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Abstract— This paper presents a systematic approach to busi-
ness and policy driven refinement. It also discusses an implemen-
tation of an application-hosting Service Level Agreement (SLA)
use case. We make use of a simple application hosting SLA
template, for which we derive a low-level policy-based Service
Level Specification (SLS). The SLS policy set is then analyzed
for static consistency and runtime efficiency. The Static Analysis
phase involves several consistency tests introduced to detect and
correct errors in the original SLS. The Dynamic analysis phase
considers the runtime dynamics of policy execution as part of the
policy refinement process. This latter phase aims at optimizing
the business profit of the service provider. Through mathematical
approximation, we derive three policy scheduling algorithms.
The algorithms are then implemented and compared against
random and First Come First Served (FCFS) scheduling. This
paper shows, in addition to the systematic refinement process, the
importance of analyzing the dynamics of a policy management
solution before it is actually implemented. The simulations have
been performed using the PS Policy Simulator tool.

Index Terms— Policy-based management, policy optimization,
policy refinement, Policy analysis.

I. INTRODUCTION

BY separating the rules that govern the behavior of a
system from the functionality it supports, policy-based

management (PBM) promises to reduce IT costs while simul-
taneously improving quality of service (QoS) and dynamic
adaptability to change. PBM is currently present at the heart
of a multitude of management architectures and paradigms
with such diversified prefixes as SLA-driven, business-driven,
autonomous, adaptive, and self management, to name a few.
In this paper we will only focus on QoS related policies.
However, policies are also extensively used in the security
arena.

Although research on PBM has been going on for more
than a decade, there is still no strong existence of full fledged
PBM success stories in real scale applications, especially when
it comes to QoS management. This owes much to proving
the correctness of policy based solutions when it comes to
managing real scale systems with hundreds or even thousands
of policies interacting in a dynamic way. A multitude of policy
languages and architectures have been proposed but techniques
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for refinement, and consistency/completeness analysis remain
both scarce and immature. It is then understandable why
venturing into a full PBM solution for managing one’s IT
infrastructure remains difficult to justify.

System performance is equally interesting as well. While
it is true that policy based solutions promise dynamism
and flexibility, they often come with no guarantee of high
performance. Verma [1] states that PBM solutions should not
be considered a case of expert systems because of the strong
weight of the performance parameter they have to carry with
them. Work on the benchmarking of PBM solutions is also
marked by great scarcity. It is necessary that a PBM solution
not only works, but also must be as efficient as existing legacy
solutions, if not better. In this regard, the maximization of
business profit should represent the crucial goal that any QoS
PBM solution should target.

In this paper we develop a use case for the business
driven SLA refinement into low level management policies.
In addition, we present an implementation which maximizes
the business profit of the service provider. The case spans
all of the business driven SLA management loop. We show
the details of how the refinement process is conducted to
produce a policy based SLS. Two analysis phases are then
applied to the generated SLS. The Static Analysis phase
checks the SLS’ policy set for consistency and stability. The
new Dynamic Analysis phase addresses the business-driven
dynamic policy analysis in which we emphasize the need for
incorporating business (and SLA) related data, encoded mainly
within metrics generated during the refinement process, to
handle the orchestration of policies at runtime. This analysis
proves crucial in making the same set of generated policies
(SLS) achieve the best performance at runtime.

The work described in this article is an extension of the
one presented in [2] on several aspects: First, It develops
two different SLA enforcement strategies and provides a
more detailed refinement process. Second, it includes further
mathematical analysis and proof of concepts. Third, it im-
plements and evaluates a larger number of policy scheduling
algorithms. Fourth, it provides a more thorough analysis and
discussion of the simulation results. Finally, it includes a more
comprehensive related work section.

This article proceeds as follows. Section II presents the
generic SLA use case. Section III defines the business profit
function we would like to optimize and section IV presents
two strategies to enforce it. Section V derives a formal SLS
for the generic SLA and shows the different stages of the
proposed refinement process. After that, the static analysis
is conducted on the generated SLS and shows how policy-
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loop anomalies can be detected and fixed. Next, we present
our dynamic analysis approach in which we provide an
approximate solution of the transient state of a variant of an
M/M/Ct/Ct queue. We then use this solution to derive better
runtime scheduling algorithms of triggered policies and hence
a better generated business profit for the same low level policy
set. Sections X and XI present the simulation environment we
used, the conducted simulations and finally summarized results
of the performance of our policy scheduling algorithms.

II. GENERIC SP SLA

Listing 1 Generic application hosting SLA: SP SLA
1) Customer C is provided a web application hosting service

with schedule sc.
2) Maximum capacity is of cpmax simultaneous connections.
3) C is charged $ch = a × cpmax monthly.
4) Monthly average availability of the hosted service ≥ avmin.

a) An ithsuccessive availability violation incurs a reward
of ri × ch.

b) At the 3rdsuccessive availability violation, the SLA is
considered void.

5) Min average time to process end customer requests = rt ms.
a) Otherwise, C is rewarded rt.ref × rt.

We consider an Application Hosting Service Provider SP
which advertises a set of SLAs to its customers. The set of
SLAs is derived from the simple generic SLA of listing 1,
named SP SLA. SP operates in its IT infrastructure a pool
of sp.cp identical server units. Server units are allocated to
each SLA instance to ensure its QoS requirements.
SP SLA states, in 5 clauses, that SP offers an application

hosting service supporting a load (capacity) of cpmax simul-
taneous end client connections to the system, an availability
average of avmin, an average response time rt, all with a
monthly cost ch. The total set of parameters can be gathered
in the tuple (sc, cpmax, a, avmin, r1, r2, r3, rt, rt.ref).
Each instance of this tuple generates an SLA type the SP
can advertise to its potential customers. An SLA instance is
a realization of an SLA type for a particular customer. In the
following, slai denotes an SLA type and slai,j denotes SLA
instance j of SLA type i, all of which are derived from the
generic SLA of listing 1.

Before going further into the SLA refinement process, the
first step is to define the business profit function the SP
intends to maximize.

III. DEFINING THE BUSINESS PROFIT FUNCTION

Denoted in this paper as Ψ, the business profit function
provides a measure of the profitability of the service provided
by the SP . Detailed modeling of business profit and business
goals is beyond the scope of this paper. In the general
case, Ψ should be a function of several service and business
level parameters such as service operation cost, net financial
revenue, customer satisfaction, and market share. To keep the
use case as simple as possible, we define Ψ to be the sum
of the net financial profit gained from each contracted SLA.
This implicitly assumes that managing SP’s IT infrastructure

incurs a fixed cost which is independent of the number of
contracted SLAs. Hence,

Ψ =
∑

i∈SLA

⎛
⎝ ∑

j∈SLAi

(NP (SLAi,j))

⎞
⎠ (1)

where SLA represents the set of all SLA types that SP
supports; SLAi the set of contracted instances of SLA type
SLAi; and NP (SLAi,j) the net profit generated by SLA
instance j of the SLA type i. The problem SP has to solve is
to reach Max(Ψ)? We will elaborate further on this function
in section VIII.

IV. ENFORCEMENT STRATEGIES

The clauses of listing 2 help identify the set of Service Level
Objectives (SLOs) that the SP has to enforce. The identifi-
cation we employ is semi-formal as it requires interpreting a
textual specification and pouring it into a formal specification.
Section V-A explains how this SLO set has been generated.

Using a policy-based approach, the SP has multiple choices
as to how to enforce them. In the following we describe two
of them: a guaranteed approach and a lazy one.

A. Guaranteed enforcement strategy

With this strategy, SP will pre-allocate for each new SLA
instance the exact number of resources (server units) required
to enforce its SLOs at maximum load.

We will assume that SP possesses a mapping function
su(rt) which gives the load (number of simultaneous connec-
tions) a single server unit (su) instance can handle while still
respecting the response time constraint rt (for end customers)
as specified in the SLA.

Let |slai,j .sus| denote the number of server units allocated
to SLAi,j . The maximum number of server units required by
each SLAi,j is then:

Max(|slai,j .sus|) = �cpi
max × avi

min/su(rti)� (2)

Let |slai| be the number of contracted SLAs (instances)
of type i. When using the guaranteed approach, we should
always have:

∑
i∈SLA

(|slai| × �cpi
max × avi

min/su(rti)�
) ≤ sp.cp (3)

We assume that the set of contracted SLAs become activated
at the same time. If the system runs with no unexpected
failures, the guaranteed enforcement approach will produce
business profit:

Ψ =
∑

i∈SLA
chi

⎛
⎝ ∑

j∈SLAi

sci,j .duration()

⎞
⎠ (4)

Given a set of defined SLA types, SP can find the number
of instances to contract for each SLA type so as to maximize
Ψ by solving the integer programming simplex formed by
Max(eq.3) and eq.4.

However, such approaches prove inefficient in practice
where the running SLAs are actually not fully loaded at all
times, which is the case for most web applications.
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B. Lazy enforcement strategy

In this approach, SP allocates server units to each SLA
on a per need basis. Conversely, it removes server units from
an SLA as soon as this latter starts experiencing low load.
Similar to the statistical multiplexing of traffic crossing a
shared physical network cable, this technique allows SP to
contract a number of SLAs with a total maximum sever pool
capacity beyond the actual capacity it possesses.

At instantiation time, an initial number of n0(≥ 1) server
units is allocated to the SLA. When the connection intensity
(number of simultaneous end customer connections) reaches
a certain threshold tha of the current SLA capacity, a request
is made to the server pool to obtain an additional server unit.
Conversely, if a low threshold thr is reached, an action is
triggered to release a server unit to the free server units pool.
With this technique, SP aims at a higher business revenue
than promised by the guaranteed enforcement approach (eq.3-
4). Notice that at this stage, three new parameters have been
added to the SLA type, which are the thresholds tha and thr

and the initial minimal number of server units n0.

V. REFINEMENT OF THE GENERIC SP SLS

The refinement will be done in a series of phases starting by
the formal specification of SLOs and high-level policy rules.
Following this, the Enforcement strategy along with available
system resources functionality are used to guide an iterative
refinement process until a fixed point is reached where all
SLS statements are directly supported by the resources at
hand. Hence, depending on which enforcement strategy is used
and/or which system resources are available different SLSs can
be generated.

A. SLO set specification

Service Level Objectives (SLOs) represent logical con-
straints over SLA parameters that the SP has to respect.
Using a straightforward formulation, the SLOs of listing 2
correspond respectively to clauses one to five of the SP SLA
(listing 1), with the sub-conditions 4-a/b and 5-a excluded.
These sub-conditions will be dealt with in the next iteration.
As the title of listing 2 indicates, this SLO set corresponds to
the guaranteed enforcement approach as it exactly translates
(excluding sub-conditions) SP SLA into formal terms.

Listing 2 SLO set for the Guaranteed enforcement of SP SLA
sloSet sloSetG = {

slo slosc = (schedule == sc);
slo slocp = (ws.cp == cpmax);
slo sloch = (payment.sum(month) == ch);
slo sloav = (ws.av ≥ avmin);
slo slort = (ws.rt ≤ rt);}

The capacity SLO slocp of listing 2 states that the total
capacity of allocated server units for an SP SLA instance
should be equal to cpmax. For the lazy enforcement, this SLO
is a requirement that is stronger than what is actually needed.
This is because, in this approach, SP intends to allocate server
units to each SLA on a per need basis. So slocp needs to

be weakened to the new expression of listing 3. With this
expression the runtime capacity of an SLA, in terms of the
sum of capacities of allocated server units, is allowed to be
less than the value contracted in the SLA.

The passage from sloSetG to sloSetL is an example of SLO
refinement which is refinement strategy dependent.

Listing 3 SLO set for the Lazy enforcement of SP SLA

sloSet sloSetL extends sloSetG = {
slo slocp = (ws.cp ≤ cpmax); }

The next iteration will deal with the tracking of SLO states
and how state changes/violations are signaled.

B. Metrics and SLO constraints for SLO state tracking

In our refinement approach we make use of events as the
means to signal SLO violations. When an SLO is violated, an
event is generated to inform about the parameters related to the
violation, such as the time of its occurrence and/or some log
information that might be useful for its processing. To evaluate
the constraint defined by the SLO, there is a need to have
the values of each of its parameters at hand. Therefore, these
parameters need to be defined as metrics that are computed at
SLA runtime and serve as input to a constraint tracking object
which periodically evaluates and informs about that SLO’s
state. Such a dependency hierarchy is illustrated in figure 1.

The required runtime SLO constraints and metrics and their
relationships can hence be identified in a top down fashion
with the prior knowledge of what resource level (leaf) metrics
are supported by the underlying IT infrastructure of the service
provider.

The output set of required high level metrics and SLO state
constraints is listed in listing 4. This set shows additional
parameters that need to be filled for an actual SLS instance.
For example, there is a need to define specific values for
service deployment and un-deployment times. In addition, the
capacity SLO slocp generates the need to compute a new
metric mcp. This metric is set to collect the actual runtime load
ws.cp of the server units. Each metric is then used at runtime
as an input to the SLO evaluation. Similarly, metrics are also
generated to track the states of the payment, availability, and
response time SLOs.

Fig. 1. SLO state constraints and related metrics.



28 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 3, DECEMBER 2007

Listing 4 Metrics identification based on available high level
system metrics

• slosc ⇒
define schedule=sc,

schedule.deployTime=<? >,
schedule.undeployTime =<? >, . . . .

• slocp ⇒ metric mcp = ws.cp
• sloch ⇒ metric mch = payment.sum(month)
• sloav ⇒ metric mav = ws.av
• slort ⇒ metric mrt = ws.rt

C. Policies for SLO violation events

The consequences of violating an SLO need to be specified
in the SLA. At this phase, a set of policies of the form
on not(slo) do action is generated based on the generated
SLO set (listing 2, 3). Since SLO metrics are now defined
(listing 4), this set can be automatically generated as is shown
in listing 51. In this set, not(slo) is replaced by an event type
slo which is intended to convey the violation information to
all those SLS policies that need it.

Listing 5 Automatic SLO violation policies
• slocp ⇒

eventType slocp;
policy pmcp = {
on (mcp > cpmax) do generate(slocp)}

• sloch ⇒
eventType sloch;
policy pmch = {
on (mch < ch) do generate(sloch)}

• sloav ⇒
eventType sloav;
policy pmav = {
on (mav < avmin) do generate(sloav)}

• slort ⇒
eventType slort;
policy pmrt = {
on (mrt < rt) do generate(slort)}

D. SLO violation policies

Each time an SLO is violated an action is required in order
to bring the SLA back to a normal state. SLO violations
can also trigger actions that are specified in the SLA. In this
iteration we generate policies related to SLO violations that
are directly deductable from the SLA. Listing 6 shows the
policies generated for each SLO violation clause. This set of
policies is required by both enforcement strategies.

Availability is computed as a monthly average as specified
in the generic SLA. However, the SP can compute it in several
ways. A similar case exists with the semantics of ”successive”.
We will not elaborate on the possible options here in order to
keep our discussion focused. We assume that SP computes
availability as a sliding window average of length avwin (=

1The notation for policy rules is inspired from [3], [4].

one month in the SLA). For ”successive”, the SP refers to
those violations which occur within at least one availability
window interval (1 month).

Policies p1
av , p2

av , and p3
av implement availability violation

penalties as specified in clause 4 of the generic SP SLA of
listing 1. p1

av states that on the occurrence of an event e1 of
type sloav , meaning a violation of sloav at runtime, the action
that needs to be carried out is to credit the customer account
with r1 monetary units. p2

av and p3
av implement respectively

the penalty clauses for the 2nd and 3rd successive violations.
The where conditions enforce the one month ”memory” on
successive violations and ensure that only one of p1

av, p2
av or

p3
av can be triggered at a time.

Listing 6 SLA specific SLO violation policies
double avw = 1 month; // availability window
event sloav e1, e2, e3; // events of type sloav

• Clause 4-a ⇒
policy p1

av = {
on e1

do c.credit(r1)
where not(p2

av ∨ p3
av)}

policy p2
av = {

on (e1 → e2) // e1 followed by e2

do c.credit(r2)
where ((time(e2) − time(e1) < avw) ∧ not(p3

av))}
policy p3

av = {
on (e1 → e2 → e3)
do {c.credit(r3)
where ((time(e3) − time(e1) < avw))}

• Clause 4-b ⇒
policy p3b

av = {
on (e1 → e2 → e3)
do {SLA.terminate()
where ((time(e3) − time(e1) < avw))}

• Clause 5-a ⇒
policy prtv = {
on slort

do c.credit(rt.ref)

Listing 7 Policy to enforce at customer side
• Clause 3 ⇒

policy pC1 = {
on every month
do SP .credit(ch)
start at sc.activationTime }

E. Enforcement strategy dependent policies

For the guaranteed enforcement approach, SP has to en-
force policy pg1. This policy allocates the number of server
units (equation 2) that are needed to guarantee availability and
response time SLOs at all times, that is, even during maximum
load. These policies also make all necessary initializations
required by the specific web application of the SLA instance.
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At the other end of the SLA life time, the un-deployment
time policy pundeploy takes care of wrapping up actions
which include resource liberation, deactivation of active SLA
policies, and some reporting actions.

Listing 8 Guaranteed approach specific policies
• Clause 1 ∧ Clause 2 ∧ Clause 5 ⇒

policy pg1 = {
at sc.deployT ime
do ws.add(�cpmax × avmin/su(rt)�)

}
• Clause 1 ⇒

policy pundeploy = {
at sc.undeployT ime
do SLA.undeploy()}

For the lazy enforcement approach, policy rule pg1 gets
replaced (or split) into the three rules of listing 9.

Listing 9 Lazy enforcement dependent policies
double tha, thr;

constraint 0 < thr < tha ≤ 1; // %
int n0; constraint 1 ≤ n0; // %

policy pdep overrides pg1 = {
at sc.deployT ime
do ws.add(n0)}

policy padd = {
on (ws.load ≥ tha)
do ws.add(1)
where (ws.cp ≤ cpmax)}

policy prem = {
on (ws.load ≤ thr)
do ws.free(1)
where (|ws.su| > 1}

pdep is a deployment time policy which initializes the
new SLA by requesting an initial number n0 of server units
from the pool of free server units. pdep is related to the
lazy enforcement strategy and hence overrides policy pg1.
pundeploy is not in conflict with the lazy enforcement and is
kept unchanged.

padd and prem implement the lazy enforcement approach
by tracking the load of the server units that are available to
the SLA instance. They execute the necessary actions each
time a threshold is crossed, padd by requesting a new server
unit at high load times and prem by releasing one at low load
times.

The determination of the appropriate values of parameters
tha and thr are SLS specific and tunable by the SP . In
the conducted simulations these two parameters had a strong
impact on the generated profit.

Finally, SLO slort (listing 3) is implicitly implemented in
both strategies by limiting the maximum load on each server
unit to su(rt) (see section IV-A).

F. Another iteration for generating metrics/policies

The condition on policies padd and prem need to be defined
in terms of constraints over metric values. Hence, there is a

need to detect ws.load through a metric and have an event
generated each time this metric crosses one of tha and thr

thresholds. Listing 10 shows how padd and prem are updated.

Listing 10 Additional metric generation and policy set update
• padd ⇒

metric mThadd = ws.load
policy pmThadd = {
on (mThadd ≥ tha)
do generate(evThadd) }
update padd = { on evThadd }

• prem ⇒
metric mThrem = ws.load
policy pmThrem = {
on (mThrem ≥ thr)
do generate(evThrem) }
update prem = { on evThrem }

G. Final iteration and Complete SLS specification

So far, this section described the SP SLS generation
process for both the guaranteed and lazy enforcement policies.
Each output SLS is the completed service level specification
(SLS) of the generic SP SLA. Listing 11 summarizes the
output of this refinement process. The generation of this SLS
involved several sub processes, which in the general case are
expected to be iterative with a fixed point property.

Note that a first part of the SLS needs to be enforced at SP
side. The SP responsibilities have been grouped under one
role structure named SP . The second part of the SLS is related
to customer payment policy (pC1 in listing 7) and needs to be
enforced at customer side, under role C. The SP role contains
a total of thirteen policies, five metrics, and three constraints.
Policies p3

av and p3b
av have been blended into one policy p3

av .
Metrics mThadd and mThrem, being identical, have been
blended into the metric mLoad. Note that we assumed that the
SP takes care of all metric computations and not the customer
or a third party.

The inclusion of third parties and the distribution of metric
computations can also be included in the SLS specification but
was not considered here in order to keep the use case simple.

Finally, we would like to emphasize that the final SLS does
not contain any SLO definition. All necessary logic has been
specified in the sets of policies, metrics, and events. Hence,
an SLO can be a component of an SLA or an intermediary
SLS, but not the final SLS.

VI. STATIC ANALYSIS

The second phase after the generic SLS is generated con-
ducts a static analysis in order to test the consistency of the
generated policy set. For the static analysis phase we identified
and conducted four types of tests: action conflicts, deadlocks,
loops, unreachable states (dead code (i.e policies)), erratic
behavior.
SP needs to test the generated policies to make sure they

are free from any of these defects.
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Listing 11 SP SLS for the lazy enforcement strategy
sls SLS = {

• // Service Provider Role

role SP = {
schedule sch;
int n0;//
double tha, thr , avw = 1 month;
constraint 0 < thr < tha, 0 < tha ≤ 1, 1 ≤ n0;

metric mcp = ws.cp, mav = ws.av
metric mch = payment.sum(month)
metric mLoad = ws.load, mrt = ws.rt;

eventType slocp, sloch, sloav , slort;

event sloav e1, e2, e3; // events of type sloav

• // SLO violation notification policies
policy pmcp = {

on (mcp > cpmax) do generate(slocp)}
policy pmch = {

on (mch < ch) do generate(sloch)}
policy pmav = {

on (mav < avmin) do generate(sloav)}
policy pmrt = {

on (mrt < rt) do generate(slort)}

• // Lazy enforcement specific policies
policy pdep = {
at sc.deployT ime do ws.add(n0)}

policy pmThadd = {
on (mLoad ≥ tha) do generate(evLoad) }
policy padd = {
on evLoad do ws.add(1)
where (ws.cp ≤ cpmax)}

policy pmThrem = {
on (mThrem ≥ thr) do generate(evLoad) }
policy prem = {
on evLoad do ws.free(1)
where (|ws.su| > 1} }

• // SLA specific SLO violation policies
policy p1

av = {
on e1 do c.credit(r1)
where not(p2

av ∨ p3
av)}

policy p2
av = {

on (e1 → e2) // e1 followed by e2

do c.credit(r2)
where ((time(e2) − time(e1) < avw) ∧ not(p3

av))}
policy p3

av = {
on (e1 → e2 → e3) do {c.credit(r3); SLA.terminate()}
where ((time(e3) − time(e1) < avw))}

• // response time violation policy
policy prtv = {
on slort do c.credit(rt.ref) }

}

• // Customer Role
role C = {

do SP .credit(ch)
start at sc.activationTime

}
}

A. Static conflicts Analysis

Action conflicts analysis relates to those policies which
have conflicting actions and which can execute at the same
time on the same system object. By observing the generated
policy set, we notice that pdep and padd request additional
server units. However, pdep executes only once at the SLA
deployment time while padd becomes active only after pdep

has executed correctly. prem releases one server unit which is
an action expected to be always successful. p1

av, p2
av and p3

av

cannot execute at the same time (even though this does not
cause trouble). In the implementation, this translates to making
method c.credit() synchronized. When several SLA instances
are running, policies of type pdep and padd can conflict due to
lack of sufficient server units. For example, in case only one
free server unit is available, only one policy can be executed
while the others need to wait until enough resources become
available. However, this is a runtime conflict that the lazy
enforcement strategy, for example, accepts. So, from the static
analysis point of view, the policy set is actions conflict free.

B. Deadlock Analysis

For deadlock analysis, it is straightforward that the policy
set is deadlock free as there is only one possible blocking
action ws.add(). This action requests a number of server units
from the pool of free server units. So a deadlock situation at
runtime is not possible.

C. Erratic behavior Analysis

The constraints on the definition of tha and thr (listing 9)
have been set following the intuition that the threshold to
request a new server unit should be strictly greater than the
one which frees an acquired one. Without these constraints
and if thr was fixed, possibly due to a mistake of the system
operator, to a value greater than tha, the concerned SLA
instance might never free any acquired server unit until it is
terminated, or on the other extreme, it might show erratic
behavior in case of a shortage in server units.

For the first case, ws.load = tha ⇒ padd gets triggered
⇒ new ws.load < tha < thr. This implies that when the
number of connections decreases, no action will be taken by
the SLA and it will continue to hold resources that it is actually
not using!

The latter case, however, is more harmful. It occurs when
padd is triggered while no resources are available in the system
and ws.load continues to grow until reaching thr. At this
moment prem is triggered reducing su.size by one.

Since we have

ws.load =
|connections|

(su.cp × su.size())
(5)

This implies that ws.load increases. Hence, prem gets trig-
gered again, and so on, until all but one of the server units
are freed (because of the where clause in prem). It is then
expected that availability violations occur leading possibly to
the SLA termination (policy p3

av). With a slight chance, the
SLA can still survive if before p3

av is triggered the load on the
unique left server unit diminishes. A way to detect this type
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of erratic behavior is to specify a rule for the static analyzer
which states:

//fsupl = free server units pool
policy pErraticTest1 = {

on (triggered(p3
av) ∧ (fsupl.size > 0))

do signal(erraticBehavior);}

D. Unreachable code (policies)

Based on our assumption that one server unit instance is
loaded only up to su(rt) simultaneous end customer sessions,
the system can deduce that policy prtv cannot be triggered at
runtime. So, theoretically, these policies can be safely removed
from the output SLS. However, in practice server machines
can become congested due to various causes and, although the
constraint on the number of simultaneous sessions is respected,
the response time might still be violated. The final decision
to remove or keep prtv should be left to the discretion of the
SLS designer.

E. Policy-loop Analysis

This step checks for potential static policy loops. We say of
a policy-based system to contain a static policy loop if there
exists at least one system state Sl, different from the final
state Sfinal, which when reached the system keeps on always
coming back to it after a finite number of state transitions.
The policy loop is dynamic if it is not static and occurs at
runtime due to runtime conditions.

In this section, the runtime state of an SLA is defined by
the tuple (ws.cp, np); where ws.cp is the capacity in number
of allocated server units and np the accumulated net profit. np
is affected by operations SP.credit() of policy pC1 (listing 7)
and C.credit() of policies p1

av to p3
av (listing 9).

We also consider that the state of SP ’s system to be the
sum of the states of all the contracted SLAs augmented by the
state of the free server units pool and all the business metrics
the SP maintains.

For policies p1
av to p2

av , an oscillation case is impossible
because any of them cannot occur more than once during
any availability interval (1 month). Also, if all of them occur
during the same availability interval, the corresponding SLA
is terminated. Termination is still a safer ”state” than a
”looping”!

For policies pdep, padd and prem there is a potential exis-
tence of a static loop. This is because pdep and padd request
additional server units while prem requests an operation which
nullifies their actions by freeing one server unit. Thus, further
analysis is required on these policies.

With this semi-formal analysis, the SP should be relatively
assured that the generated SLS will achieve the goal of the
input SLA of listing 1. However, there is still a subtle error
which was not discovered until after observing the execution
of a batch of randomly generated simulations.

For some randomly generated input parameters which re-
spect all the above stated constraints, the system still enters
an infinite loop oscillating between policies padd and prem.
By analyzing closely this case we found that the constraint

0 < thr < tha ≤ 1 is not sufficient. This leads us to consider
the case when prem can be automatically triggered once padd

is triggered and vice versa.

First, let’s recall that:

• ws.load = |connections|/ws.cp , where

– |connections| is the current number of end
customer connections.

– ws.cp = su(rt) ∗ su.size, i.e web server capacity
= capacity of one server unit times the number of
allocated server units.

• padd increments su.size by 1 while prem decrements it.

Just before padd is triggered, i.e. an end customer is
terminating a session, we define: z = su.size,
n = |connections|, number of connections, s = su(rt),
c = n/su(rt), and zmax = cpmax/su(rt).

For padd to be triggered right after an end customer exits we
should have:

n − 1
s × z

< tha ≤ n

s × z
(6)

The successful execution of padd increments z to z + 1 to
translate the adjunction of a new server unit to the SLA
instance.
For prem to be triggered right after padd has executed
(creating a loop), we should then have:

n − 1
s × z

> thr ≥ n − 1
s × (z + 1)

(7)

By putting these two inequations together and simplifying
we obtain the condition:

tha

thr
≤ 1 +

1
z
,∀z|1 ≤ z ≤ zmax (8)

Hence, to avoid a static loop starting from padd we prove
that it is necessary and sufficient to have (� is the not
operator):

�(padd → prem) ⇔ tha > 2 × thr (9)

The second case is to get the condition to avoid having padd

automatically triggered right after prem has executed.
Following similar reasoning we obtain :

thr

tha
<

(
1 − 1

zmax

)
,∀z|2 ≤ z ≤ zmax (10)

From eq.9,10 we prove that the necessary and sufficient
condition for the policy set of listing 9 to be loop free is :

SP SLS is loop free ⇔ tha > 2 × thr (11)

�
At this point the static analysis phase ends. The output of a

static analyzer tool, if it existed, should be a recommendation
to change the constraint on thr to become compliant with
eq.11.

The next step explores aspects of what we call a business-
driven dynamic analysis of an SLS [5].
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VII. BUSINESS-DRIVEN DYNAMIC ANALYSIS

At a normal SLA operation, all triggered policies should
execute properly. Conceptually, a triggered policy needs the
approval of the policy decision point (PDP) before it can
execute [1]. This implies the existence of a conceptual queue,
or waiting room, for triggered policies which the PDP serves
by scheduling them according to some predefined scheme. In
practice, the PDP can be implemented as a hierarchy of PDPs
distributed within the IT infrastructure. Our analysis will be
based on the conceptual PDP of SP ’s IT infrastructure.

In this paper we assume two possible default services which
the PDP offers to the the Triggered Policies Queue (TPQ):

1) FCFS: This is actually a variant of the traditional
First Come First Served (FCFS) algorithm in which triggered
policies are serviced in FCFS as long as there are enough
available resources for their actions part. In the case where a
triggered policy cannot execute because of unavailable system
resources, the policy in question retains its order in the TPQ
but the PDP skips it each time it processes the TPQ until
resources become available for its execution. For SP SLS
this case can occur for policies pdep and padd.

2) RND (for RaNdoM): In this algorithm, the PDP picks
the next policy to run at random from the set of runnable
triggered policies.

If SP chooses to contract a number of SLAs with a total
maximum capacity exceeding the actual capacity it has in its
servers pool, it can be proven that by taking additional concern
at the TPQ scheduling level better overall business profit can
be achieved.

VIII. BUSINESS DRIVEN TPQ SCHEDULING

In this section, we introduce a new TPQ scheduling tech-
nique that is intended to provide a better handling of peak
utilization times for SP ’s resources leading to better overall
business revenue. This technique takes into consideration the
runtime states of instantiated SLAs in servicing the TPQ.

Since the only policies which may incur delay are padd

and pdep, we will only consider them for this analysis. The
other policies can hence be serviced according to any default
discipline (FCFS or RND) without loss of performance or
business value.

The decision problem that the PDP has to solve when faced
with a number of policies in TPQ requesting more resources
than available (here server units) is to determine which policies
to grant resources to, i.e. allow to execute, and which policies
it will delay hoping that enough resources will be freed.
Delaying a triggered policy can lead to a violation of SLOs
and violating an SLO can cause penalties paid to the SP
customers. The aim of SP is to configure its PDP’s decision
algorithm so as to reflect the goal of maximizing the business
profit function Ψ defined in eq.1.

A. The Business aware TPQ scheduling decision problem

Delaying pdep or padd can lead to the violation of the
availability SLO (sloav in listing 3). sloav is defined over
the monthly average availability of the web application to
end customers. Based on listing 1, the availability (= ws.av

in listing 3) of each SLA instance is defined as the fraction
of successful service requests to the fraction of total service
requests of end customers computed over a month time
window.

Definition: monthly availability of a web service

ws.av =
|processed requests|inavw

|total number of requests|inavw

(12)

When confronted with a sequence of pdep and padd policies
in the TPQ, the PDP can utilize the information on the avail-
ability metric for the SLA to which each policy is associated
in order to predict the impact time for each delayed policy.
The impact time in this case is the time at which a violation
of the availability SLO occurs.

We will make use of a greedy approach to the maximization
of business profit. We approximate the maximization of Ψ
to the minimization of the impact (i.e. loss) on Ψ for each
decision cycle the PDP performs onto the TPQ.

Let Ptpq be the set of policies of type pdep or padd that
are queued in TPQ at time t0. The PDP constructs for each
policy pi ∈ TPQ a tuple (pi, ri, I(pi)). ri is the time pi was
triggered. I(pi) is an impact probability function which gives
for each t ≥ 0 the expected impact on Ψ in the case pi is
delayed t time units after the current system time t0. Based
on this sets of tuples, the PDP has to make a decision in order
to minimize the impact on Ψ.

B. Mathematical model of the SP SLA

Predicting the impact of delaying pdep or padd implies
predicting the probability of violating sloav in future time.
This implies predicting the evolution of availability wsav over
time for each pi ∈ Ptpq.

To do so we model the state of an SLA instance as a
tuple M/M/Ct/Ct |At|Dt. M/M/Ct/Ct models a variable
capacity markovian queue where: λ =rate of end customer
requests, μ =service rate for a single customer request, the
number of available server slots at time t
Ct = ws.cp = su(rt)× su.size(), and all requests arriving at
full load time get rejected (no waiting queue).

At denotes for each t the number of granted end cus-
tomer requests (sessions) during the last availability window
[t − avw, t]. Dt denotes the number of the denied ones.
Tt = At + Dt represents the total number of arrivals during
the last availability window. Requests arrival is modeled as a
poisson source as it reflects the most common type of arrivals.
Exponential service times denote the time during which a
customer remains connected to the web service. In the case of
a web site this can model the time of one customer session in
the web site. A similar case applies to other types of servers
such as audio/video streaming servers. Note that this does
not contradict with the response time SLO as the response
time represents the responsiveness of the web service to end
customer queries during one end customer session.

The servers’ capacity, in terms of the number of end
customer sessions, varies within the discrete set {su(rt),
su(rt), 2su(rt), . . ., cpmax}.

In what follows we will focus more on policy padd. The
study of pdep follows a similar approach.
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Let Nt denote the number of end customer requests being
serviced at time t. We have at any time 0 ≤ Nt ≤ Ct

Note that all of At,Dt, Tt, Ct, and Nt can be easily
obtained at runtime by defining corresponding metrics at the
SLS level.

Policy padd is triggered when the SLA load exceeds tha.
Let t0 denote this time. In the following, when t0 is used as
a subscript the t is omitted for clarity.

Because markovian processes are memoryless, the PDP can
take as input to its Impact Prediction Algorithm (IPA) the tuple
(t0, A0,D0, C0, N0). The output is the probability function I .
As a simplification of I , the IPA can determine the time it
will take starting from t0 until avt drops below avmin, hence
triggering an availability violation.

In spite of all the simplifications done, still remains the
difficult problem of predicting the evolution of a Markovian
process at transient state.

On page 78 of his book Queueing Systems, Vol. 1 [6],
Leonard Kleinrock, commenting on the transient solution of
an M/M/1/∞ queue, says ’This last expression is most
disheartening. What it has to say is that an appropriate model
for the simplest interesting queueing system leads to an
ugly expression for the time dependent behavior of its state
probabilities.’

More recently, Sharma describes in his book Markovian
Queues [7] a novel approach to the transient analysis problem.
He was the first to provide the transient solution for the
M/M/∞, M/M/N and M/M/2/N queues. Sharma states
that for higher order queues the problem becomes much more
complicated to be handled by currently known Algebraic
techniques. This problem is till unsolved.

In order to make the policy decision-making process busi-
ness aware, we will attempt to find an acceptable solution
to the transient analysis of a M/M/Ct/Ct queue that still
respects the short time requirement for the PDP’ decision.
The decision making problem is further complicated by the
fact that the PDP is concerned not only with predicting when
the servers become fully loaded, but also with the prediction
of when after that time the SLA availability drops below its
minimum contracted value.

The next subsections present two prediction functions and
their corresponding impact minimization algorithms, which
we have implemented and for which we provide performance
results in section XI.

C. Predicting the First Time to Degradation / Violation

As a first approximation we divide the prediction process
into two phases: the fill up phase and the time to violation
phase. In the first phase, the system starts with configuration
(t0, A0,D0, C0, N0) and evolves to the new configuration
(tf , Af ,Df = D0, Cf = C0, Nf = C0), where tf represents
the time when the SLA server units reach full load (Nf = C0).
During interval [t0, tf ] it is expected that no service request
denial occurs as the SLA can still handle more load. The time
to violation phase starts at time tf and lasts until reaching the
violation of the availability SLO (sloav). It is described by

configuration (tv, Av,Dv, Cv, Nv), where

Av

Av + Dv

�≤ avmin (13)

Given this information, the PDP can predict that if it delays
that padd instance the corresponding SLA is expected to
experience a violation of its sloav at time tv . That is, after
tv − t0 time units.

The problem is hence amenable to providing an approxi-
mate but realtime solution of the time to fill up and time to
violation phases.

1) Fill up phase - predicting tf : The computation of tf is
based on the average behavior of M/M/Ct/Ct.

The incoming flow λ of end customer requests is subdivided
into two sub flows. A first sub flow of rate μ×N0 keeps busy
the N0 occupied server slots. This is because their aggregate
average service rate is μ×N0. The remaining sub flow is then

λ′ = λ − μ × N0 (14)

λ′ constitutes the new flow of incoming connections for the
servers of rank > N0 (after a simple reordering of server
slots).

We now consider this new set of server slots separately.
At time t the number of connected customers is N ′

t . At time
t + dt this number will increase by dN ′

t where:

dN ′
t = λ′dt − μN ′

tdt

⇒ dN ′
t

dt
+ μN ′

t = λ′ (15)

We define ρ = λ
μ and ρ′ = λ′

μ = ρ−N0. With the condition
N ′

0 = 0 we get:

⇒ N ′
t = ρ′(1 − e−μt) (16)

By putting:
tf = t0 + t′f (17)

t′f is then the solution in t of Nt = C0. Hence,

t′f = −1
μ ln

(
1 − C0

ρ′

)
⇒

t′f =
1
μ

ln

(
ρ − N0

ρ − N0 − C0

)
(18)

Interestingly, this function is independent of t0 and is related
only to N0, C0, λ, and μ.

As a side effect of the approximation, this function returns
a positive result only if

1 − C0

ρ′
> 0 ⇒ ρ > C0 + N0 (19)

This indicates that the prediction function we just developed
is expected to work when the corresponding SLA instance is
using only a small percentage of the maximum number of
server units that can be allocated to it.

In the following we will refer to the formula of equation 18
as the FTD function, for First Time to Degradation.
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2) Time to violation phase - predicting tv: Following the
same reasoning, we assume that λ gets divided into two sub
flows. The first sub flow of rate μ × C0 works on keeping
all server units busy. The second sub flow represents the loss
flow and serves to count down towards availability violation.

As in the first case, we define our modified incoming flow
as:

λ′′ = λ − μ × C0 , and ρ′′ =
λ′′

μ
= ρ − C0 (20)

All customers in the poisson flow of rate λ′′ get rejected.
Hence, on average availability is expected to be violated at
tv = tf + t′v where:

avmin =
Af + μ × C0t

′
v

Tf + λ × t′v
⇒ t′v =

Tf × avmin − Af

μ × C0 − λavmin

Where Tf = T0 + λt′f and Af = A0 + λt′f .

⇒ t′v =
T0(avmin − av0) − λ(1 − avmin)t′f

μ × C0 − λavmin
(21)

Let �av = (avmin − av0). The expected absolute time tv at
which a violation of the availability SLO will occur is given
by:

tv = tf + t′v = t0 + t′f + t′v
= t0 + t′f +

T0(avmin − av0) − λ(1 − avmin)t′f
μ × C0 − λavmin

= t0 +
1

(C0 − ρ avmin)
×

(
T0

μ
(avmin − av0) + (C0 − ρ) t′f

)

Using algebraic computations, we obtain:

tv = t0 +
(C0 − ρ)

μ (C0 − ρ avmin)

×
(

T0 ×�av

(C0 − ρ)
− ln

(
1 − C0

ρ − N0

))
(22)

�
tv represents, on average, the time at which a violation

is expected to occur if meanwhile padd is not granted the
execution privilege. It does not necessarily reflect the actual
time of first violation at runtime.

It is interesting to note that this formula can be computed
in O(1) if the values of {C0, T0, N0, av0} are available.
Fortunately, the metrics instantiated from the developed SP
SLS (listing 11) can provide this information instantly at
runtime. This has a definite advantage at runtime over any
formula which predicts the exact transient evolution of an
M/M/Ct/Ct |At|Dt queue, even though such a formula has
not been discovered yet [7].

In the following we will refer to the formula of equation 22
as the FTV function, for First Time to Violation.

D. Impact Minimization Scheduling Algorithms

Provided with an approximation for tf and tv , the PDP
can be configured to use several possible algorithms for the
runtime minimization of impact on the business profit function
Ψ. In this work we developed three different algorithms
which are presented in this section. The performance of these
algorithms is evaluated through simulations in section XI.

For each triggered policy pi ∈ SLApi
, the PDP will

create a tuple (pi, SLApi
, ttpi

, tdpi
, tvpi

, Pnpi), where: ttpi

corresponds to the triggering time of pi, tdpi
is the time of the

next service degradation phase (corresponds to t′f in eq.17),
tvpi

is the expected time of availability SLO violation (tv in
eq.22) in case pi is delayed; and Pnpi

is the penalty incurred
based on the rules defined in SLApi

(one of {p1
av, p2

av, p3
av}

depending on the runtime state of SLApi
).

The PDP has, among other possibilities, the following set
of different scheduling algorithms to select from the TPQ the
next policy to execute:

• Select the one with the first(lowest) time to violation,
Min(tvpi

). We call this algorithm FTVF, for First Time
to Violation First.

• Select the one with the first(lowest) time to degradation,
Min(tdpi

). We call this algorithm FTDF, for First Time
to Degradation First.

• Select the one with highest penalty first, Max(Pnpi).
We call this algorithm HFPF, for Highest First Penalty
First.

This selection is applied to those policies whose action
part can be satisfied in terms of resource availability. Poli-
cies whose actions require more resources than available are
delayed for the next TPQ iteration.

In the remainder of this paper we will use simulations to
evaluate the performance of the proposed algorithms and study
how they compare to the default FCFS and RND scheduling.

IX. THE PS SIMULATION ENVIRONMENT

The first problem faced when implementing the SP generic
SLA use case is the lack of a simulation environment for
testing the performance, correctness, and other properties of
policy based solutions. We therefore developed a full fledged
policy simulation tool PS [8] to use for the SP generic SLA
use case. However, we have designed PS in such a way that it
can be used by the wider SLA and Policy-based management
research community. In the following, we will describe briefly
PS main characteristics.

The policy simulator PS implements a discrete event simu-
lation system based on the process interaction world view. The
design of PS follows that of the business driven management
framework we proposed in [5]. This includes an extended
architecture for enabling business driven management that has
policy support at its core foundation. PS offers the means to
specify SLAs/SLSs, roles, policies, refinement/mapping rules,
constraints, low level and high level metrics, events, as well
as the functional details of a PDP.
PS builds on the open source package javaSimulation [9],

which is a Java package for process-based discrete event
simulation. The design of javaSimulation follows closely the
design of the SIMULA programming language.
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X. GENERIC SP SLA SIMULATION PACKAGE

This package (figure 2) was built as a simulation instance
which we run over PS. The SP generic SLS of listing 11
was implemented as a single class descendent of the generic
SLA class. The class contains two instances of the class
Role implementing the service provider role (SP) and the
customer role (C) respectively. The Role class abstracts a set
of commitments of a party in an SLA. The same hierarchy
is constructed for policy groups, policies, metrics, and events.
Each SP role has a serverGroup instance which manages a
set of server units obtained from a serverPool component. A
Poisson traffic source is attached to each serverGroup and
is used to simulate session requests of end users. At the
reception of each session request, the severGroup object tosses
an exponential random number to simulate an exponential
service time.

Almost all communications between the simulation com-
ponents are done via events (ref. refrules for SLO viola-
tions). The event service allows any component to register
as a source of a given event type. Time events (timeout
counters) are also supported as a special event type. Another
component can register as a listener to the same event type
from that event source and the event service manages this
relationship. The server pool, for example, generates an event
each time it receives, accepts, denies or terminates a session.
Leaf metrics propagate information they receive from server
pool events and other components up to higher level metrics
(At,Dt, Tt, Avt, NPt, Nt, Ct, etc.) until reaching the overall
business profit function Ψ.

Finally, graph components have been hooked to several
metrics to report their evolution in time. MATLAB has been
used as a graph plotter because of the significant large size of
the generated graph files.

XI. SIMULATION RESULTS

In order to validate the policy based implementation of the
generic SP SLS solution and, more importantly, to test the
performance of each of the impact minimization scheduling
algorithms (HFPF, FTDF, and FTVF) against the basic FCFS
and RND, we generated an acceptable number of different
simulation instances and analyzed their outputs.

We conducted a number of 330 simulations grouped into
batches of five for the five scheduling algorithms (RND, FCFS,
HFPF, FTDF, and FTVF), making a total 66 batches. We used
three Windows machines (Intel Pentium-4, 1.6GHz), two Sun
OS machines (SUNW-Ultra-4, 300MHz), and two Solaris 8
machines (Sun Ultra 60, 450 MHz). The simulations run in
a total cpu time of ∼245 days with a median runtime per
simulation of 12.11 hours.

The simulations were selected from a spectrum of 960 in-
puts generated by varying a subset of the SP SLS parameters
through ranges of values. Although we selected our use case
to be as simple as possible, we still had to deal with more than
two dozen parameters for each simulation. These included the
simulation life time (three and six months were used), time
granularity (one time unit was used to equal one second), TPQ
scheduling algorithm (RND, FCFS, HFPF, FTDF, FTVF),
number of SLA types (with each type determined by tuple

Fig. 2. SP testbed over PS .

(cpmax, a, rt, rt.ref , avmin, avw, λ, μ, su(rt), penalties
{r1, r2, r3}, tha, thr and availability probe interval)), number
of instances of each SLA type, and server pool capacity.

Compared to how simple the SP SLA is, this study gives
a practical example of how complex testing and optimizing a
policy based management solution can be.

Figure 3-a summarizes the relative performance of each of
the studied TPQ scheduling algorithms. The performance of an
algorithm is equal to the business profit Ψ it generates. Each
slice gives the percentage of time each algorithm performed
best compared to the other ones. The inner doughnut slices
give the actual number of batches where this happened. As
a first observation, it appears that none of the algorithms
performed best all the time. HFPF performed best 67% of the
time, which is a considerable percentage. Second in the rank
is FTVF with 24% , followed by FTDF and FCFS with 18% ,
and finally RND performing best in 9% of the total number of
conducted simulations. The sum of these percentages is greater
than 100% because there are cases where different algorithms
produced the same highest business profit.

Figure 3-f traces, for all simulations batches, the relative
performance gain of the best Scheduling Algorithm (SA)
compared to FCFS. The gain is computed as:

Max(ΨSA) − ΨSA

|ΨSA|
% (23)

In this figure, a 0% value means an equal performance
with FCFS, which occurs 18% of the time (3-a). The highest
difference was in batch 3 in which HFPF performed best
and produced 1000% better than FCFS. In batch 59 FTVF
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Fig. 3. Performance results of SP simulations over PS .



AIB and BOUTABA: ON LEVERAGING POLICY-BASED MANAGEMENT FOR MAXIMIZING BUSINESS PROFIT 37

generated the best net profit with a value 780% higher than
the one generated by FCFS. The average gain is 119%
with a median value of 34%. It is interesting to note that
graphs similar to 3-a were obtained when comparing the
other scheduling algorithms. For example, in batch 18 FTVF
performs 1800% better than HFPF, and in batch 55 HFPF
performs 1964% times better than FTVF! All these results
are summarized in figures 3-[g-i]. Figure 3-c tells that the
percentage of times only one single SA scored best is 82%
while in 18% of the times only more than one SA scored the
best performance. This shows the importance of collecting
knowledge about which algorithm is expected to perform best
before actually using it.

Another way to compare the performance of each SA is
to track the number of SLAs which failed to continue their
execution due to the occurrence of three successive availability
violations (clause 4-b of the SP SLA). The termination of
an SLA represents a considerable loss as it implies a cut in
customer periodic payments. Figure 3-b gives the percentage
of times an SA has generated the least loss in terms of the
number of dropped SLAs. The service provider can use this
business level metric to decide which SA to use instead of
using the net profit metric.

Interestingly, figures 3-a and 3-b, however different, still
have a strong similarity. An SLA is lost when it experi-
ences three successive availability violations within the same
availability window, i.e one month (listing 1, clause 4-b).
Algorithm FCFS scores the lowest number of dropped SLAs
33% of the time while it achieves best business profit only
21% of the time. RND, HFPF, and FTDF also saw their score
reduced with RND witnessing the highest relative decrease by
going down from 20% to only 9%. Only FTVF generated the
smallest loss in SLAs 21% of the time while it achieved best
profit 24% of the time which represents an increase of 3%.
This property distinguishes FTVF from the other algorithms
and allows us to deduce that when FTVF manages to keep
a higher number of SLAs alive it also manages to keep
the number of experienced violations to the minimum. The
random algorithm RND on the other hand performed worst
in this regard. In all the 11% cases (= 20 − 9) where RND
generated a lowest number of dropped SLAs that is shared
with at least another SA, RND failed to give a better net profit.
This suggests that the random scheduling has to be avoided
whenever possible as it fails to manage the TPQ better than
the other algorithms.

The analysis of the output graphs for the business profit
metric shows that although some algorithms managed to keep
a higher number of SLAs alive they still failed to provide best
net profit because the remaining SLAs experienced recurrent
availability violations causing penalties on the overall business
profit.

Figure 3-d shows that in 65% of the time, i.e. in 43 batches
out of the 66, only one single SA generated the lowest loss
in SLAs. Figure 3-e shows that 71% of this number, i.e.
30 batches, has been scored by HFPF while FTVF scored
a unique lowest SLA loss in only 4 batches. A closer analysis
showed that when an algorithm generates a distinctive low
loss in SLAs it automatically generates a distinctive highest
net profit. This means that the batches related to figure 3-e do

all belong to the |abs max| area of figure 3-c (the 82% pie).
RND and FCFS together performed best 30% of the time.

This result shows that there is still room for better scheduling
algorithms that are yet to be developed. This case was theoreti-
cally predictable as all of HFPF, FTDF, and FTVF make use of
a greedy technique that seeks to maximize the business profit
Ψ by minimizing the local impact on it by individual policy
actions. It is also known that greedy techniques in general have
no assurance as to the generation of global optima. Hence,
the performance of RND and FCFS supports this theoretical
prediction by practical numbers.

Using these two business-level metrics, the SP can decide
which algorithm to use based on whether it gives greater
importance to the mere net profit or rather to keeping the
maximum number of SLAs running. Additional business met-
rics can be taken into consideration, such as the number of
experienced penalties, and the selection process can grow
more complex than the study presented in here.

The results obtained clearly demonstrate the importance
of conducting a simulation before deciding which scheduling
algorithm to use. Given the number of parameters to tune,
even for this simple SLA case, it was computationally in-
feasible to determine beforehand the best parameters which
lead the best business profit. However, given a certain initial
set of SLA types that the SP intends to advertise and a
hardware configuration of the server units pool, it is possible to
conduct extensive simulations to determine which scheduling
algorithm is best and what SLA admission control policy to
use for each SLA type.

XII. RELATED WORK

This work intersects with many related efforts in the area
of business, SLA, and policy based management.

Policy refinement is still a difficult research problem.
Recently, QoS policy refinement, using event calculus and
abduction, has been addressed by Arosha B. et al. in [10]
with a use case for QoS management in differentiated services
networks. The paper stresses the need for application specific
policy refinement patterns and presents a tool that is being
developed for that purpose. The refinement tool is proposed as
an add on to the Ponder policy toolkit [3]. Javier R. et al. [11]
consider a similar use case and apply on it on a generic policy
refinement process that is based on policy hierarchies.

Our work complements these efforts by providing a refine-
ment process which clearly sets the goal and details the SLS
solution. In addition, it provides a proof of correctness of
the SLS as well as an evaluation of its efficiency through
simulation. The static analysis introduces new tests, such as
the oscillation test, which helped detect and correct anomalies
in the output SLS. Moreover, the dynamic analysis represents
a completely new ”post” refinement phase which demonstrated
the difficulty of proving the efficiency of policy based solu-
tions. We have shown how a policy simulation tool can assist
in this regard.

The issue of policy stability has been raised recently in [12].
The paper uses control theory for studying the stability of
feedback regulation on SLA-like policies in bilateral provider
agreements. In the SLS static process, different aspects of
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stability tests are considered: deadlocks, loops, and erratic
behavior. The erratic behavior test aims precisely at detecting
system ”instability”. The work studies specific aspects of
policy stability. We believe that more research effort is still
needed in this area.

On the monitoring loop side, the automated generation
of metrics for SLA monitoring has been addressed in [13]
and [14] for the special case of web service SLAs. In [13],
Alexander K. and Heiko L. stress the need for customer side
monitoring and provides a comprehensive XML based nota-
tion for the specification, but not for the automatic generation,
of composite metrics for web services. In our work we have
shown through a detailed example, but do not develop a full
theory of, how metrics are identified and generated from a
Service Level Specification (SLS) (section V-F).

For the business driven decision making during SLA exe-
cution, Buco [15] discusses a technique, independent of any
PBM solution, to automate and/or assist service personnel to
prioritize the processing of action-demanding quality man-
agement alerts as per provider’s service level management
objective. Our work is similar to this effort in that it also con-
siders the maximization of profit by working on the dynamic
prioritization (scheduling) of policy actions. The difference
our work holds, in addition to targeting policy based solutions,
is that we consider this profit maximization schemes right from
the beginning of the SLA refinement process and all the way
down to the dynamic (runtime) analysis phase.

Policy Management for Autonomic Computing
(PMAC) [16] is a generic middleware platform developed at
IBM to provide software components that can be embedded
in software applications to reduce the cost of writing
applications capable of taking input from a policy based
management system. PMAC uses a policy information model
inspired from the Common Information Model (CIM) [17]. It
supports the system model adopted by the IBM Autonomic
Computing architecture. At the highest level, it provides four
main components: a policy definition tool, a policy editor
storage for policy deployment and persistence, an autonomic
manager for policy evaluation, and a managed resource-side
component for policy enforcement. It is implemented in JAVA
and offers the right balance in the specification of policies
by providing two different policy languages: ACEL which
is based on XML, hence verbose, and SPL which is concise
and human friendly, making it easily editable in a text editor.
In [16] PMAC is used to enhance configuration checking of
storage area networks. However not too much is said about
the implementation details. In the paper a set of static analysis
techniques are proposed: Dominance check, conflict check
(two policies specifying different configuration parameters
for the same component), coverage check, as well as conflict
resolution using dynamic relative priorities. The first three
tests are only defined in generic terms but no mechanism
is actually provided in order to implement them. Relative
priorities between policies can be defined at specification
time using meta policies as shown in other works as well.
At runtime, the policy scheduling algorithms we proposed
allow to set dynamic priorities between triggered policies.
The challenge is how one can set these priorities in advance
and yet maximize business level metrics during system life

time. The scheduling algorithms we have introduced address
precisely this concern.

Finally, the use of policy specification and manage-
ment tools such as Ponder [3], PMAC [16], PDL [4],
CFENGINE [18], and Cauldron [19] is helpful in implement-
ing real scale policy based solutions. In many cases, however,
full scale implementations are costly and policy simulation
tools can provide a valuable alternative. Simulations are help-
ful in evaluating the validity, consistency and efficiency of a
PBM solution prior to its deployment. The PS tool [8] used
to implement the SP use case is to our knowledge the first
policy simulator developed specifically for the evaluation of
policy-based solutions.

XIII. CONCLUSION

This paper presented a new approach for business driven
policy enforcement and its use in application hosting environ-
ments. The refinement process involved an iterative approach
the output of which is a set of metrics and low level QoS
policies structured into roles. The static analysis phase served
in detecting static anomalies (deadlocks, loops, unreachable
states, and erratic behaviors) in the generated SLS as well as
discovering additional constraints important for the runtime
stability of the SLS. In the dynamic analysis phase, we at-
tempted to bridge the gap between low-level management ac-
tions and the high-level business profit of the service provider.
This faced us with the difficult problem of the realtime
prediction of the transient state of a variant of an M/M/Ct/Ct

queue, which we denoted as M/M/Ct/Ct |At|Dt . We solved
this problem through mathematical approximation and used it
to derive the policy scheduling algorithms FTDF and FTVF.
We also proposed a third algorithm named HFPF which uses
runtime SLO states to decide the runtime prioritization of the
triggered policies.

Using PS, the policy simulator tool we developed for the
simulation of policy management solutions, all three algo-
rithms were implemented along with two other default ones
(FCFS and RND). For statistical significance, we ran a consid-
erable number of simulations to benchmark the performance
of these algorithms. The simulations showed interesting results
perhaps the most important of them is that no single algorithm
outperformed the others at all times. This confirms, at least
for the SP use case, the importance of conducting simulations
before choosing a runtime policy management mechanism for
a particular SLA type.

Formal policy based refinement of SLAs as well as the
bridging between high level business goals and low-level man-
agement actions are challenging research issues. We believe
that this work has contributed to both areas. Most importantly,
this work has shown the value, from the service provider
perspective, in considering policy runtime dynamics.
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