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Plexus: A Scalable Peer-to-Peer Protocol
Enabling Efficient Subset Search

Reaz Ahmed and Raouf Boutaba, Senior Member, IEEE

Abstract—Efficient discovery of information, based on partial
knowledge, is a challenging problem faced by many large scale dis-
tributed systems. This paper presents Plexus, a peer-to-peer search
protocol that provides an efficient mechanism for advertising a bit-
sequence (pattern), and discovering it using any subset of its 1-bits.
A pattern (e.g., Bloom filter) summarizes the properties (e.g., key-
words, service description) associated with a shared object (e.g.,
document, service).

Plexus has a partially decentralized architecture involving super-
peers. It adopts a novel structured routing mechanism derived from
the theory of Error Correcting Codes (ECC). Plexus achieves better
resilience to peer failure by utilizing replication and redundant
routing paths. Routing efficiency in Plexus scales logarithmically
with the number of superpeers. The concept presented in this paper
is supported with theoretical analysis, and simulation results ob-
tained from the application of Plexus to partial keyword search
utilizing the extended Golay code.

Index Terms—Bloom filter, distributed pattern matching, error
correcting codes, peer-to-peer search, structured overlay network.

I. INTRODUCTION

G IVEN a list of patterns1 and a search pat-
tern , the subset matching problem is to find all such

that , i.e., 1-bits of is a subset of the 1-bits in .
The Distributed Pattern Matching (DPM) introduced in [4] is
the distributed version of subset matching problem, where the
patterns are distributed across a large number of
networked nodes. State-of-the-art solutions for subset matching
([5], [15]) in centralized environment, hold linear relationship
with the number of patterns to be matched against (i.e., ).
An equivalent solution in a distributed environment will require
flooding the network with search messages.

In large-scale distributed systems, such as, P2P content
sharing, service discovery and P2P XML databases, it is un-
usual for a user to know the exact (complete) information about
an advertisement. Instead, queries are based on partial knowl-
edge about a target advertisement. Search problems in such
distributed systems can be mapped to the DPM problem. Bloom
filters can be used as the advertisement patterns and query
pattern . As depicted in Fig. 1, an advertisement in P2P
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1We consider a pattern to be a bit-sequence of fixed width.

Fig. 1. Partial keyword matching using DPM.

content sharing systems consists of a number of keywords de-
scribing the file being shared. For such systems, advertisement
(or query) Bloom filter can be constructed using trigrams from
advertised (or queried) keywords. Subset relationship between
advertised and queried trigrams will hold for advertisement
and query Bloom filters. For example, in Fig. 1 trigrams for the
first query constitute a subset of the advertised trigrams; as a
result query pattern is a subset of the advertisement pattern

. On the other hand, trigrams from the second query do not
correspond to any subset of the advertised pattern, and with
high probability will not be a subset of .

For P2P database systems, as shown in Fig. 2, XML docu-
ments are used as advertisements and XPath is the most com-
monly used query language. In this case, path prefixes from an
XML document or the XPath expression can be used as the set
elements for Bloom filter construction (see Fig. 2). For most ser-
vice discovery systems a service description is advertised as a
set of attribute value pairs and a query for a service consists of
a subset of the advertised attribute-value pairs. It is evident as
shown in Fig. 2 that an efficient solution to the DPM problem
will enable us to generate satisfactory solutions to the search
problem in these three important application domains.

Existing P2P search techniques are based on either un-
structured hint-based routing or structured Distributed Hash
Table (DHT)-based routing ([31], [33], [36]). Neither of these
two paradigms can provide satisfactory solution to the DPM
problem. Unstructured techniques are not efficient in terms
of the generated volume of search messages; moreover, no
guarantee on search completeness is provided. Structured tech-
niques, on the other hand, strive to build an additional layer on
top of a DHT protocol for supporting partial-prefix matching.
DHT-mechanisms cluster keys based on numeric distance. But,
for efficient subset matching, keys should be clustered based
on Hamming distance.2 As a result, these solutions generate

2Hamming distance between patterns� and � (of same length) is calculated
as ����� � � �� � � � � no. of bits on which they disagree.
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Fig. 2. Possible applications for Distributed Pattern Matching (DPM).

several independent DHT-lookups, each followed by local
flooding, for resolving a single query.

We have identified the DPM problem and have proposed a
hierarchical architecture, utilizing semi-structured [6] search
in [4]. The contribution of this paper is a novel structured [6]
routing mechanism for distributed subset search, named Plexus,
based on the theory of Error Correcting Codes (ECC). The
novelty of the proposed approach lies in the use of Hamming
distance based routing, in contrast to the numeric distance based
routing adopted in traditional DHT-approaches. This property
makes subset matching capability intrinsic to the underlying
routing mechanism. Plexus uses patterns (like Bloom filters
[9]) to summarize the identifying properties associated with a
shared object. The number of routing hops and the number of
links maintained by each indexing peer scales logarithmically
with the number of peers. Plexus attains better resilience to
peer failure using replication and redundant routing paths. The
concept presented in this paper is supported with theoretical
analysis, and simulation results obtained from the application
of Plexus to partial keyword search utilizing the extended
Golay code [22].

The rest of this paper is organized as follows. Section II
compares Plexus with related work. Preliminaries on coding
theory and Bloom filter are presented in Section III. Section IV
explains the theoretical model of Plexus, while Section V
presents the overlay topology construction and maintenance
protocols. Simulation results, supporting our claims, are pre-
sented in Section VI. In Section VII we present a comparative
performance evaluation of Plexus with possible alternatives.
Finally, we conclude and outline our future research goals in
Section VIII.

II. RELATED WORK

Subset matching in distributed environments has been ad-
dressed in [4]. That work presented the Distributed Pattern
Matching System (DPMS). DPMS organizes indexing peers
in a lattice-like hierarchy and uses restricted flooding (within

peers) at the topmost level. DPMS uses Bloom filters
as meta-information for routing, and relies on replication for
fault-resilience. DPMS uses a don’t care based aggregation
scheme to reduce the volume of indexed information. DPMS
requires additional hops for finding each
match, after a group of peers at the topmost level
has been flooded. On the contrary, Plexus can discover all the
matches by searching a limited number of superpeers.

Several research activities (including [8], [20], [26], [35],
[38]) add a layer on top of DHT to support keyword search.
Squid [35] adopts space-filling-curves to map similar keywords
to numerically close keys, and uses Chord [36] for routing.
It supports partial prefix matching queries (e.g., ). In
contrast, Plexus supports true partial matching for queries like

. pSearch [38] aims to support full-text search. It uses
Information Retrieval techniques, like vector space model and
latent semantic indexing, on top of CAN [33]. Queries and
data are represented by term vectors. Searches are performed
in multidimensional Cartesian space. In that technique search
performance degrades with the increase in dimensionality. In
[20], a content is described as a set of attribute-value (AV)
pairs. Each AV-pair is hashed and indexed individually with
the underlying DHT-system. Though the system can search a
content in one DHT-lookup using any subset of the advertised
AV-pairs, advertisement overhead is very high, rendering the
approach unsuitable for large networks of transient peers.
MKey [26] uses Chord and offers restricted subset matching by
advertising and searching specially chosen subsets of advertised
keys and search keys, respectively.

Unstructured systems (flooding [1] and random walk [30])
can support partial keyword search, though the generated
volume of query traffic does not scale with network size. Many
research activities are aimed toward improving the routing
performance of unstructured P2P systems by adopting routing
hints. In [39] and [41], peers learn from the results of previous
routing decisions, and bias future query routing based on this
knowledge. In [12], routing is biased by peer capacity; queries
are routed to peers of higher capacity with a higher probability.
In [14], peers are organized according to common interests,
and restricted flooding is performed in different interest groups.
In [12], [29] and [41], peers store index information from
other peers within a neighborhood radius of 2 or 3 hops. These
techniques reduce the query traffic volume to some extent, but
do not provide any guarantee on search completeness or any
bound on the volume of query/advertisement traffic.

Secure Service Discovery Service (SSDS) [17] and Twine [7],
target Internet-scale service discovery and face the challenge of
achieving efficiency and scalability in locating service descrip-
tions based on partial information. SSDS relies on hierarchal in-
dexing and uses Bloom filters for representing service descrip-
tions. SSDS suffers from a load-balancing problem and is vul-
nerable to the failure of higher level directory entities along the
index hierarchy. Twine [7], on the other hand, uses a hierarchical
naming scheme and relies on Chord as the underlying routing
mechanism. Twine generates a set of substrings from the adver-
tisement or query, computes keys for each substring, and uses
these keys for DHT-lookups. Thus, the number of DHT-lookups
increases with the number of attribute-value pairs in a name.
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Several research works on P2P databases have adopted
DHT-based structured P2P techniques, such as Chord [36],
CAN [33] and Hypercubes [34], for routing. A number of
these proposals, including [10], [11] and [19], rely on Chord
as the underlying P2P substrate. On the other hand, hint-based
(unstructured) routing is adopted by several research works
including [18], [28] and [32].

Plexus can be used to solve the generic problem of subset
search in distributed environments without compromising scal-
ability and efficiency requirements. In particular, it can help in
reducing search traffic, resulting from multiple DHT-lookups,
as in [7], [35], and the lack of scalability displayed by hint-based
unstructured systems such as [1], [14] and [29].

III. PRELIMINARIES

A. Linear Covering Codes

Let define the linear space of all -tuples (or vectors) over
the finite field . A linear binary code of length is
a subspace . Each element in is called a codeword.
A linear covering code is specified by using four parameters

. Here, is the dimension of the code. is the min-
imum Hamming distance between any two codewords and is
the length of each codeword in bits. The covering radius is the
smallest integer such that every vector is covered by at
least one . Here, is
the Hamming sphere of radius centered at codeword .

Since the set of codewords in is a subspace of , the XOR
of any two codewords, and , is also a codeword, i.e.,

. This property allows the entire code to be
represented in terms of a minimal set of codewords, known as
a basis, containing exactly codewords. These codewords,

, are collated in the rows of a matrix known
as the generator matrix, , for code . The codewords of
can be generated by XORing any number of rows3 of . The
generator matrix for any linear code can be expressed as,

(1)

where, is the identity matrix, and is a
matrix. The dual code of linear code is defined as,

Here, represents vector dot product over . A linear
code is said to be self-dual, if . For any codeword of
a self-dual linear code , , where represents
the bit-wise complement of .

B. Extended Golay Code

The extended Golay code, , is a (24, 12, 8)4 self-dual
linear binary code. It has codewords of length
24-bits each. The minimum distance between any two
codewords is 8. The weight4 distribution of this code is

. Exactly 759 codewords have weight

3Note that � � .
4The number of 1-bits in a pattern (say � ) is known as its weight �� �� ��.

Fig. 3. Relationships among the orbits of the vectors in w.r.t. to the code-
words in � . Circled orbits correspond to the codewords of � .

8 (known as special octads), 2576 codewords have weight 12
(known as umbral dodecads), and 759 codewords have weight
16 (called 16-sets).

Any vector in can be categorized into 49 orbits w.r.t.
(see [16, Fig. 1]). These orbits are denoted as ,

, , and , where
the subscript denotes the weight of the vectors in that orbit.
All vectors in a given orbit exhibit identical distance properties
from the codewords in . Fig. 3 (a portion of Fig. 1 in [16])
depicts some of these orbits. An edge between orbits and
indicates that a vector in orbit can be obtained from some
vector in orbit (and vice versa) by complementing a single
bit. The minimal Hamming distance of a vector in orbit from
some vector in orbit is essentially the length of the shortest
path from node to node in the graph of Fig. 3. Orbits ,

and correspond to the special octads, umbral dodecads
and 16-sets, respectively.

C. Bloom Filters

A Bloom filter [9] is a compact data-structure used to repre-
sent a set. However, the set membership test operation may re-
sult into false (erroneously) positives with a small probability.
An -bit array is used to represent a Bloom filter. different
hash functions need also to be defined. In an empty Bloom filter
all the bits are set to zero. To insert an element in a Bloom filter,
it is hashed with the hash functions to obtain positions in
the bit-array and corresponding bits are set to 1. The member-
ship test process is similar to the insert process. The element,
say , to be tested for set membership, is hashed with the same

hash functions and corresponding positions in the bit-array
are checked. If any of these bits is not 1 then is definitely
not a member of the set represented by this Bloom filter. On
the other hand, if all of the bits equal to 1, then there is a
high probability that is a member of the set. The false-pos-
itive probability for a Bloom filter, representing an -element
set, is calculated as ; is minimized
when . For example, with and ,

. For a well designed Bloom filter about 33 50% of
the bits are equal to 1.
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Fig. 4. Bound on ������.

IV. THEORETICAL MODEL OF PLEXUS

A. Core Concept

The originality of this work lies in the use of Hamming dis-
tance based clustering of pattern-space, as opposed to numeric
distance utilized by DHT-techniques. For a code ,
a codeword represents all the patterns in . Each
peer is assigned one (or more, as explained later) codeword
and becomes responsible for all the patterns within its Hamming
sphere . The basic concept is to map a query to a set
of codewords and to map an advertised pattern
to another set of codewords , such that and

has at least one codeword in common whenever the 1-bits
of constitute a subset of the 1-bits in . Mathematically,

(2)

Now the challenge is to compute and , and to de-
vise a mechanism for routing within the overlay. Coding theory
literature does not provide any straight forward way to calcu-
late and , satisfying (2). We present the algorithm
for computing and in Section IV-B, and the routing
algorithm is presented in Section IV-C.

B. Computing and

This section presents the algorithms for computing and
. Given a code , a trivial way of computing and is

to use list decoding; i.e.,

for positive integers and . Now we want to compute the min-
imum without violating (2). If the covering radius of
is then the Hamming sphere of radius around any arbitrary
point should contain at least one codeword. Hence, according to
Fig. 4

(3)

In other words, if we advertise to all the codewords in
and search all the codewords in then any

subset of within distance can be
discovered.

We define query stretch as the maximum value of
without violating (2). and are proportional to query

TABLE I
DISTANCE DISTRIBUTION OF ORBITS FROM OCTADS AND DODECADS

stretch. In practice we can achieve higher query stretch than (3)
while keeping and within reasonable limits. In the rest of
this section we describe a method for obtaining and
for , with a query stretch of 11, which will allow maximum

to be 14-bits and minimum to be 3-bits.
As explained in Section III-B, any pattern of length 24

belongs to one of the 49 orbits w.r.t. . Any vector in a given
orbit has the same distance properties as listed in Table I. In this
table, the construct stands for distance and number
of codewords at distance . For vectors in a given orbit,
we have listed only the number of octads and dodecads within
distance 5 and 6, respectively.

Number of 1-bits in a query or advertisement is restricted to
the range of 3 to 14. The reason behind this restriction can be
justified by observing the following property of Bloom filter.
As discussed in Section III-C, 33 50% bits of a well-designed
Bloom filter are 1. Therefore, for a 24-bit chunk from a Bloom-
filter 8 12 bits are expected to be 1. Queries having fewer than
three 1-bits are too generic, and are likely to match a large
number of advertisements. Due to this restriction, we only need
to consider the octads and dodecads in and calculation.

Pseudocodes for finding and are presented in Algo-
rithm 1 and Algorithm 2, respectively, in light of the preceding
discussion. The algorithm for finding starts with finding
the set of the octads and dodecads that are within distance
5 and 6, respectively, from the query pattern . If contains
fewer than codewords, then it is appended with the codewords
that are reachable in one hop from the current members of and
are within distance 7 (if is odd) or 8 (if is even) from .

5 is inversely proportional to , which in turn is
proportional to . Hence, can be tuned to achieve a desirable
ratio of search and advertisement traffic. For our experiments,

is used. A lower value of can be used if the antic-
ipated number of queries is much higher than the number of
advertisements.

The algorithm for finding has two stages. The first stage
(lines 4–9) is to find set of s that will be searched by all
possible matching the advertised pattern . Now the problem

5���� is the expected or average value of variable � .
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is to find a small (preferably minimum) set of codewords such
that contains at least one element from each set in . This is
essentially the minimum hitting set problem, which in turn, is
equivalent to the minimum set cover problem. To find , we
have applied the greedy algorithm (line 10–14) based on [13].

Time complexity of computing is dominated by the
loop in lines 5–8, where we compute . The upper bound for
size of is . For and smaller codes
we can compute in reasonable time. However for larger
codes the time complexity will be an obstacle for the implemen-
tation. This is one of the main reasons behind selecting for
the implementation. With the ongoing research on list decoding
techniques we can hope to see efficient algorithms for dealing
with larger codes.

C. Routing

In this section, we first explain the mechanism for routing a
message originating at peer to a single target peer . Then
we provide an algorithm for multicasting a message to multiple
destinations. By “peer ” we mean a peer responsible for code-
word . In this section, a peer is assumed to be associated with
a single codeword. Section V-B presents a method for assigning
multiple codewords to a peer.

Consider a linear code with generator ma-
trix . To route using this code, peer

has to maintain links to superpeers with IDs
, computed as follows:

(4)

Theorem 1: Suppose we are using a linear code
and each superpeer is maintaining routing links as spec-
ified in (4). In such an overlay, it is possible to route a query from
any source to any destination codeword in less than or equal to

routing hops.
Proof: According to the definition of linear codes, ,

the rows of (i.e., ) form a basis for the subspace
, and is closed under XOR operation. This implies, for any

permutation of ,

(5)

for , i.e., distinct codewords of can be generated
by XORing any combination of rows of with .

Suppose peer (source) wants to route a message to peer
(target) (see (5)). Now, can route the message to any of

in one hop by using its routing links (see (4)).
Suppose routes to . will evaluate as

. Note that is one hop closer to
than . can route the message to any of ,

peers in one hop. In this way, the query can
be routed from to in exactly -hops.

If , then our claim is justified. Now let .
For this case, we can write

, according to the definitions of and in (4) and (5),
respectively. Now using the th link, can route the
message to in one hop, and can route the message
to in hops. Hence, for we will need at
most hops.

Given the above described routing protocol, peer will need
a way to find the rows of , satisfying (5), in order to route a
message to peer . To deal with this problem, the standard form
of the generator matrix, is used in conjunction with
the following theorem.

Theorem 2: Suppose peer wants to route to peer and
needs to find the ’s satisfying (5). If is in standard
form, then the first -bits of have 1-bits in exactly

positions.
Proof: Let . By using the definition of in (5),

we get . Since is in the standard form,
only the th row of (i.e., ) has a 1-bit in th bit position
for any . Therefore, row has to be present
in the linear combination of the rows of producing .

In Plexus, replication is employed to mitigate the perfor-
mance problem arising from the failure of superpeers. The
information indexed at peer is replicated at peer . The
choice of as the replica for can be justified as fol-
lows. It can be proved that if is in standard form then

. Thus,
paths from to and to are disjoint. This increases
fault-resilience and influences uniform distribution of query
traffic, especially in cases where peer is holding a popular
index.
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As depicted in Fig. 6 (step 5), the routing algorithm will al-
ways be subjected to a set of target peers instead of just one
peer. A significant portion of routing hops can be reduced by
utilizing the shared common paths to different targets as we will
show later in Section VI-E. Algorithm 3 presents a pseudocode
for multicasting a message from source peer to a set of des-
tination peers .

The pseudocode presented in Algorithm 3 is a simplified ver-
sion of the routing algorithm used in our simulator. It should be
noted that the parameter contains a field named ,
which is incremented at each hop. The routing of a message is
suspended, if reaches a value of . Suppose,
peer has failed, and a query targeted towards reaches one
of its neighbors . can route the query to in
two hops as , and is one hop away from . The
maximum length of a path between any two peers is . Hence,
in the presence of failures, a maximum of hops will
be required to reach any peer or its replica.

V. ARCHITECTURE OF PLEXUS

A. Topology

In Plexus architecture (see Fig. 5) a peer is classified as either
superpeer or leaf-peer, similar to the two-tier modern Gnutella
architecture. Superpeers have longer uptime and higher ca-
pacity (in terms of bandwidth and storage) than leaf-peers.
Many leaf-peers connect to a superpeer for advertising content
index. Based on the composition of current two-tier Gnutella
network, we assume that less than 25% of the participating
peers will act as superpeers. We apply Plexus routing mecha-
nism within superpeer tier to efficiently locate a content based
on partial information about that content. Each superpeer is
assigned one or more codeword(s).

Fig. 5. Architectural overview of Plexus.

Fig. 6. Search/advertisement process in Plexus.

Superpeers are organized into groups called subnets. Super-
peers within a subnet share same codeword space and partici-
pate in message routing as explained in Section IV-C. Due to
the complexity of computing we have to use small codes
(e.g., ). This restricts the number of super-
peers to a few thousands. But we need about 100 200-bits in a
bloom filter to encode about 20 30 properties (e.g., trigrams or
attribute-value pairs) associated with a shared object. According
to [37], the modern two-tier Gnutella network contains around
a million peers of which 18% are superpeers. Based on these
limitations and requirements, the suggested number of subnets
is 6 10. The exact number of subnets in a system is statically
defined at the time of deployment and can be computed using
the maximum expected size of the superpeer network and the
size of the Error-Correcting-Code in use.

Fig. 6 presents the search/advertisement process in Plexus.
Step 1 and step 2 are specific to the application under consid-
eration, e.g., keyword search, service discovery etc. The input
to Plexus is a -bit pattern (in this example, a Bloom
filter), representing an advertisement (or a query). Here, is the
number of subnets in the system and as we have used

. In step 3 the input pattern is segregated into chunks (
for advertisement or for query), each bits long. In step 4 an

-bit chunk is mapped to a set of codewords (i.e., or
) and forwarded to any superpeer in subnet . Finally in

step 5, the superpeer routes the message in
hops to the target superpeers in within subnet . Thus, each
subnet uses different parts (bits) from an advertised or queried
pattern and routes independently. The process of mapping pat-
terns to codewords (Step 4) is presented in Section IV-B and
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the routing mechanism within a subnet (Step 5) is presented in
Section IV-C.

Instead of propagating an advertisement (or a query) to all the
-subnets, we adopted the Voting algorithm [21]. In particular,

an advertisement is propagated to subnets, and a
query message is propagated to subnets. This en-
sures that there exists at least one subnet receiving an advertise-
ment, and any query matching that advertisement. The result of
a query is computed as the union of the results obtained from
each of the subnets. is selected for adver-
tisement (or query ) if the weight of the chunk i.e.,
(or ) is within the query stretch as explained in Section IV-B.

Step 1 and step 2 in Fig. 6 are always executed by a leaf-peer.
Step 3 and step 4 can be executed either by a leaf-peer or by
a superpeer. We prefer the leaf-peers to calculate the and

, since these operations are CPU intensive. The leaf-peer
can then submit the message, containing the list of target code-
words, to any known superpeer. It is the responsibility of a su-
perpeer to maintain extra links (marked as inter-subnet links in
Fig. 6) to randomly selected superpeers outside its own subnet,
and forward a message to appropriate subnets. The number of
inter-subnet links has no impact on Plexus routing and is imple-
mentation dependent. For our implementation we have assumed
that a superpeer in subnet would maintain a link to a randomly
selected superpeer in subnet . In the rest of this
paper we will use the terms peer and superpeer interchangeably.

B. Mapping Codewords to Superpeers

So far we assumed that a superpeer is responsible for a unique
codeword, which is not a practical assumption. In this section,
we present a way of partitioning the codeword space, and dy-
namically assigning multiple codewords to a superpeer.

An linear code has information bits and
parity check (or redundant) bits. The information bits corre-
spond to the identity matrix part of the generator matrix

, and uniquely identifies each of the codewords present in
(consider in (5)). The codewords can be partitioned

using a logical binary partitioning tree with height at most . At
th level of the tree, partitioning takes place based on the pres-

ence (or absence) of (the th row of ) in a codeword. Fig. 7
presents an example. Each superpeer is assigned a leaf node in
this tree and takes responsibility for all the codewords having
that particular combination of s. The routing table entries at
each superpeer are set to point to the appropriate superpeer re-
sponsible for the corresponding codeword. Fig. 7 illustrates the
routing table entries for superpeer with
an equivalent prefix of . Here indicates the absence
of the row i.e., .

In order to incorporate the concept of partitioning codeword
space in Algorithm 3, the comparison, , in line 4 should
be replaced with , where represents the set of code-
words managed by peer .

C. The Join Process

In this section we present the protocol that a superpeer has to
follow to join a Plexus network. The first superpeer in the system
begins with a random codeword, and all entries in its routing

Fig. 7. Logical binary partitioning tree for assigning codewords to superpeers.
The routing table entries for peer � are also presented.

table point to itself. A new superpeer joins the system by taking
over a part of the codeword space from an existing peer, say .
Assume that the string representation of

and the prefix in peer has terms. Here, is
or , based on the presence or absence of the th row in the
formation of , respectively. Peer extends its prefix by one
term and takes responsibility of all the codewords starting with
prefix . The joining peer chooses a codeword,
say , conforming to prefix and by selecting
a random combination for the rest of the rows from

.
Routing table entries in peer remain unchanged. Peer has

to construct its routing table using the routing information from
peer . During this process, two situations can arise. First, the
length of the prefix for peer can be greater than . In this case,

has to lookup and contact the peer responsible for codeword
. Peer requires at most 2 hops (see Theorem.

3) to reach peer via peer . For the second case, the length
of the prefix for peer is less than or equal to . In this case,
peer sets and sends a join message to peer . Peer

handles a join message by updating its routing table entry
for link with the address of peer or peer
depending on the presence of in .

Theorem 3: If with prefix bits
is split to and
then all neighbors of and will be within 2 hops of .

Proof: Let, denotes the first bits of . Then
and differ in exactly one bit. Again

and differ from by at most 1 bit.
Thus, and will differ from by at
most two bits, i.e., at most 2 hops away.

To reduce the possibility of unbalanced partitioning of the
codeword space, a joining peer should crawl the neighborhood
of the seed peer, until a local minima is reached, and join the
minima. By minima we refer to a peer having a prefix of length
equal to or less than that of any of its neighbors. Since the max-
imum height of the binary tree (see Fig. 7) is and the crawling
process is greedy (i.e., height of current minima is reduced by
one at each hop) it would take at most hops to find a local
minima. Since we are using the crawl mechanism for each join
operation, the maximum height difference between any two su-
perpeers is much smaller than . In our experiments with Golay
code we found that it takes around 3.4 hops on average
to find a local minima.
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A peer usually joins the subnet of the seed peer. Alternatively,
the joining peer can use the inter-subnet link(s) of the seed peer
if the subnet of the seed is saturated, which is a very unlikely
case for a well-designed system.

D. Handling Peer Failure

The failure of a peer (say ) does not hamper the routing
process as long as its replica is alive. This way temporary
failures (or disconnections) of superpeers are automatically han-
dled. Measures adopted in Plexus to deal with permanent (long
term) failures are discussed below.

Failure of peer will be detected by one of its neighbors, say
. To avoid unbalanced partitioning of the codeword space,

should crawl its neighborhood until a maxima, say , is reached.
By maxima, we refer to a peer having a prefix of length equal to
or greater than that of any of its neighbors. Clearly, if has

terms in its prefix, then will be a neighbor
of having a prefix of length . will reassign its portion of
codewords to ; replace itself with from the routing tables
of all of its neighbors; and finally rejoin the system as .
has to reduce its prefix string by one, in order to accommodate
the changes. In case has also failed then should start the
recovery for first.

A leaf-peer connects to a superpeer for publishing the meta-
information about its shared content. A superpeer uses expiry-
time based soft-state registration mechanism for tracking the
failure of a leaf-peer, and explicitly removes (i.e., hard-state)
the patterns, advertised by a failed leaf-peer from the superpeer
network. This hybrid technique can handle churn problem in
leaf-peers and reduces traffic due to periodic re-advertisement
in the superpeer network.

E. Analysis

In this section, we estimate the expected number of visited
superpeers during an advertisement or a search process. Let
be the number of subnets present in the system. Assume that
an linear code is used. Let and be the av-
erage size of and , respectively. and stand,
respectively, for the fraction of routing hops reduced due to the
presence of multicasting during search and advertisement. If
is the total number of superpeers in the system, then the number
of superpeers in a subnet is . Now, according to The-
orem 1 it will require at most hops to
route a message within a subnet. Consequently, considering the
use of the Voting algorithm as explained earlier, the expected
number of hops required for routing an advertisement is com-
puted to be

(6)

Similarly, the expected number of routing hops for routing a
search message can be computed as

(7)

For estimating we can adopt the extension of Johnson
bound proposed by V. Guruswami and M. Sudan (Theorem 1
in [23]) as follows. Assume a binary code . Let

and be constants such that ,
and , then it can be derived from

Theorem 1 in [23] that

(8)

Estimating as computed in Algorithm 2 is not a straight
forward process. Rather we can compute an upper bound. Let
be the set of all subsets of an arbitrary pattern such that,

, where is the minimum allowed weight of a query pat-
tern. We compute to be a subset of the codewords required
to cover , with a covering radius greater than the error cor-
recting radius, say , of the code. Hence, the
number of codewords required to cover with error correcting
radius will be an upper bound for .

Let and for some codeword .
Evidently, . We define query stretch to be the
difference between and the minimum weight of a query that
we want to be discovered, i.e., . Now we can
construct a query from by taking bits from the 1-bits of

(where has 1-bits) and bits from the 1-bits of (where
has 0-bits) in ways. Trivially, and

, where . In order for to be
in , and . Thus, the total number of
elements in covered by can be computed as

We can compute . Hence, the upper
bound on can be computed as

(9)

For the experiments presented in this work we have used the
extended Golay code and have set the minimum query weight

and the maximum advertisement weight . With
this wide query stretch we obtained the average value of and

as 21.08 and 17.53 respectively for the dataset used in our
experiments. Our experiments with Golay code reveal that the
value of and is proportional to and , respectively.
For the average sizes of and , and are reported to
be 0.78 and 0.85, respectively (see Fig. 12).

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of Plexus pro-
tocol on three aspects of a music-sharing P2P system: routing
efficiency, search completeness and fault-resilience.

A. Simulation Setup

We have simulated a growing network, where the overlay is
gradually grown from an initial set of few superpeers. The sim-
ulator goes through a growing phase and a steady-state phase to
achieve different network sizes. During the growing phase, ar-
rival rate is higher than departure rate (up to five times). Once
a target population size is reached the simulator turns to the
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Fig. 8. Fitness of patterns for advertisement.

steady state phase. While in steady state, arrival rate is approxi-
mately equal to departure rate and the network size does not vary
much over time. During this period, advertisements and queries
are performed and performance metrics like routing efficiency,
search completeness, etc., are measured.

As explained in Fig. 6, problems that can be mapped to dis-
tributed subset matching can be solved with Plexus. For this ex-
periment we have applied Plexus to partial keyword search in
music-sharing P2P system. The music information used in this
simulation is based on the online database of more than 200 000
songs information available at http://www.leoslyrics.com/. For
a pair, we constructed a Bloom-filter of
length -bits. Here, is the number of subnets in the
network. A Bloom filter represents the set of trigrams extracted
from a pair. We have experimented with
three values of : 5, 7, and 9; since is dependent on , the
percentage of 1-bits in a pattern will vary if a fixed value for
(number of hash functions) is used. To find the proper value of

we constructed Bloom filters for different values of and .
For each Bloom filter we constructed 24-bit chunks and tested
for fitness. A chunk is considered to be fit for advertisement if
it contains 6 14 1-bits (see Section IV-B), and a -bit pat-
tern (i.e., Bloom filter) is considered to be fit for advertisement
if it contains at least fit chunks. Fig. 8 plots the per-
centage of fit (or good) patterns as a function of the percentage
of 1-bits. It also depicts the percentage of overflow patterns (ma-
jority of the chunks having more than 14-bits) and underflow
patterns (majority of the chunks having less than 6-bits). Based
on the peak values in the curve we have used , 4 and 5 for

, 7 and 9, respectively. It should be noted that the possi-
bility of false positives due to the use of Bloom filters will not
degrade correctness of search result. It will only increase routing
traffic to some extent as some superpeers, not containing any
match, may be visited by the search. This effect is incorporated
in the measured search traffic of the system.

B. Impact of Query Content on Search Completeness

Search completeness is measured as the percentage of adver-
tised patterns (matching the query pattern) that were discovered
by the search. A query is formed as a Bloom filter consisting of

of trigrams (randomly chosen) from a
pair. Fig. 9(a) presents search completeness as a function of ,
which is varied from 5%–50% in 5% steps on networks of about
20 000 superpeers. For each step we performed 5000 queries.

Fig. 9. Effect of information content of a query on search completeness.
(a) Search completeness. (b) Impact on routing.

The number of 24-bit chunks having at least three 1-bits de-
creases as lower percentages of trigrams are taken from the
original advertisement. Hence, read quorum for the Voting al-
gorithm could not be met for lower values of . This can also
be observed from Fig. 9(b), which is a plot of the percentage
of visited peers against . The sharp rise in the percentage of
visited peers in Fig. 9(b) justifies the increase in search com-
pleteness around in Fig. 9(a). It should also be noted
that the percentage of visited peers is higher for higher values
of , because, the number of subnets to be searched is propor-
tional to . A completeness level of around 97% is achieved for

. Only 2% increase in search completeness is achiev-
able for , though at the expense of a higher percentage
of visited peers. Therefore, we have used in the sub-
sequent experiments. However, there is no requirement that a
query has to be formed using 33% trigrams from an advertise-
ment. If lower than 33% trigrams are used then this will yield
lower level of search completeness at the cost of lesser search
traffic.

C. Scalability and Routing Efficiency

The impact of network size on routing efficiency and distribu-
tion of indexing load are considered in this section. Fig. 10(a)
and (b) plot the average percentage of visited superpeers per
search and advertisement, respectively, against the logarithm of
the total number of superpeers in the network. The linear de-
crease in the curves confirms our assertion in Theorem 1, i.e.,
number of visited peers per search and advertisement holds log-
arithmic relation with the total number of peers in the system.
It should also be noted that the percentage of visited peers in-
creases with the increase in the number of subnets (i.e., ). For
networks with fixed size (say ) and varying (say and

), ratio of the percentage of visited peers can be calculated
as (for
small and , see (7)), i.e., . Similar results are ob-
tained for advertisement traffic, as presented in Fig. 10(b).

Fig. 10(c) presents the percentage of visited peers for
join operation as a function of network size. As discussed
in Section V-C and reflected in Fig. 10(c), the join process
updates links only within a subnet and is thus independent of
the number of subnets in the system. A join operation may
require at most links (for this experiment 12 as
has been used) to be established. This justifies the decrease of
the curves against the logarithm of network size.
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Fig. 10. Routing efficiency and scalability with network size. (a) Routing efficiency (search); (b) routing efficiency (advertisement); (c) join overhead; (d) load
distribution. average, 1st and 99th percentiles.

Fig. 11. Fault resilience. (a) Search completeness. (b) Query routing traffic.

Fig. 10(d) presents the distribution of advertised patterns over
the network. Average number of keys per pattern as well as 1st
and 99th percentiles are presented. The skew in indexing load
is higher for smaller networks and reduces gradually as the net-
work size increases. Note that the average values of % key per
peer in Fig. 10(d) are very close to the expected values
( is the network size) and the 99th-percentiles are within rea-
sonable limit.

D. Fault Tolerance

In this section, we analyze the robustness of Plexus in pres-
ence of simultaneous failures of a large number of superpeers.
We start with a steady-state network of about 20,000 superpeers
and cause each peer to fail with probability . After the fail-
ures have occurred we perform 5000 queries and measure search
completeness [Fig. 11(a)] and the percentage of visited super-
peers per query [Fig. 11(b)]. There were no rearrangement in
topology to redistribute the responsibility of failed peers to an
existing peer. Only the immediate neighbors of a failed peer
have the knowledge of the failure. This setup suppresses the
effect of recovery mechanism and allows us to observe the ef-
fectiveness of replication and multi-path routing in presence of
simultaneous peer-failure.

The number of replicas of an advertised pattern is propor-
tional to , thus much better search completeness is achieved
for higher values of . Failure of a peer can not be detected until
reaching a neighbor of the failed peer. The percentage of vis-
ited peers increases as many hops are wasted in trying to reach a
failed peer and its replica, which may also have failed. However,
the good thing is that in such cases two extra hops are required
to reach the replica, as discussed in Section IV-C.

Fig. 12. Effectiveness of simultaneous routing to multiple targets: reduction in
routing hops as a function of the number of targets.

It can be observed from Fig. 11(a) that search completeness is
almost identical regardless of the percentage of failed peers (up
to 50%). It should be noted that the query patterns where formed
using 33% of the trigrams from existing patterns only; lost pat-
terns due to the failure of a superpeer where not considered. The
high levels of search completeness indicate that the superpeers
remain reachable even in the presence of a large number of fail-
ures. This is possible because of the existence of multiple paths
connecting any two superpeers within a subnet. However, this
resilience to failure comes at an expense of increased routing
overhead as observed in Fig. 11(b).

E. Effectiveness of Multicast-Routing

Network distance of the codewords in and have
significant impact on routing efficiency. The routing algorithm
described in Section IV-C routes a message to multiple targets
simultaneously. This design choice saves a portion of the
routing hops that might have occurred if we had used pairwise
routing. Fig. 12 shows the reduction in routing hops
calculated as

The reduction in routing hops takes place within a subnet and
hence does not depend on the number of subnets present in the
system. The bar chart in Fig. 12 displays the average for
groups of 5 targets, i.e., 6–10, 11–15, etc. The denominator for

equation has been calculated as: ,
where is the source peer, returns the -bits of a code-
word corresponding to the part of , and is the set of
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TABLE II
SIMULATION PARAMETERS FOR COMPARATIVE EVALUATION

target peers calculated as or (see Fig. 6). By ob-
serving the high values of , it can be inferred that the code-
words close in Hamming distance are assigned to the superpeers
in close vicinity within the overlay.

VII. COMPARATIVE EVALUATION

In Section VI we presented experimental results for assessing
performance of Plexus. In this section we will compare the per-
formance of Plexus w.r.t. other P2P search techniques. These
techniques can be broadly classified into three categories:

1) Unstructured techniques do not build any index and use
uninformed search, like flooding and random walk.

2) Semi-structured techniques build index information but
do not place any restriction on index placement. Indexed
information contains hints on possible location of the con-
tent. Freenet and DPMS fall into this category.

3) Structured techniques rely on some index placement rule
that allows one to pinpoint the peer(s) responsible for a
given index. Each peer knows the exact location of the
contents it has indexed. Examples in this category include
DHT techniques (e.g., Chord [36], CAN [33], Kademlia
[31], etc.), Plexus and Skipnet [25].

The DPM problem can be solved using unstructured and
semi-structured techniques. Plexus, on the other hand, is the
only known structured technique that can solve the DPM
problem. Thus, it is not possible to compare Plexus with other
structured techniques if we try to solve the DPM problem.
Instead, we have compared the performance of different search
techniques w.r.t. an application of the DPM problem; here
partial keyword matching.

The search techniques used for comparison are flooding,
random-walk, DPMS and Chord. Table II describes the system
specific parameters for each of these search techniques and the
values used in the experiment.

Unstructured search techniques like flooding and random-
walk do not place any restriction on the underlying network
topology. For these two cases we have adopted the network

model proposed in [3], which mimics the characteristics of the
contemporary Internet topology.

We have used Chord as the representative for the DHT routing
protocols. To enable partial keyword matching we adopted the
strategy presented in [7] and [24]. In brief, each keyword is
broken into 3-grams, which are then hashed and routed to the
responsible peers. For improving fault resilience the advertise-
ment is replicated at peers along Chord ring following the
responsible peer. This approach is not suitable for real life im-
plementation because of the volume of advertisement traffic it
generates. Yet there exists few proposals for reducing advertise-
ment traffic by adopting specialized hash functions like Locality
Preserving Hashing (LPH) as used in Squid [35] and Finger-
print function as used in [10]. These techniques support prefix
matching only but we are interested here in partial (or infix)
matching.

DPMS [4] uses a hierarchical topology and indexing struc-
ture. Lossy aggregation is used for controlling the index volume
at higher level peers. Recursive replication along the indexing
hierarchy is adopted for increasing fault-resilience and load dis-
tribution. Keyword to pattern construction process in DPMS is
similar to the one in Plexus.

For this experiment we have used PeerSim [2]; a cycle driven
simulator, written in Java. User-defined Java components can be
plugged into the simulator for defining and monitoring overlay
topology, routing mechanism, join/leave protocol, replication
strategy, etc. The dataset used for this experiment is the same as
the one used in Section VI. The rest of the section presents rel-
ative performance of the five search techniques w.r.t. different
performance metrics.

A. Topology Maintenance Overhead

Topology maintenance overhead is dependent on the average
degree of the peers. Topology maintenance overhead is usu-
ally lesser for a smaller value of average node degree. Order
of node degree in Plexus is and for chord it is

. For flooding and random walk we have used the in-
ternet topology generation model, in which the average degree
is governed by topology parameter . Finally, in DPMS node
degree is , where is the cardinality of neigh-
borhood-list used by the Newscast protocol [40]. As reflected
in Fig. 13(a), the average degree depends on network size for
Plexus and DHT-technique, whereas it is constant for unstruc-
tured or semistructured techniques.

Minimizing peer join overhead is crucial for handling peer
dynamism in large scale distributed systems. It is mostly
governed by the protocol used to define the logical overlay
topology. Join overhead is minimum for unstructured cases
as the only rule for join protocol is to keep the degree below
a maximum value. In Plexus, a joining peer has to locate

neighbors, all of which are located within two
hops of the seed peer (see Theorem 3), while the external links
can be obtained from the seed and the neighbors. In essence,
the effect of joining is localized in Plexus and therefore the low
overhead. The higher overhead of peer join in DPMS results
from the strict rules of connectivity within the indexing hier-
archy. Chord, and in general DHT-techniques, exhibit higher
join overhead because of the global impact it has. In Chord,
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Fig. 13. Topology maintenance overhead. (a) Average degree. (b) Join
overhead.

Fig. 14. Advertisement efficiency. (a) Replication factor. (b) Advertisement
traffic.

the joining peer becomes a predecessor of the seed peer. The
joining peer cannot benefit from the seed peer’s finger table
because of the unidirectional nature of Chord routing (see [27]).
In summary, the average degree in Plexus is close to that in
DHT-techniques though the join overhead is much less.

B. Advertisement Efficiency

Replication is used by search techniques for different pur-
poses. Unstructured techniques rely on content replication for
improving search completeness, while structured techniques use
index replication for improving fault resilience. We define repli-
cation factor to be the percentage of peers containing a given ad-
vertisement (i.e., index or content). Update propagation traffic is
proportional to average replication factor. Fig. 14(a) presents the
average replication factor, whereas Fig. 14(b) plots the average
advertisement traffic. Advertisement traffic for Flooding and
R-walk have not been presented as in these two cases there ex-
ists no explicit advertisements and content information is prop-
agated as a result of the search process.

In Plexus, the expected number of replica for some advertise-
ment, say , can be calculated as . Here,

depends on the Error Correcting Code (ECC) in use
and query stretch. In DPMS, the replication factor depends on

and (see Table II), and not on network size. It can be
calculated as . For Flooding and Random-walk we
have used uniform replication with an average of 120. In Chord,
replication overhead depends on and the average number
of 3-grams per advertisement which is 29.37 for the experi-
mental dataset. Advertisement traffic is low in DPMS because
it uses bulk advertisement. DHT/Chord requires many indepen-
dent DHT lookups to register the 3-grams within the Chord ring.

Fig. 15. Search efficiency. (a) Search completeness. (b) Query traffic.

Plexus, on the contrary, exploits multicast routing and the pres-
ence of closeness (in Hamming distance) within the target code-
words to reduce advertisement traffic.

C. Search Efficiency

In this experiment we simulated networks of different sizes
and measured two aspects of search efficiency : search com-
pleteness6 [Fig. 15(a)] and generated traffic [Fig. 15(b)]. A
query has been constructed using a random 35% 3-gram from
a randomly chosen advertisement. Flooding and Random-walk
yields the two extremes in terms of search traffic. In spite of
visiting a large percentage of peers, search completeness in
Flooding is low. On the other extreme, Random-walk generates
the least traffic and lowest level of search completeness.

Unlike structured techniques DPMS does not assign indexes
to peers. Advertisements matching a given query cannot be
found in any predefined (or computable) set of peers, rather a
user has to search additional peers for discovering each match.
In the experiment with DPMS we have stopped searching
after 20 matches were found. Better search completeness is
achievable by increasing this termination criteria, though at the
expense of additional search traffic.

Search traffic is almost half in Plexus than that in DHT/Chord;
yet search completeness in these two systems is almost identical.
On the other hand, Plexus and DPMS generate similar search
traffic, yet Plexus provides higher level of search completeness.

D. Search Flexibility

One of the major target of Plexus is to discover advertise-
ments using only partial information. Search flexibility refers to
the ability of a search system to discover matching advertise-
ments using partial information. For this experiment we con-
sider overlays of about 20,000 peers and vary the percentage of
3-grams (PNG) from the advertisements used for constructing
the queries. Fig. 16(a) and (b) present the impact of PNG on
search completeness and query traffic, respectively.

For Flooding and Random-walk, search traffic and complete-
ness are invariant to the change in PNG. In the case of DPMS,
we used an iterative search method and stopped after 20 matches
were found. However at low PNG, the number of matching ad-
vertisements is more than 20, which results in low complete-
ness levels. On the other hand, false-match probability is higher
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Fig. 16. Search flexibility. (a) Search completeness. (b) Query traffic.

Fig. 17. Fault resilience. (a) Search completeness. (b) Query traffic.

at low PNG levels, which explains the higher search traffic in
DPMS for low PNG levels.

In Plexus, many read quorum could not be satisfied at low
PNG as there were too few bits per chunk. This results into
lower search completeness and search traffic in Plexus for

. On the contrary, DHT/Chord produces almost
complete (99.8%) search results for all PNG levels, though
search traffic increases linearly with PNG. In contrast, search
traffic for Plexus is almost constant for .

E. Fault Resilience

For this experiment is used for constructing
queries from the available advertisements. We started with
overlays of about 20,000 peers and gradually caused randomly
chosen peers to fail in 5% steps.

In all techniques, except for Plexus, search completeness
falls with increase in the percentage of failed peers (PFP)
[Fig. 17(a)]. The fall is sharpest for DHT/Chord because of its
unidirectional routing table and lack of alternate routing paths.
On the contrary, the use of multi-path routing and replication
allows Plexus to achieve an almost constant level of search
completeness regardless of failure rate, though at the expense
of higher search traffic.

For Plexus and DPMS, search traffic increases with PFP
[Fig. 17(b)], because these two techniques adopt alternate
paths to reach the target peer(s) in presence of failures. On the
other hand, search traffic decreases with the increase in PFP
for DHT/Chord and flooding because in these two cases the
effective search tree gets pruned as more peers fail. This results
into decreased search completeness. Finally for Random-walk,
search traffic is independent of PFP as a walker is not aborted

before TTL expires unless all the neighbors of an intermediate
peer along the walker have failed.

VIII. CONCLUSION AND FUTURE WORK

We identified the distributed subset matching problem in [4]
and this paper presents Plexus as an efficient solution to the
problem. Plexus has a partially decentralized architecture uti-
lizing structured search. As demonstrated by the simulation re-
sults, for a network of about 20000 superpeers Plexus needs to
visit only 0.7% 1% of the superpeers to resolve a query and can
discover about 97% 99% of the advertised patterns matching
the query. For achieving this level of completeness, the query
needs to contain only 33% of the trigrams from an advertised
pattern that it should match against. Plexus delivers a high level
of fault-resilience by using replication and redundant routing
paths. Even with 50% failed superpeers, Plexus can attain a
high level of search completeness (about 97% 99%) by visiting
only 1.4% 2% of the superpeers. Plexus can route queries and
advertisements to target peers in hops and by using

links.
The originality of our approach lies in the application of

coding theoretic construct for solving the subset matching
problem in distributed systems. We believe that this concept
will aid in solving a number of other problems pertaining to P2P
networking research, including P2P databases, P2P semantic
search and P2P information retrieval.

Although we have focused on subset matching in this paper,
Plexus can easily be tailored to support inexact (or edit distance)
matching. We intend to investigate this possibility as a future ex-
tension to this work. We also intend to extend the experiments
with other linear codes, alternate types of Bloom filters, possible
alternatives to the Voting algorithm and more efficient mecha-
nisms for computation.
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