a situation.

Looking at existing CAC schemes, there are many assumptions and parameters involved in

each scheme. Therefore, it is extremely difficult to develop a unified framework for evaluating

and comparing the performance of CAC schemes using analytical or simulation techniques. For

the comparison purposes in this paper, we do not use quantitative values for these criteria instead

we use qualitative values. These qualitative values, e.g. “Very High”, “High”, “Moderate” and

“Low”, are sufficient for a relative comparison of the CAC schemes investigated in this paper.

III. C ELLULAR NETWORKSMODELING AND ANALYSIS

Hong and Rappaport are the first who systematically studied the performance evaluation of

cellular networks [11]. Due to the mobility of users and the complex traffic generated by new

emerging integrated services, analytical results from classical traffic theory are not applicable

to cellular communication systems. Hence, traffic engineering for networks supporting mobile

services has added a new dimension in teletraffic theory and requires careful attention. In this

section, we present some basic modeling and analysis techniques that will be useful for the

remaining of the paper.

A. Assumptions and Definitions

We define the following terms commonly used in the literature to be used throughout this

paper.

• call holding time:the duration of the requested call connection. This is a random variable

which depends on the user behavior (call characteristics).

• cell residency time:the amount of time a mobile user spends in a cell. Cell residency is

a random variable which depends on the user behavior and system parameters, e.g. cell

geometry.
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Fig. 2. The time diagram for call holding time and cell residence time.

• channel holding time:How long a call which is accepted in a cell and is assigned a channel

will use this channel before completion or handoff to another cell. This is a random variable

which can be computed from the call holding time and cell residency time and generally

is different for new calls and handoff calls.

One of the most important parameters in modeling a cellular network is the channel holding

time distribution. Typically, it is assumed that channel holding time is exponentially distributed

with the same parameter for both new calls and handoff calls. This is a direct result of the mem-

oryless assumption that call holding time and cell residency times are exponentially distributed

[12]. This assumption may not be correct in practice and needs more careful investigation as

pointed out in [13]–[17] and references there in.

Fig. 2, taken from [14], shows a time diagram for call holding and cell residency times. Let

tc be the call holding time for a typical new call,tm be the cell residency time,r1 be the time

between the instant the new call is initiated at and the instant the new call moves out of the cell

if the new call is not completed, andrm (m > 1) be the residual life of call holding time when

the call finishes them-th handoff successfully. Lettnh andthh denote the channel holding times

for a new call and a handoff call, respectively. Then from Fig. 2, the new call channel holding

time is

tnh = min{tc, r1}, (4)

and the handoff call channel holding time is

thh = min{rm, tm}. (5)
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Consequently it can be shown that [18]

Ftnh
(t) = Ftc(t) + Fr1(t)− Ftc(t)Fr1(t), (6)

and

Fthh
(t) = Frm(t) + Ftm(t)− Frm(t)Ftm(t). (7)

whereFx(t) = Pr(x ≤ t) is the probability distribution function of random variablex.

As mentioned earlier, inherited from classical telephony, it is typically assumed that call

holding times and cell residency times in mobile cellular networks are exponentially distributed.

Assume that call holding times are exponentially distributed with mean1/µ and cell residency

times are also exponentially distributed with mean1/η. From the memoryless property of

exponential distribution, we conclude thatrm has the same distribution astc. Similarly, r1 has the

same distribution astm. Using (6) and (7), it can be obtained thattnh and thh are exponentially

distributed with the mean1/(µ + η).

B. Cellular Network Modeling and Analysis

Consider a cellular network consisting ofM cells. Mobile users move among the cells

according to the routing probability matrixR = [rij]. From theoretical point of view, such

a network can be modeled as an open queueing network with arbitrary routing where each

cell is modeled as a multi-server queue. In this subsection, we focus on such classical modeling

techniques based on the Markov chain analysis. Therefore, exponential distributions play a critical

role in this analysis. In the following subsection, we shall consider more general cases in which

the exponential assumption is relaxed.

The following assumptions are used in this subsection:

• Each celli hasci channels.

• The call holding time is exponentially distributed with mean1/µ.

• The new calls arrive into a cell according to a Poisson process. The arrival rate into celli

is λi.

• The cell residence times are exponentially distributed. The mean residence time in celli is

1/ηi.

One important parameter required for the analysis is the handoff arrival process which de-

pends on other system parameters, e.g. cell residence times. Fang et al. [12] showed that with
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exponential call holding times, handoff arrival process will be Poisson if and only if the cell

residence time is exponentially distributed. Letνi denote the handoff arrival rate into celli. We

will later show how to computeνi for the considered network.

Having this set of assumptions, each celli in isolation can be modeled as anM/M/c/c queue.

Let us define the state of a cell as the total number of active calls in the cell. Letπi(n) denote

the steady-state probability of havingn calls in celli. Using the balanced equations (or Erlang-B

formula) we find that

πi(n) =
ρn/n!∑ci

n=0 ρn/n!
, 1 ≤ n ≤ ci (8)

whereρi denotes the offered load and is expressed as

ρi = (λi + νi)/(µ + η) . (9)

Consequently, the call blocking probability in celli, Pb(i), is given by

Pb(i) = πi(ci) . (10)

Since handoff calls are treated in the same way as new calls in the network under investigation,

we simply obtain handoff failure probability in celli, Pf (i), as follows

Pf (i) = Pb(i) . (11)

Let π(n1, . . . , nM) denote the steady-state probability of the network being in state(n1, . . . , nM),

i.e. n1 calls in cell 1,n2 calls in cell 2, and so on . Using the classical queueing theory results

[19], it is obtained that

π(n1, . . . , nM) =
M∏
i=1

πi(ni), 0 ≤ ni ≤ ci . (12)

Now is left to compute the handoff arrival rate in each cell. Thanks to the memoryless property

of exponential distribution we have

1) New call channel holding time and handoff channel holding time are exponentially dis-

tributed with the same mean value

2) The residual life of a call is exponentially distributed with the same mean value as the

call holding time

3) Handoff arrival process is a Poisson process and consequently the joint new and handoff

arrival process is Poisson as well
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Let us definePh(i) as the probability that a call currently being served in celli requires

another handoff before completion. Then,Ph(i) can be expressed as

Ph(i) = Pr(tc > ti)

=

∫ ∞

t=0

Pr(tc > ti|ti = t) Pr(ti = t) dt =
ηi

µ + ηi

.
(13)

Then, the rate of handoff out of any cellj is given by

(λj + νj)(1− Pb(j))Ph(j) . (14)

Hence, the handoff arrival rate into celli is given by

νi =
∑
j 6=i

[
(λj + νj)

(
1− Pb(j)

)
Ph(j)

]
rji (15)

or in matrix form as follows

Λh = (Λn + Λh)(I −B)Φ, (16)

where,Λn = [λ1, . . . , λi], Λh = [ν1, . . . , νi], B = diag[Pb(i)], I is anM ×M identity matrix,

and Φ[φij] is the handoff rate matrix withφij = Ph(i)rij. A fixed-point iteration [20] can be

used to obtain the steady-state handoff arrival rate vectorΛh. Fixed-point iteration also known

as relaxation method or repeated substitution, is a simple technique for solving the nonlinear

equations describing the system. Iteration starts with an initial value forΛh, say [0, . . . , 0], to

obtain a new value forΛh. Then this new value is substituted in (16) to obtain another value.

This process continues untilΛh converges with respect to the desired precision.

So far, we have computed the call blocking probability,Pb(i), which is essentially equal to

the handoff failure probability,Pf (i), in the network model under investigation. In fact there is

no preferential treatment implemented for handoff calls inside the network. Although handoff

failure probability is an important measure for network control but call dropping probability is

more meaningful for users (refer to section II). In the following discussion we turn our attention

to the computation of the network-wide call dropping probability using discrete time Markov

chain (DTMC) analysis. LetPd(i) denote the call dropping probability given that the connection

was initiated in celli. Notice that the call dropping probability in this model is source dependent

due to the heterogeneous nature of the network.

User mobility in the considered cellular network can be conveniently represented by a DTMC

as follows. Each statei (1 ≤ i ≤ M ) of this chain represents the current location (cell index)
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of the mobile user within the network. In addition to this, there are two absorbing states, one

for dropping state (stated) and the other for completion state (statec). Let ∆[δij] denote the

associated transition probability matrix. Then

δij = φij(1− Pb(j)) 1 ≤ i, j ≤ M

δid =
∑

j 6=i φijPb(j) 1 ≤ i ≤ M

δic = 1− Ph(i) 1 ≤ i ≤ M

δcc = δdd = 1

(17)

This is a transient Markov chain and will finally settle into one of the absorbing statesd or

c. The transition matrix∆ has the following canonical form

∆ =

Q A

0 I

 , (18)

whereQ is anM ×M matrix representing the transient states,A is anM × 2 matrix, I is an

2× 2 identity matrix and0 is an2×M zero matrix.

Let N denote the fundamental matrix [21] of∆, that is

N = (I −Q)−1 . (19)

Let sij be the probability that a call initiated in celli will be absorbed in statej (j = d, c). Let

S be the matrix with entriessij. ThenS is anM × 2 matrix, and

S = NA, (20)

whereN is the fundamental matrix given by (19) andA is as in the canonical form of∆.

Notice that the call completion probability and call dropping probability are then obtained as

Pc(i) = sic (21)

Pd(i) = sid (22)

given that the call was initiated in celli.

To compute the average (system-wide) call dropping and call completion probabilities, let

W = [w1, . . . , wM ] be the initial probability distribution of initiated calls, then (as in [22])

wi =
λi(1− Pb(i))∑M

j=1 λj(1− Pb(j))
. (23)
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Therefore, the average call dropping probability is given by

pd = [WS]d (24)

pc = [WS]c . (25)

For a simple case, consider a homogeneous network in which all cells have the same capacity

and experience the same arrival and handoff rate (users are uniformly distributed). Then all

the cells show the same performance parameters, in particular, blocking, dropping and handoff

probabilities (denoted bypb, pd andph) are the same. Hong and Rappaport derived the following

result using a direct approach [11] based on the number of possible handoffs,

pd =
∞∑

H=0

(ph)
H(1− pf )

H−1pf =
phpf

1− ph(1− pf )
(26)

whereH is the number of successful handoffs that a call makes before being dropped.

C. Call and Channel Holding Times Characterization

Inherited from the fixed telephony analysis, it is commonly assumed that call holding time

and cell residence times in cellular networks are exponentially distributed. Although exponential

distributions are not accurate in practice but the models based on the exponential assumption are

typically tractable and do provide mean value analysis which indicates the system performance

trend [23]. In this subsection we first investigate some of the results reported from field data

analysis and detailed simulations regarding the call holding time and cell residency times.

Then we turn our attention to some proposed models which are able to capture the observed

statistical characteristics to some extent. A good model must be general enough to provide a

good approximation of the field data, and must also be simple enough to enable us to obtain

analytically tractable results for performance evaluation [24].

Using real measurements, Jedrzycki and Leung [15] showed that a lognormal distribution is a

more accurate model for cell residency time. Based on simulations, Guerin [17] showed that for

some cases the channel occupancy time distribution is quite close to exponential distribution

but for the low rate of change of direction the channel occupancy time distribution shows

rather poor agreement with the exponential distribution. Using detailed simulations based on

cell geometries, Zonoozi and Dassanayake [16] concluded that the cell residency time is well

described by a generalized gamma distribution but channel holding time remains exponential.



14

Gamma distribution is usually a good candidate for fitting a probability distribution to measured

data. It can match the first two moments of the measured data and other distributions like

exponential and Erlang are its special cases.

Typically, there is an interest in describing the call holding and cell residency times by a

mixture of exponential distributions. The usefulness of this approach is that they may be broken

down into stages and phases consisting of various exponential distributions and consequently

are conveniently described by Markov chains [19].

Rappaport [25] used Erlang-k distributions to model holding times in a cellular network. Let

{Xi}k
i=1 denote a set of iid random variables with exponential distribution. ThenX =

∑k
i=1 Xi

defines a random variable with Erlang-k distribution. Hyper-exponential distributions have been

used in [13]. Let{Xi}M
i=1 denote a set of exponentially distributed random variables with mean

µi for Xi. ThenX =
∑M

i=1 αiXi defines a random variable with hyper-exponential distribution

where αi ≥ 0 and
∑M

i=1 αi = 1. The sum of hyper-exponential (SOHYP) distributions was

proposed by Orlik and Rappaport [13], [26] for modeling the holding times. The random variable∑N
i=1 Xi defines a SOHYP random variable whereXis have hyper-exponential distribution. They

showed the generality of SOHYP models by showing that the coefficient of variance (the ratios

of square root of variance to mean) can be adjusted to be less than, equal to or greater than

unity.

Along the same approach, Fang et al. [24], [27] have investigated the so-called hyper-Erlang

distribution which is less complicated than SOHYP distribution. Let{Xi}M
i=1 denote a set of

random variables with Erlang-k distribution. ThenX =
∑M

i=1 αiXi defines a random variable

with hyper-Erlang distribution whereαi ≥ 0 and
∑M

i=1 αi = 1. It can be shown that the set of

all hyper-Erlang distributions is convex and can approximate any nonnegative random variable

[24]. Particularly, hyper-Erlang distributions can be tuned to have coefficient of variance less

than, equal to or greater than unity. Fang [24] claimed that hyper-Erlangs can even be tuned

to approximate heavy-tailed distributions leading to long-range dependency and self-similarity

[28]–[31]. Note that, hyper-Erlang includes exponential, Erlang and hyper-exponential as special

cases.

Two shortcomings of mixed exponential models as pointed out by Rajaratnam and Takawira

[32] are that they suffer from state space explosion and/or they represent handoff traffic as state-

dependent mean arrival rate thus ignoring the higher moments of the handoff arrival process.
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Instead, they proposed a model based on the application of gamma distribution for call and

channel holding times characterization.

D. Handoff Arrival Process

Chlebus and Ludwin [33] reexamined the validity of Poisson arrivals for handoff traffic in

a classical cellular network where everything is exponentially distributed. They concluded that

handoff traffic is indeed Poisson in a nonblocking environment. However, they claimed that in a

blocking environment handoff traffic is smooth. A smooth process is the one whose coefficient

of variance is less than one. Similarly, Rajaratnam and Takawira [34] empirically showed that

handoff traffic is a smooth process under exponential channel holding times. Using a solid

mathematical framework, Fang et al. [12] proved that for exponential call holding times the

merged traffic from new calls and handoff calls is Poisson if and only if the cell residence times

are exponentially distributed.

Assume that the cellular network under investigation is uniform. Recall the new call channel

holding time tnh and handoff call channel holding time as given by (4) and (5). Letλ and ν

denote the arrival rates for new calls and handoff calls, respectively. Lettch denote the channel

holding time whether the call is a new call or a handoff call, thus

tch =
λ

λ + ν
tnh +

ν

λ + ν
thh. (27)

Referring to Fig. 2, letfc(t), f(t), fr(t), fnh(t), fhh(t) and fch(t) denote, respectively, the

probability density functions oftc, tm, r, tnh, thh and tch with their corresponding Laplace

transformsf ∗c (t), f ∗(t), f ∗r (t), f ∗nh(t), f ∗hh(t) andf ∗ch(t), respectively. In [12], for a homogeneous

network with exponentially distributed call holding times, the following results are obtained.

(i) The Laplace transform of the probability density function of the new call channel holding

time is given by

f ∗nh(s) =
µ

s + µ
+

ηs

(s + µ)2
[1− f ∗(s + µ)] (28)

and the expected new call channel holding time is

E[tnh] =
1

µ
− η

µ2
[1− f ∗(µ)]. (29)
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(ii) The Laplace transform of the probability density function of the handoff call channel holding

time is given by

f ∗hh(s) =
µ

s + µ
+

s

s + µ
f ∗(s + µ), (30)

and the expected handoff call channel holding time is

E[thh] =
1

µ
(1− f ∗(µ)). (31)

(iii) The Laplace transform of the probability density function of the channel holding time is

given by

f ∗ch =
λ

λ + ν
f ∗nh +

ν

λ + ν
f ∗hh, (32)

and the expected channel holding time is

E[tch] =
1

µ
− λη

(λ + ν)µ2

[
1−

(
1− νµ

λη

)
f ∗(µ)

]
. (33)

(iv) The handoff call arrival rateν is given by

ν = −η(1− pb)λ
∑
p∈σc

Ress=p
1− f ∗(s)

s2[1− (1− pf )f ∗(s)]
f ∗c (−s), (34)

whereσc is the set of poles off ∗c (−s) on the right complex plane,Ress=p is the residue

at a poles = p, pb and pf are the new call blocking and handoff failure probabilities,

respectively.

Since all the given Laplace transforms are in terms of rational functions, one can easily use

partial fraction expansion to find the inverse Laplace transforms. Interested readers are referred

to [35] for a combined analytical/simulation model with general mobility and call assumptions.

For analytical results with generally distributed call holding and cell residency times refer to

[36].

IV. CALL ADMISSION CONTROL

Call admission control (CAC) is a technique to provide QoS in a network by restricting the

access to network resources. Simply stated, an admission control mechanism accepts a new call

request provided there are adequate free resources to meet the QoS requirements of the new

call request without violating the committed QoS of already accepted calls. There is a tradeoff

between the QoS level perceived by the user (in terms of the call dropping probability) and
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the utilization of scarce wireless resources. In fact, CAC can be described as an optimization

problem as we see later in section VII.

We assume that available bandwidth in each cell is channelized and focus on call-level QoS

measures. Therefore, the call blocking probability (pb) and the call dropping probability (pd) are

the relevant QoS parameters in this paper. Three CAC related problems can be identified based

on these two QoS parameters [37]:

1) MINO: Minimizing a linear objective function of the two probabilities (pb andpd).

2) MINB: For a given number of channels, minimizing the new call blocking probability

subject to a hard constraint on the handoff dropping probability.

3) MINC: Minimizing the number of channels subject to hard constraints on the new and

handoff calls blocking/dropping probabilities.

As mentioned before, channels could be frequencies, time slots or codes depending on the radio

technology used. Each base station is assigned a set of channels and this assignment can be

static or dynamic as described in section II.

MINO tries to minimize penalties associated with blocking new and handoff calls. Thus,

MINO appeals to the network provider since minimizing penalties results in maximizing the

net revenue. MINB places a hard constraint on handoff call blocking thereby guaranteeing a

particular level of service to already admitted users while trying to maximize the net revenue.

MINC is more of a network design problem where resources need to be allocated apriori based

on, for example, traffic and mobility characteristics [37].

Since dropping a call in progress is more annoying than blocking a new call request, handoff

calls are typically given higher priority than new calls in access to the wireless resources. This

preferential treatment of handoffs increases the blocking of new calls and hence degrades the

bandwidth utilization [38]. The most popular approach to prioritize handoff calls over new calls

is by reserving a portion of available bandwidth in each cell to be used exclusively for handoffs.

In general there are two categories of CAC schemes in cellular networks:

1) Deterministic CAC: QoS parameters are guaranteed with 100% confidence [39], [40].

Typically, these schemes require extensive knowledge of the system parameters such as

user mobility which is not practical, or sacrifice the scarce radio resources to satisfy the

deterministic QoS bounds.

2) Stochastic CAC: QoS parameters are guaranteed with some probabilistic confidence [11],
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Fig. 3. Stochastic call admission control schemes in cellular networks.

[37], [41]. By relaxing QoS guarantees, these schemes can achieve a higher utilization

than deterministic approaches.

Most of the CAC schemes which are investigated in this paper fall in the stochastic category.

Fig. 3 depicts a classification of stochastic CAC schemes proposed for cellular networks. In the

rest of this paper, we discuss each category in detail. In some cases, we will further expand this

basic classification.

V. PRIORITIZATION SCHEMES

In this section we discuss different handoff prioritization schemes, focusing on reservation

schemes. Channel borrowing, call queueing and reservation are studied as the most common

techniques.

A. Channel Borrowing Schemes

In a channel borrowing scheme, a cell (an acceptor) that has used all its assigned channels can

borrow free channels from its neighboring cells (donors) to accommodate handoffs [5], [42], [43].

A channel can be borrowed by a cell if the borrowed channel does not interfere with existing

calls. When a channel is borrowed, several other cells are prohibited from using it. This is called

channel locking and has a great impact on the performance of channel borrowing schemes [44].

The number of such cells depends on the cell layout and the initial channel allocation. For
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Fig. 4. Channel locking.

example, for a hexagonal planar layout with reuse distance of one cell, a borrowed channel is

locked in three neighboring cells (see Fig. 4).

The proposed channel borrowing schemes differ in the way a free channel is selected from a

donor cell to be borrowed by an acceptor cell. A complete survey on channel borrowing schemes

is provided by Katzela and Naghshinehin [5].

B. Call Queueing Schemes

Queueing of handoff requests, when there is no channel available, can reduce the dropping

probability at the expense of higher new call blocking. If the handoff attempt finds all the

channels in the target cell occupied it can be queued. If any channel is released it is assigned to

the next handoff waiting in the queue. Queueing can be done for any combination of new and

handoff calls. The queue itself can be finite [45] or infinite [11]. Although finite queue systems

are more realistic, systems with infinite queue are more convenient for analysis. Fig. 5 depicts

a classification of call queueing schemes.

Hong and Rappaport [11] analyzed the performance of the simpleguard channelscheme

(see section V-C) with queueing of handoffs where handoff call attempts can be queued for

the time duration in which a mobile dwells in the handoff area between cells. They used the

FIFO queueing strategy and showed that queueing improves the performance of the pure guard

channel scheme, i.e.pd is lower for this scheme while there is essentially no difference forpb.

The tolerable waiting time in queues is an important parameter. The performance of queueing

schemes is affected by the reneging of queued new calls due to caller impatience and the dropping

of queued handoff calls as they move out of the handoff area before the handoff is accomplished

successfully. Chang et al. [45] analyzed a priority-based queueing scheme in which handoff
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Fig. 5. Call queueing schemes.

calls waiting in queue have priority over new calls waiting in queue to gain access to available

channels. They simply assumed that those calls waiting in queue can not handoff to another cell.

Recently, Li and Chao [46] investigated a general modeling framework which can capture call

queueing as well. They proved that the steady-state distribution of the equivalent queueing model

has a product form solution. Queueing schemes have been mainly proposed for circuit-switched

voice traffic. Their generalization to multiple classes of traffic is a challenging problem [47].

Lin and Lin [48] analyzed several channel allocation schemes including queueing of new and

handoff calls. They concluded that the scheme with new and handoff calls queueing has the best

performance.

C. Reservation Schemes

The notion of guard channels was introduced in the mid 80s as a call admission control

mechanism to give priority to handoff calls over new calls. In this policy, a set of channels

called the guard channels are permanently reserved for handoff calls. Hong and Rappaport [11]

showed that this scheme reduces handoff dropping probability significantly compared to the

nonprioritized case. They found thatpd decreases by a significantly larger order of magnitude

compared to the increase ofpb when more priority is given to handoff calls by increasing the

number of handoff channels.

Consider a cellular network withC channels in a given cell. The guard channel scheme

(GC) reserves a subset of these channels, sayC − T , for handoff calls. Whenever the channel

occupancy exceeds a certain thresholdT , GC rejects new calls until the channel occupancy goes

below the threshold. Assume that the arrival process of new and handoff calls is Poisson with
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rate λ and ν, respectively. The call holding time and cell residency for both types of call is

exponentially distributed with mean1/µ and1/η, respectively. Letρ = (λ + ν)/(µ + η) denote

the traffic intensity. Further assume that the cellular network is homogeneous, thus a single cell

in isolation is a representative for the network.

Define the state of a cell by the number of occupied channels in the cell. Therefore, the cell

channel occupancy can be modeled by a continuous time Markov chain withC states. The state

transition diagram of a cell withC channels andC−T guard channels is shown in Fig. 6. Given

this, it is straight forward to derive the steady-state probabilityPn, that n channels are busy

Pn =


(ρn

n!

)
P0, 0 ≤ n ≤ T

ρT
(νn−T

n!

)
P0, T ≤ n ≤ C

(35)

where

P0 =

[
T∑

n=0

ρn

n!
+ ρT

C∑
n=T+1

νn−T

n!

]−1

(36)

and thenpb =
∑C

n=T+1 Pn andpf = PC .

However, Fang and Zhang [49] showed that when the mean cell residency times for new

calls and handoff calls are significantly different (as is the case for non-exponential channel

holding times), the traditional one-dimensional Markov chain model may not be suitable and a

two-dimensional Markov model must be applied which is more complicated.

A critical parameter in this basic scheme is the optimal number of guard channels. In fact,

there is a tradeoff between minimizingpd and minimizingpb. If the number of guard channels is

conservatively chosen then admission control fails to satisfy the specifiedpd. A static reservation

typically results in poor resource utilization. To deal with this problem, several dynamic reser-

vation schemes [41], [50]–[53] were proposed in which the optimal number of guard channels
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Fig. 7. State transition diagram of the fractional guard channel scheme.

is adjusted dynamically based on the observed traffic load and dropping rate in a control time

window. If the observed dropping rate is above the guaranteedpd then the number of reserved

channels is increased. On the other hand, if the current dropping rate is far below the target

pd then the number of reserved channels is decreased. The next section investigates dynamic

reservation schemes.

A different variation of the basic GC scheme is known asfractional guard channel(FGC)

[37]. Whenever the channel occupancy exceeds the thresholdT , the GC policy is to reject new

calls until the channel occupancy goes below the threshold. In the fractional GC policy, new

calls are accepted with a certain probability that depends on the current channel occupancy. Thus

we have a randomization parameter which determines the probability of acceptance of a new

call. Note that both GC and FGC policies accept handoff calls as long as there are some free

channels. One advantage of FGC over GC is that it distributes the newly accepted calls evenly

over time which leads to a more stable control [54].

The behavior of FGC in a cell withC channels is depicted in Fig. 7. Note that in staten, the

acceptance ratio isan. Using balance equations, the steady-state probability of havingn channels

busy is given by

Pn =

∏n−1
i=0 (ν + aiλ)

(µ + η)n
P0, 1 ≤ n ≤ C (37)

where

P0 =

[
1 +

C∑
n=1

∏n−1
i=0 (ν + aiλ)

(µ + η)n

]−1

. (38)

Therefore,pb =
∑C

n=0(1− an)Pn andpf = PC whereaC = 0. Note that, GC is a special case

of FGC whereai = 1 for 0 ≤ i ≤ T − 1, andai = 0 for T ≤ i ≤ C.

It has been shown in [38] that due to advance reservation in reservation schemes the efficiency

of cellular systems has an upper bound even if no constraint is specified on the call blocking
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probability. This upper bound is related to call and mobility characteristics through the mean

number of handoffs per call. Moreover, the achievable efficiency decreases with decreasing cell

size and with increasing call holding time [38].

VI. DYNAMIC RESERVATION SCHEMES

There are two approaches in dynamic reservation schemes: local and distributed (collaborative)

depending on whether they use local information or gather information from neighbors to adjust

the reservation threshold. In local schemes, each cell estimates the state of the network using

local information only, while in distributed schemes each cell gathers network state information

in collaboration with its neighboring cells.

A. Local Schemes

We categorize local admission control schemes intoreactive and predictive schemes. By

reactive approaches we refer to those admission policies that adjust their decision parameters,

i.e. threshold and reservation level, as a result of an event such as call arrival, completion or

rejection. Predictive approaches refer to those policies that predict future events and adjust their

parameters in advance to prevent undesirable QoS degradations.

1) Reactive Approaches:The well-known guard channel (cell threshold, cut-off priority or

trunk reservation) scheme (GC) is the first one in this category. GC has a reservation threshold

and when the number of occupied channels reaches this threshold, no new call requests are

accepted. One natural extension of this basic scheme is to use more than one threshold (e.g.

two thresholds [50]) in order to have more control of the number of accepted calls. It has been

shown [55] that the simple guard channel scheme performs remarkably well, often better than

more complex schemes during periods in which the load does not differ from the expected level.

For a discussion on different reservation strategies refer to [56] by Epstein and Schwartz.

2) Predictive Approaches:Local admission control schemes are very simple but they suffer

from the lack of global information about the changes in network traffic. On the other hand,

distributed admission control schemes have access to global traffic information at the expense

of increased computational complexity and signaling overhead induced by information exchange

between cells. To overcome the complexity and overhead associated with distributed schemes

and benefit from the simplicity of local admission schemes, predictive admission control schemes
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were proposed. These schemes try to estimate the global state of the network by using some

modeling/prediction technique based on information available locally.

Two different approaches can be distinguished in this category:

(i) Structural (parameter-based) modeling :

The changing traffic parameters such as call arrival and departure rates are locally esti-

mated. Assume that the control mechanism periodically measures the arrival rate. Our goal

is to compute the expected arrival rate from such online measurements. Typically, a simple

exponentially weighted moving average (EWMA) is used for this purpose. Letλ̂(i) and

λ(i) denote the estimated and measured new call arrival rate at the beginning of control

period i, respectively. Using EWMA technique, we have

λ̂(i + 1) = ελ̂(i) + (1− ε)λ(i), (39)

whereε is the smoothing coefficient which must be properly selected. In general, a small

value of ε (thus, a large value of1 − ε) can keep track of the changes more accurately,

but is perhaps too heavily influenced by temporary fluctuations. On the other hand, a large

value of ε is more stable but could be too slow in adapting to real traffic changes. This

technique can be used to estimate the mean cell residency and call holding times as well.

Then based on these parameters, a traffic model which can describe the channel occupancy

in each cell is derived. Typically, several assumptions are made about traffic parameters

in this approach which are necessary to have a tractable problem (for example see [11],

[37], [41], [54]).

It is clear that the EWMA in (39) is a special case of the so-calledauto regressive moving

average(ARMA) model [57] in time series analysis. There is virtually no restriction on

using more complicated (and perhaps more accurate) estimation techniques.

(ii) Black-Box (measurement-based) modeling:

Instead of looking at the individual components of traffic, this approach directly looks at

the actual traffic. In other words, it tries to model the aggregated traffic without relying

on the underlying arrival and departure processes. This approach has been proposed for

multimedia systems where most of the assumptions of structural modeling are not valid

[58]. The main advantage of this scheme is that it does not make any assumption about

the distribution of new call arrival, handoff arrival, channel holding time and bandwidth
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requirements.

One of the key issues in this approach is to predict traffic in the next control time interval

based on the online measurements of traffic characteristics. The goal is to forecast future

traffic variations as precisely as possible, based on the measured traffic history. Traffic

prediction requires accurate traffic models which can capture the statistical characteristics

of actual traffic. Inaccurate models may overestimate or underestimate network traffic.

Recently, there has been a significant change in the understanding of network traffic. It

has been found in numerous studies that data traffic in high-speed networks exhibits self-

similarity [28]–[30] that can not be captured by classical models, hence self-similar models

have been developed. Among these self-similar models, fractional ARIMA [59], [60] and

fractional Brownian motion [61], [62] have been widely used for network traffic modeling

and prediction.

Considering that future wireless networks will offer the same services to mobile users as

their wireline counterparts, it is highly possible that traffic in these networks will also

exhibit self-similarity (as reported for wireless data traffic by Jiang et al. [31]). Hence,

simple modeling and prediction techniques may not be accurate. Admission control based

on self-similar traffic models has been already investigated for wireline networks [63],

[64]. Similar approaches may be applicable to cellular communications.

B. Distributed Schemes

The fundamental idea behind all distributed schemes [41], [51]–[54], [65], [66] is that every

mobile terminal with an active wireless connection exerts an influence upon the cells in the

vicinity of its current location and along its direction of travel [51]. A group of cells which are

geographically or logically close together form acluster, as shown in Fig. 8. Either each mobile

terminal has its own cluster independent of other terminals or all the terminals in a cell share the

same cluster. Typically, the admission decision for a connection request is made in cooperation

with other cells of the cluster associated to the mobile terminal asking for admission. In Fig. 8(a)

a cluster is defined assuming that a terminal affects all the cells in the vicinity of its current

location and along its trajectory, while in Fig. 8(b) it is assumed that those cells that form a

sector in the direction of mobile terminal’s trajectory are most likely to be affected (visited)

by the terminal. And, Fig. 8(c) shows a static cluster which is fixed regardless of the terminal
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Fig. 8. Three examples of cluster definition.

mobility.

Each user currently in the system may either remain in the cell it is in or move to a neighboring

cell, hence it can be modeled using a binomial random variable. We approximate the joint

behavior of binomial distributions with a normal distribution and hence, the number of active

calls in a cell at any time follows a Gaussian distribution. Also, we neglect the possibility of

users having moved a distance of two or more cells and of a user arriving/completing a call

during a time interval of lengthT .

Now, consider a hexagonal cellular system similar to those depicted in Fig. 8. Assume that

at time t = t0 a new call has arrived. New calls are admitted into the system provided that

the predicted handoff failure probability of any user in the home and neighboring cells at time

t = t0 + T is below the target thresholdPQoS. Let ni(t) denote the number of active calls in

cell i at timet. Assuming that handoff failure in each cell can be approximated by the overload

probability, it is obtained that

pf = Pr(n(t0 + T ) > c) (40)

Therefore the handoff failure in celli is given by

Pf (i) =
1

2
erfc

(
ci − E[ni(t0 + T )]√

2 Var[ni(t0 + T )]

)
(41)

whereci is the capacity of celli anderfc(x) is the complementary error function defined as

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt (42)
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and the expected and variance of the number of calls at timet0 + T in cell i is given by

E[ni(t0 + T )] = ni(t0)ps + ph

∑6
j=1 nj(t0), (43)

Var[ni(t0 + T )] = ni(t0)vs + vh

∑6
j=1 nj(t0) . (44)

Where,ps is the probability of staying in the current cell andph is the probability of handing

off to another cell during the time periodT , which are given by

ps = e−(µ+h)T , ph =
1

6
(1− e−hT ) . (45)

Similarly, vs and vh are, respectively, the variances of binomial processes of stay and handoff

with parametersps andph, which are expressed as

vs = (1− ps)ps, vh = (1− ph)ph . (46)

The idea of distributed admission control was originally proposed by Naghshineh and Schwartz

[41]. They proposed a collaborative admission control known asdistributed call admission control

(DCAC). DCAC periodically gathers some information, namely the number of active calls, from

the adjacent cells of the local cell to make the admission decision in combination with the local

information. The analysis we presented earlier is slightly different from the original DCAC and

is based on the work by Epstein and Schwartz [53]. DCAC is very restrictive in the sense that it

takes into consideration information from direct neighbors only and assumes at most one handoff

during the control period.

It has been shown that DCAC is not stable and violates the required dropping probability as

the load increases [54]. Levin et al. [51] proposed a more complicated version of the original

DCAC based on theshadow clusterconcept, which uses dynamic clusters for each user based on

its mobility pattern instead of restricting itself (as DCAC) to direct neighbors only. A practical

limitation of the shadow cluster scheme in addition to its complexity and overhead is that it

requires a precise knowledge of the mobile trajectory. The so-calledactive mobile probabilities

and their characterization are very crucial to the CAC algorithm. Active mobile probabilities

for each user give the projected probability of being active in a particular cell at a particular

instance of time.

Wu et al. [54] proposed a dynamic, distributed and stable CAC scheme called SDCA which

extends the basic DCAC [41] in several ways such as using a diffusion equation to describe
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TABLE II

CLUSTER TYPE VS. CAC PERFORMANCE.

Cluster type CAC efficiency CAC complexity

Static Moderate Moderate

Dynamic High High

the evolution of the time-dependent occupancy distribution in a cell instead of the widely used

Gaussian approximation. SDCA is a distributed version of the fractional guard channel in that

it computes an acceptance ratioai for each celli to be used for the current control period.

Consider the single-call transition probabilityfik(t) that an ongoing call in celli at the

beginning of the control period (t = 0) is located in cellk at time t. This is in fact very

similar to the active mobile probabilities introduced in [51]. For an effective control enforcing

dropping probabilities in the order of10−4 to 10−2, essentially all calls handoff successfully.

Wu et al. showed that for a uniform network with hexagonal cells, the probability of havingn

handoffs by timet, qn(t), takes the simple form

qn(t) =
1

n!

(
ηt

6

)n

e−(µ+η)t . (47)

Hencefik(t) is obtained by summing over all possible paths betweeni andk. For examplefii(t)

can be expressed as

fii(t) = q0(t) + 6q2(t) + 12q3(t) + · · · . (48)

Similar equations can be easily derived forfik(t) [54]. Using these time-dependent transition

probabilities Wu et al.computed the time-dependent mean and variance of the channel occupancy

distribution,Pni
(t), in cell i at timet. By using a diffusion approximation [68], the authors were

able to find the time-dependent handoff failure,Pfi
(t), for each celli. Hence, the average handoff

failure probability over a control period of lengthT is found as

P̃fi
=

1

T

∫ T

0

Pfi
(t) dt . (49)

Finally, the acceptance ratioai can be obtained by numerically solving the following equation

[69]:

P̃fi
= PQoS, 0 ≤ ai ≤ 1 . (50)
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C. Classification of Distributed Schemes

Distributed CACs can be classified according to two factors:

1) Cluster definition

2) Information exchange and processing

A cluster can be either static or dynamic. In the static approach, the size and shape of the cluster

is the same regardless of the network situation. In the dynamic approach however, shape and/or

size of the cluster change according to the congestion level and traffic characteristics. The virtual

connection tree of [67] is an example of a static cluster while the shadow cluster introduced

in [51] is a dynamic cluster. A shadow cluster is defined for each individual mobile terminal

based on its mobility information, e.g. trajectory, and changes as the terminal moves. It has

been shown that it is not worth involving several cells in the admission control process when

the network is not congested [70]. Table II shows a tradeoff between the cluster type and the

corresponding CAC performance. Typically, dynamic clusters have a better performance at the

expense of increased complexity.

In general, distributed CACs can be categorized intoimplicit or explicit based on the involve-

ment of cells in the decision making process:

1) Implicit Approach: In this approach, all the necessary information is gathered from the

neighboring cells, but the processing is local. The virtual connection tree concept intro-

duced in [67] is an example of an implicitly distributed scheme. In this scheme each

connection tree consists of a specific set of base stations where each tree has a network

controller. The network controller is responsible for keeping track of the users and re-

sources. Despite the fact that information is gathered from a set of neighboring cells, the

final decision is made locally in the network controller.

2) Explicit Approach:In this approach, not only information is gathered from the neighboring

cells, but also the neighboring cells are involved in the decision making process. The

shadow cluster concept introduced in [51] is an example of an explicitly distributed scheme.

In this scheme a cluster of cells, the shadow cluster, is associated with each mobile terminal

in a cell. Upon admitting a new call, all the cells in the corresponding cluster calculate

a preliminary response which after processing by the original cell will form the final

decision.
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TABLE III

COMPARISON OF DYNAMIC CAC SCHEMES.

CAC scheme Efficiency Overhead Complexity Adaptivity

Local
Reactive Low Low Low Moderate

Predictive Moderate Low Moderate Moderate

Distributed
Implicit High Very High High High

Explicit High High Very High High

TABLE IV

COMPARISON OF DISTRIBUTEDCAC SCHEMES.

CAC scheme Efficiency Complexity Stability

Basic distributed Moderate Moderate Moderate

Shadow cluster High High Moderate

Stable dynamic Very High High High

Although it is theoretically possible to involve all the network cells in the admission control

process, it is expensive and sometimes useless in practice. To consider the effect of all the cells,

analytical approaches involve huge matrix exponentiations. In [54] and [22] two different ap-

proximation techniques have been proposed to compute these effects with a lower computational

complexity.

Table III shows a comparison of different dynamic CAC schemes. In general, there is a

tradeoff between the efficiency and the complexity of local and distributed schemes. Table IV

compares three major distributed CAC schemes. In this table,basic distributedwas proposed

by Naghshineh and Schwartz [41],shadow clusterrefers to the work of Levin et al. [51] and

stable dynamicis due to Wu et al. [54].

VII. O PTIMAL CONTROL

Recall that a call admission policy is the set of decisions that indicate when a new call will

be allocated a channel and when and existing call will be denied a handoff from one cell to

another. In this section we investigate the optimal and near-optimal admission policies proposed

for three admission problems defined in section IV, namely, MINO, MINB and MINC. Although

optimal policies are more desirable, near-optimal policies are more useful in practice due to the
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TABLE V

COMPARISON OF OPTIMALCAC SCHEMES.

CAC scheme Efficiency Complexity

Optimal
Single service High High

Multiple services High Very High

Near-Optimal
Single service Moderate Low

Multiple services Moderate Moderate

complexity of optimal policies which usually leads to an intractable solution. Table V shows a

comparison of optimal and near-optimal schemes.

Decision theoretic approaches based onMarkov decision process(MDP) [71] have been

extensively studied to find the optimal CAC policy using standard optimization techniques [72].

However, for simple cases such as the one of an isolated cell in a voice system, simple Markov

chains have been applied successfully [37]. A Markov decision process is just like a Markov

chain, except that the transition matrix depends on the action taken by the decision maker (CAC)

at each time step. The CAC receives a reward, which depends on the action and the state. The

goal is to find a policy which specifies which action to take in each state, so as to maximize some

function (e.g. the mean or expected sum) of the sequence of rewards. A problem formulated as an

MDP can be solved iteratively [73]. This is called policy iteration, and is guaranteed to converge

to the unique optimal policy. The best theoretical upper bound on the number of iterations

needed by policy iteration is exponential in the number of states. However, by formulating the

problem as a linear programming problem, it can be proved that one can find the optimal policy

in polynomial time.

A. Optimal CAC Schemes

1) Single Service Case:Ramjee et al. [37] showed that the well-known GC policy is optimal

for the MINO problem and a restricted version of the FGC policy is optimal for the MINB and

MINC problems. In their work, channel occupancy is described by a Markov chain similar to the

one in section VI. Although admission policies derived from the MDP formulation of the CAC

[74], [75] are optimal for the MINO problem, it has been shown that a dynamic guard channel

scheme is more realistic and at the same time approaches the optimal solution [75], [76].
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2) Multiple Services Case:Introducing multiple services changes the system behavior dra-

matically. In contrast to single service systems, GC is no longer optimal for the MINO problem.

While the optimal admission policy for single service (voice) systems is computationally com-

plex, for multiple services (multimedia) systems it is even more complicated and expensive. In

this situation, asemi-Markov decision process(SMDP) has been applied successfully. Optimal

policies are reported for multimedia traffic in [72], [77]–[80]. In particular, Choi et al. [81]

presented a centralized CAC based on SMDP, Kwon et al. [77] and Yoon et al. [82] proposed

distributed CAC schemes based on SMDP, all for non-adaptive multimedia applications. Xiao

et al. [78] developed an optimal scheme using SMDP for adaptive multimedia applications.

Adaptive multimedia applications can change their bit-rate to adapt to network resource avail-

ability.

B. Near-Optimal CAC Schemes

As mentioned before, when the state of the system can be modeled as a Markov process, there

exist methods to calculate the optimal call admission policy using a Markov decision process.

However, for systems with a large number of states (which grows exponentially with the cell

capacity and known as thecurse of dimensionality) this method is impractical since it requires

solving large systems of linear equations. Therefore, methods which can calculate a near-optimal

policy are proposed in the literature. In particular, near-optimal approaches based on Markov

decision processes [83],genetic algorithms[84], [85], andreinforcement learning[86] have been

proposed.

VIII. O THER ADMISSION CONTROL SCHEMES

A. Multiple Services Schemes

Moving from single service systems to multiple services systems raises new challenges.

Particularly, wireless resource management and admission control become more crucial for

efficient use of wireless resources [39], [47], [53], [87], [88]. Despite the added complexity to

control mechanisms, multiple services systems are typically more flexible in terms of resource

management. Usually there are some low priority services, e.g. best effort service, which can

utilize unused bandwidth. This bandwidth can be released and allocated to higher priority services

upon request, e.g. when the system is fully loaded and a high priority handoff arrives. Fig. 9
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Fig. 9. Single service and multiple services guard channel schemes.

shows a classification of guard channel based CAC schemes in single service and multiple

services systems. In the figure,multiple cutoff priority [47] and thinning scheme[88] are the

multiple services counterparts of GC and FGC schemes in single service systems respectively.

In this context, thethinning scheme[88] is proposed as a generalization of the basic FGC

for multiple classes prioritized traffic. Assume that the wireless network has call requests ofr

priority levels and each base station hasC channels. Letαij (i = 0, . . . , C and j = 1, . . . , r)

denote the acceptance probabilities of prioritized classes respectively. When the number of busy

channels at a base station isi, an arriving type-j call will be admitted with probabilityαij. All

calls will be blocked when all channels are busy. Call arrivals of priority classes are independent

of each other and assumed to be Poisson with rateλj for classj. Call durations are exponentially

distributed with parameterµ. This system can be characterized by a Markov chain in which the

state variable is the number of busy channels in the cell. LetPn denote the stationary probability

at staten, ρj = λj/µ andαk =
∑r

j=1 αkjρj. Using balance equations we have

Pn =

∏n−1
k=0 αk

n!
P0, (51)

where

P0 =

[
C∑

n=0

(∏n−1
k=0 αk

n!

)]−1

. (52)

Then the blocking probability for classj is given by

P j
b =

C∑
i=T+1

(1− αij)Pi . (53)

Similarly, a natural extension to the basic GC can be achieved by setting different reservation

thresholds for each class of service [47]. Pavlidou [89] analyzed an integrated voice/data cellular

system using a two-dimensional Markov chain. Haung et al. [23] analyzed themovable boundary
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Fig. 10. A hierarchical system with micro/macro cells.

scheme with finite data buffering. In the movable boundary scheme, voice and data traffic each

have a dedicated set of the available channels. Once dedicated channels are occupied, voice

and data calls will compete for the shared channels. Wu et al. [87], [90] considered a different

approach in which voice and data calls first compete for the shared channels and then will use

dedicated channels, which can be considered as a natural extension of GC. Interested readers are

referred to [91] for a discussion on fixed and movable boundary schemes. A general discussion

on bandwidth allocation schemes for voice/data integrated systems can be found in [92].

B. Hierarchical Schemes

As mentioned earlier, micro-/pico-cell systems can improve spectrum efficiency better than

macrocell systems because they can provide more spectrum resources per unit coverage area.

However, micro-/pico- cell systems are not cost effective in areas with low user population (due

to base station cost) and areas with high user mobility (leading to a large number of handoffs).

As a consequence, hierarchical architectures [93]–[96] were proposed to take advantage of both

macrocell and microcell systems. Fig. 10 shows an example of a hierarchical cellular system.

In this architecture, overlaid microcells cover high-traffic areas to enhance system capacity.

Overlaying macrocells cover all of the area to provide general service in low-traffic areas and to

provide channels for calls overflowing from the overlaid microcells. In particular, in a hierarchical

system with an overflow scheme, it seems more significant to support guard channel for handoff

protection and buffers for new and handoff calls in overlaying macrocells than to provide them

in microcells [97]. In overflow schemes, when a call is rejected in a micro-cell, it is considered

for admission by the macro-cell covering the micro-cell area.
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Fig. 11. Call admission control schemes.

Recently Marsan et al. [98] have investigated the performance of a hierarchical system under

general call and channel holding time distributions. They used the idea of equivalent flow to

break the mixed exponential process into independent exponential processes which can be then

solved using classical Markov analysis.

C. Complete Knowledge Schemes

User mobility has an important impact in wireless networks. If the mobility pattern is partially

[39], [40] or completely [99] known at the admission time then the optimal decision can be made

rather easily.

Many researchers believe that it is not possible in general to have such mobility information

at admission time. Even for indoor environments complete knowledge is not available [40].

Nevertheless, such an imaginary perfect knowledge scheme is helpful for benchmarking purposes

[99]. Fig. 11 depicts a classification of CAC schemes according to their knowledge about user

mobility. Partial knowledge schemes must reserve resources in several cells [39] to provide

deterministic guarantees, hence we call themworse caseschemes.

In addition to CAC schemes assuming deterministic mobility information, there is a large body

of research work addressing the probabilistic estimation and prediction of mobility information.

Some of them are heuristic-based [52], [66], [100], [101], some others are based on geometrical

modeling of user movements [16] and street layouts [102], and some others are based on artificial

intelligence techniques [103]. For instance, the distributed CACs introduced in section VI-B are

based on probabilistic mobility information.
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D. Economic Schemes

Economic models are widely discussed as a means for traffic management and congestion

control in providers networks [104]–[106]. Through pricing, the network can send signals to

users to change their behavior. It has been shown that for a given wireless network there exists

a new call arrival rate which can maximize the total utility of users [106]. Based on this, the

admission control mechanism can adjust the price dynamically according to the current network

load in order to prevent congestion inside the network.

In terms of economics, utility functions describe user’s level of satisfaction with the perceived

QoS; the higher the utility, the more satisfied the users. It is sometimes useful to view the utility

functions as of money a user is willing to pay for certain QoS. As mentioned earlier (see section

IV), call blocking and dropping probabilities are the fundamental call-level QoS parameters in

cellular networks. Let us define the QoS metricφ as a weighted sum of the call blocking and

dropping probabilities as follows

φ = αpb + βpd, (54)

where α and β are constants that denote the penalty associated with blocking a new call or

dropping an ongoing call respectively (withβ > α to reflect the costly call dropping). In section

III, we showed thatpb andpd are functions of new call and handoff call arrival ratesλ andν.

Using (34),ν is itself a function ofλ. Therefore

φ = f(λ), (55)

wheref is a monotonic and nondecreasing function ofλ. Let us defineU as the user utility

function in terms of the QoS metricφ, and let

U = g(φ), (56)

whereg is a monotonic and nonincreasing function ofφ. Therefore, the utility functionU is

maximized atφ = 0. Let λ∗ denote the optimal arrival rate for whichU is maximized. In [106],

it has been shown that the sufficient condition forλ∗ is that

dU

dλ

∣∣∣
λ=λ∗

= 0 . (57)

Using the optimal arrival rateλ∗ obtained using (57), we can characterize a pricing function

to achieve the maximum utilization. Letp(t) denote the price charged to users at timet. Define
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H(t) as the percentage of users who will accept the price at timet, then

λin(t) =
(
λ(t) + ν(t)

)
H(t), 0 ≤ H(t) ≤ 1 (58)

whereλin(t) is the actual new call arrival rate at timet. H(t) must be designed in such a way

that always

λin(t) ≤ λ∗, (59)

and consequently

H(t) ≤ min
{
1, λ∗

λ(t)+ν(t)

}
. (60)

As mentioned before, pricing can influence the way the users use resources and is usually

characterized by demand functions. A simple demand function can be characterized as follows

[106],

D(t) = e
−
(

p(t)
p0
−1
)2

, p(t) ≥ p0 (61)

wherep0 is the normal price. In fact,D(t) denotes the percentage of users that will accept the

price p(t). In order to realize control functionH(t) we should haveH(t) = D(t). Using (60)

and (61), the price that should be set at timet to obtain the desired QoS can be expressed as

p(t) = p0

(
1 +

√
max

{
0,− ln λ∗

λ(t)+ν(t)

})
. (62)

It is worth noting that pricing-based control assumes that network users are sensitive and

responsive to price changes. If this is not true for a particular network, e.g. noncommercial

networks, then price-based control can not be applied.

IX. CONCLUSION

Due to the unique characteristics of mobile cellular networks, mainly mobility and limited

resources, the wireless resource management problem has received tremendous attention. As a

result, a large body of work has been done extending earlier work in fixed networks as well

as introducing new techniques. A large portion of this research has been in the area of call

admission control. In this paper, we have provided a survey of the major call admission control

approaches and related issues for designing efficient schemes. A broad and detailed categorization

of the existing CAC schemes was presented. For each category, we explained the main idea and

described the proposed approaches for realizing it and identified their distinguishing features.
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We have compared the various schemes based on some of the most important criteria including

efficiency, complexity, overhead, adaptivity and stability. We believe that this article, which is the

first comprehensive survey on this subject, can help other researchers in identifying challenges

and new research directions in the area of call admission control for cellular networks.

One of the interesting observations stemming from this study and illustrated in [76] is how

comparable is the performance of simple reservation-based CAC schemes, e.g. GC, to more

complex ones. This is particularly true when the traffic conditions are known a priori [55]. Yet,

a large body of research in this area focused on designing more and more sophisticated schemes

in the hope of improving the CAC performance. Many assumptions about mobility and traffic

characteristics made in CAC related research are often not practical. Therefore, most of the

schemes proposed in the literature are difficult to deploy in current and future cellular systems.

Furthermore, most of the researchers in the area developed their own simulation environments,

making it difficult to reproduce and compare the results. There is a clear lack of implementation

and testing of CAC schemes in more realistic situations.

Some of the lessons learned from surveying and analyzing the literature and from which

recommendations can be drawn are as follows:

• To use more realistic (non-exponential) mobility and traffic (packet-based) models in de-

signing and analyzing CAC schemes. New mobility models may not necessarily preserve

the Markovian property. Meanwhile, new traffic modeling and engineering techniques are

aiming at a more accurate description of traffic dynamics not only at call level but at packet

level as well. In this perspective, recent findings in traffic analysis such as self-similarity

[28]–[31] must be taken into consideration. To avoid complex schemes and eliminate

impractical assumptions about traffic and mobility, measurement-based CAC schemes [107]–

[109] must be further studied for wireless cellular networks.

• To apply cross layer design [110] in order to improve the performance of CAC schemes

and achieve bit-level, packet-level and call-level QoS. In particular, scheduling mechanisms

at packet level and control mechanisms at call level can benefit from the information about

the state of the wireless channel to achieve a superior performance.

• To design CAC schemes for multiple services networks so as to support emerging mul-

timedia services. Efficient sharing of wireless resources between multiple services is of

paramount importance. However, the design and analysis of efficient CAC schemes for such
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multiple services networks is much more complicated than that of single service networks.

• To consider heterogeneous networks and interoperability issues in order to achieve global

roaming and quality of service end-to-end. A key aspect is seamless handoff among possibly

different networks ranging from reliable and managed cellular networks to unreliable and

unmanaged wireless LANs. A CAC scheme must be able to communicate with other control

components of the network through standard mechanisms to provide end-to-end QoS guar-

antees. The current trend is towards IP-based architectures and mechanisms for achieving

integrated wireless networks [111] and for better resource sharing. This is demonstrated by

the increasing research interest in all-IP wireless network architectures [112].

We believe that the most challenging problems to be solved are mobility and wireless channel

effects, particularly when considering multiple services networks. Mobility and wireless channel

impacts on call-level, packet-level and bit-level system dynamics complicate significantly the

modeling of cellular networks traffic which is essential for devising the appropriate CAC schemes.

As discussed previously, measurement-based admission control is a promising approach to

overcome the complexity of the CAC problem and alleviate some of the impractical assumptions

about traffic and mobility.

In conclusion, CAC research remains an exciting area. The state of the art in CAC research

suggests that existing CAC schemes cannot handle many of the challenges inherent to future

heterogeneous multi services wireless networks. CAC research should continue, but must bear

in mind the realistic limits that may be imposed by the inherent nature of the wireless channel,

the traffic characteristics and the impact of user mobility. For that to be achieved, the nature of

those challenges must be better understood.
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