
150 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

A Survey of Distributed Search Techniques in
Large Scale Distributed Systems

Reaz Ahmed and Raouf Boutaba, Senior Member, IEEE

Abstract—Peer-to-peer (P2P) technology has triggered a wide
range of distributed applications beyond simple file-sharing. Dis-
tributed XML databases, distributed computing, server-less web
publishing and networked resource/service sharing are only a few
to name. Despite of the diversity in applications, these systems
share a common problem regarding searching and discovery of
information. This commonality stems from the transitory nodes
population and volatile information content in the participating
nodes. In such dynamic environment, users are not expected to
have the exact information about the available objects in the
system. Rather queries are based on partial information, which
requires the search mechanism to be flexible. On the other hand,
to scale with network size the search mechanism is required to
be bandwidth efficient.
In this survey, we identify the search requirements in large

scale distributed systems and investigate the ability of the
existing search techniques in satisfying these requirements. Rep-
resentative search techniques from P2P content sharing, service
discovery and P2P databases are considered in this work.

Index Terms—P2P content sharing, service discovery, P2P
databases.

I. INTRODUCTION

NETWORKS of tens or hundreds of thousands of loosely
coupled devices have become common in today’s world.

The interconnection networks can exist in physical or logical
dimensions as well as wired and wireless domains. The
Internet is the largest distributed system that connects de-
vices through TCP/IP protocol stack. On top of this network
there exists many logical overlay topologies, where networked
nodes federate to achieve a common goal. Examples of
such federations include the Domain Name resolution System
(DNS), the World Wide Web (WWW), content sharing P2P
systems, world wide service discovery systems and emerging
P2P database systems (PDBS). Among these systems, the
WWW and the DNS are mature enough and are comprised
of relatively static population of Internet hosts (i.e., servers).
Content dynamism is also much lower in these two systems,
compared to P2P and service discovery systems. Centralized
and clustered search techniques (e.g., web crawlers and proxy
caches) work well for a network of relatively stable hosts (or
web sites) or domain name resolvers. Decentralized (control)
and distributed (workload) search techniques are required
for a network composed of transient populations of nodes

Manuscript received 21 October 2009; revised 4 January 2010.
R. Ahmed is with the Department of Computer Science, Bangladesh

University of Engineering and Technology, Dhaka-1000, Bangladesh, (e-mail:
reaz@cse.buet.ac.bd).
R. Boutaba is with the David R. Cheriton School of Computer Science,

University of Waterloo, Ontario, Canada, (e-mail: rboutaba@uwaterloo.ca).
Digital Object Identifier 10.1109/SURV.2011.040410.00097

having intermittent connectivity and dynamically assigned IP
addresses.

High levels of content and node dynamism in modern
large scale distributed systems, including P2P content shar-
ing, service discovery and P2P databases, impose additional
requirements on the search mechanism. Flexibility in query
expressiveness and fault-resilience of the search mechanism
become more important in such environments. The objective
of this survey is to investigate the search requirements in
large scale distributed systems with a particular focus on three
application domains, namely P2P content sharing, service
discovery and P2P databases. These three application domains
have been exclusively investigated by the research community
for the last few years. Hence, we have focused on these three
application domains in this survey.

There are surveys on the search mechanisms developed for
each of the application domains. For example, surveys on
search in P2P content sharing systems can be found in [10],
[65], [70], [83], [103]. Comparative studies of different service
discovery approaches are presented in [9], [39], [61], [109],
while P2P database systems are studied in [50], [57], [78],
[95], [106]. We found that the search techniques adopted in
these three application domains have similar requirements and
functionalities. We therefore believe that a comparative study
of their underlying mechanisms can be insightful for future
research on distributed search in large scale environments.

The contributions of this paper are as follows: a) We present
a survey of existing search techniques in three important
application domains, namely P2P content sharing, service
discovery and P2P databases; b) We identify the search
requirements that are common to these three domains; c)
We present a new taxonomy of the search mechanisms and
correlate it with existing taxonomies; d) Finally, we present a
comparative study of different categories of search techniques
in satisfying the search requirements in large scale distributed
environments.

The rest of this paper is organized as follows. In Section II
we present architectural overview of the three application
domains along with the generic advertisement and query
model in each domain. Section III illustrates the requirements
of a distributed search mechanism. Essential components of
a distributed search mechanism and a search taxonomy are
presented in Section IV. Representative search techniques
from the three application domains are discussed in Section V,
Section VI and Section VII. In Section VIII we present a sub-
jective comparison of different categories of search techniques
and finally we conclude in Section IX.

1553-877X/11/$25.00 c© 2011 IEEE

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 151

Fig. 1. Content sharing P2P architectures

II. LARGE-SCALE DISTRIBUTED SYSTEMS

The goal of this survey is to investigate the decentralized
and distributed search techniques for large-scale distributed
systems with transient population of nodes. In the following,
we will highlight the characteristics of large scale distributed
systems in three representative domains: P2P content sharing,
service discovery and P2P databases. The identifying proper-
ties of these application domains include:

• Population dynamism: Transient population of nodes
mandates the routing mechanism to be adaptive to fail-
ures. Redundant routing paths and replication can im-
prove availability and resilience in such environments.

• Content dynamism: Frequent arrival of new contents,
relocation (e.g., transfer) of the existing contents and
shorter uptime of peers (compared to internet hosts) are
the main causes of content dynamism in these systems.
Users in these systems often do not have the exact
information (e.g., exact filename, or Service Description)
about the content they are willing to discover. Rather
most of the queries are partial or inexact, which requires
the search mechanism to be flexible.

• Heterogeneity: In these systems participating popula-
tion of nodes display wide variation in capacity, e.g.,
computing power, network bandwidth and storage. This
mandates the index information and routing traffic to be
distributed based on nodes’ capacities.

The rest of this section presents the characteristics of P2P
content sharing, service discovery and P2P database systems.
We also explain the nature of queries and advertisements in
these systems.

A. Peer-to-Peer Content Sharing

Content (e.g., file) sharing is the most popular P2P appli-
cation. Classifications of the topologies adopted in various
P2P content sharing systems can be found in [28] and [70].
In [28], a comparative study of unstructured P2P systems

has been presented. Another survey and comparative study
on selected approaches from structured and unstructured P2P
systems can be found in [66]. In [10], a survey and tax-
onomy of content sharing P2P systems are presented, while
a comprehensive tutorial can be found in [86]. All content
sharing P2P systems offer mechanisms for content lookup
and for content transfer. Although content transfer takes place
between two peers, the search mechanism usually involves
intermediate peers. To facilitate effective search, a content is
associated with an index file that contains the name, location,
and sometimes a description (or keywords) of the content.
Search for a content typically involves matching a query
expression against the index files. P2P systems differ in how
this index file is distributed over the peers (architecture) and
what indexing scheme is used (i.e., index structure). From
an architectural point of view (see Figure 1), content sharing
P2P systems can be centralized, decentralized, or partially-
decentralized [10]. Centralized P2P systems are characterized
by the existence of a central index server, whose sole task
is to maintain the index files and facilitate content search.
Napster [5] belongs to this category. Centralized P2P systems
are highly effective for partial keyword search, but the index
system itself becomes a bottleneck and a single point of
failure. Decentralized architectures remedy this problem by
having all peers index their own local content, or additionally
cache the index of their direct neighbors. Content search in
this case consists in flooding the P2P network with query
messages (e.g., through TTL-limited broadcast in Gnutella
[2]). A decentralized P2P system such as Gnutella is highly
robust, but the query routing overhead is overwhelming in
large-scale networks. Recognizing the benefit of index servers,
many popular P2P systems today use partially-decentralized
architectures, where a number of peers (called superpeers)
assume the role of index servers. In systems such as KaZaA [3]
and Morpheus [4], each superpeer has a set of associated peers.
Each superpeer is in charge of maintaining the index file for
its peers. Content search is then conducted at the superpeer
level, where superpeers may forward query messages to each
other using flooding. The selection of superpeers is difficult in
such a scheme, as it assumes that some peers in the network
have high capacity and are relatively static (i.e., available most
of the time). Newer versions of Gnutella [98], [107] also uses
this approach.
Advertisements in P2P content sharing systems mostly

contain the filename and author-name. Consider the example
in Figure 2; a movie file can be advertised as “The Lord
of the Rings - The Two Towers - 2002 (Extended Edition)
DVDrip.avi". For a user it is very unlikely to know the exact
name of the advertised file. Rather the user specifies some
keywords that may be present in the advertised file name.
For example a typical query for the above movie would be
“Lord of the Ring Two Tower”. Note the keywords “Ring”
and “Tower”; they do not contain the “s” as contained in the
advertised keywords. This mandates the support for partial
keyword matching in P2P content sharing systems.

B. Service Discovery

Service discovery is an integral part of any service in-
frastructure. A large-scale service infrastructure requires a

152 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

Advert.: The Lord of the Rings - The Two Towers -
2002 (Extended Edition) DVDrip.avi

Query: Lord of the Ring Two Tower

Fig. 2. Example advertisement and query in P2P content sharing systems

Fig. 3. Service discovery: Generic architecture and steps

service discovery mechanism that is open, scalable, robust and
efficient. Most of the service discovery systems rely on a three-
party architecture, composed of clients, services and directory
entities. Directory entities gather advertisements from service
providers and resolve queries from clients. The generic service
discovery mechanism can be viewed as a five-step process (see
Figure 3) [9]; (1) bootstrapping, where clients and service
providers attempt to initiate the discovery process via estab-
lishing the first point of contact within the system, (2) service
registration, where a service provider publishes information (a
Service Description containing a list of property-value pairs)
to a directory entity about the provided service, (3) querying,
where a client looks for a desired service by submitting a query
(usually a partial Service Description) to a directory entity,
(4) lookup, where the directory entity searches the network
of directory entities for all Service Descriptions matching
the query and (5) service handle retrieval, the final step in
the discovery mechanism, where a client receives the means
to access the requested service. Some of these steps may
be omitted in various discovery approaches. Some of the
discovery approaches are based on two-party (client-server)
architecture without any directory infrastructure.
Directory architectures adopted by different service discov-

ery approaches can broadly be classified as centralized and
decentralized (see Figure 4) [9]. In a centralized architecture,
a dedicated directory entity or registry maintains the whole
directory information (as in centralized UDDI [104]), and
takes care of registering services and answering to queries.
In decentralized architectures, the directory information is
stored at different network locations. Decentralized systems
can be categorized as replicated, distributed or hybrid. In the
replicated case, the entire directory information is stored at

Fig. 4. Taxonomy of the directory architectures

Fig. 5. Example advertisement and query in Service Discover systems

different directory entities (as in INS [7]). In the distributed
case, the directory information is partitioned, and the partitions
are either stored in dedicated directory agents (DA) (as in
SLP [41], Jini [99] and SSDS [32]), as per a three-party model
or cached locally by the service providers in the system (e.g.,
UPnP [69] and SLP in DA-less mode), according to a two-
party model. Finally, in the hybrid case, the system stores
multiple copies of the entire directory information without
assigning the entire registry to a single directory entity (as
in Twine [14]).
In large-scale networks, a centralized directory becomes a

performance bottleneck and a single point of failure. Con-
sistency of the replicas is a major issue in the replicated
architecture (like INS), since maintaining consistent replicas
is usually bandwidth-consuming. On the other hand, when the
directory information is distributed, e.g., partitioned among
dedicated directory entities, the failure of one of them leads
to the unavailability of part of the directory information.
The fully distributed two-party architecture, involving local
caches at service and client, attempts to remedy performance
bottleneck and single point of failure issues. However, these
systems generally do not scale well, since they use multicast-
like communication which is expensive in terms of bandwidth.
Hybrid architectures seem to offer the best compromise be-
tween bandwidth consumption, scalability, and fault-tolerance.
Figure 5 gives an example of a generic advertisement

and a query in service discovery systems. In these sys-

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 153

Fig. 6. Functional layers in a PDBS system

tems a service is advertised using a list of descrip-
tive property-value pairs, called a Service Description. A
Service Description typically contains service type (e.g.,
Service-type=service:print), service invocation information
(e.g., URL=diamond.uwatreloo.ca/PCL8) and service capabil-
ities (e.g., Paper-size= legal, A4, B5). In most cases a Service
Description is instantiated from a Service Schema, which
contains meta-information regarding the Service Descriptions
for a given class of service (e.g., print service or service:print).
A Service Schema governs the allowable properties and their
types (e.g., string, integer, float, etc.) within the Service
Descriptions of a given class of services. In most service
discovery systems it is assumed that the available Service
Schemas are globally known.
Queries in these systems (see Figure 5) usually contain the

requested service type and a list of required capabilities of the
service (e.g., Paper-size=A4). The list of capabilities provided
in a query is a subset of the capabilities list provided in the
advertisements it should match against. The result of a query
consists of a list of Service Descriptions matching the query.

C. Peer-to-Peer Databases

Peer-to-peer Database Systems (PDBS) have been investi-
gated, more recently, following the success of P2P file-sharing.
A P2P database system can be thought of as a data sharing
network built on top of a P2P overlay substrate. Search in P2P
database systems demands more flexibility than that required
by the P2P file-sharing systems. This requirement stems from
the existence of semantic (schema) information associated
with the shared data. Most of the research works focus on
building an additional layer on top of the existing P2P search
techniques.
Though PDBSs evolved as a natural extension of Distributed

Database Systems (DDBS) [74], they have a number of
properties that distinguish them from the DDBS and traditional
Database Management Systems (DBMS) [79]. Unlike DDBS,
PDBS has no central naming authority, which results into
heterogenous schemas in the system. Due to the absence of any
central coordination and the large-scale evolving topology, a
peer knows about only a portion of the available schemas and
data. This mandates a mechanism (e.g., ontology) for unifying
semantically close schemas. In DDBS arrival or departure of
nodes is performed in a controlled manner, which is not true
for PDBSs. Finally, in contrast to DDBS, a peer in a PDBS
has full control over its local data.

(a) An XML advertisement (b) Tree representation

Fig. 7. Advertisement in PDBS

Fig. 8. XPath query examples

In PDBS, semantic mapping of schema is a challenging
problem. It requires inter-operation between heterogenous data
models. XML [96] is used as the de facto standard for this
purpose. A survey on the use of XML in PDBS can be
found in [58]. In PDBS, XML is used in two ways. Firstly,
XML is used for representing data and data models (i.e.,
schema information). Secondly, XML is used to represent
semantic relationships among heterogeneous data models at
three different levels: schema level, element level and data
level. These levels of granularity also influence the indexing
mechanism adopted in these systems.
Figure 6 presents the possible functional layers in a PDBS.

Each peer in the system has its own local data model indepen-
dent of the other peers’ data models. The process of translating
a local query to other peers’ data models is performed by the
semantic mapping layer at different granularities, e.g., XML
schema mapping, XML element mapping, XML data mapping,
etc. The third layer is optional, and can maintain indices
at different granularities. Finally, the fourth layer is usually
one or a combination of the routing mechanisms present in
traditional file sharing P2P systems.
Many research work on PDBS assume the existence of

an underlying P2P substrate for efficient and flexible query
routing, and concentrate on higher level issues including
semantic mapping between heterogenous schema, distributed
query processing and optimization, etc. In this survey, we will
consider only those research activities on PDBS that have
focused on the issues and challenges related to the query
routing mechanism.
Advertisement and query in PDBS are more complicated

than that in P2P content sharing and service discovery systems.
Figure 7 depicts an example of an XML advertisement which
contains information about two books and one magazine. A
tree representation of the corresponding XML Schema [36] has
been presented in Figure 7(b). Analogous to Service Schema,
an XML Schema contains meta-information regarding a class

154 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

of XML documents. However, the syntax used for describing
XML documents and XML Schema are standardized and
widely used, compared to the variations in Service Description
and Service Schema definition syntaxes used by different
service discovery systems.
The most popular query syntax used in PDBS is XPath.

Figure 8 presents two examples of XPath queries based on
the advertisement presented in Figure 7. The first query finds
all authors having at least one award. The second example
finds all books for which last-name of the author is Bob.

III. DISTRIBUTED SEARCH REQUIREMENTS

Search is an essential functionality offered by any dis-
tributed system. A search mechanism in a distributed sys-
tem can be either centralized or distributed. For Centralized
Search, there exists a central core of one or more machines
responsible for indexing the contents distributed across the
network and for responding to user queries. For networks with
lesser degree of dynamism, centralized search mechanisms
prove to be adequate. Google [15], Yahoo [6], Alta vista [1]
etc. are the living examples of centralized search mechanisms,
where a set of crawlers running on a cluster of computers
index the Webpages around the globe. Compared to the
lifetime of the contents shared in P2P networks, Webpages
are long lived. Centralized search techniques do not prove
to be efficient in large scale distributed systems due to
content and node dynamism (as explained in Section II).
Distributed Search mechanisms assume that both indexing
mechanism (analogous to crawlers) and indexed information
are distributed across the network. Consequently the design
requirements for Distributed Search techniques are different
from that for Centralized Search techniques. In the following,
we present the most important design requirements for a
Distributed Search mechanism.

• Decentralization: For a Distributed Search mechanism
to be successful, decentralization of control and data
are necessary. Decentralization of control refers to the
distribution of the index construction process among the
participating nodes. There should not be any central entity
governing the index construction process in different
nodes. Unlike web search engines, the index itself should
be distributed across the participating nodes for achieving
uniform load distribution and fault-resilience.

• Efficiency: The search mechanism should be able to
store and retrieve index information without consuming
significant resource: mainly storage and bandwidth. In a
large scale distributed system advertisements are frequent
due to the arrival of new documents and relocation of
existing documents. The large user base generates queries
at a high rate. This mandates both advertisement and
search process to be bandwidth efficient.

• Scalability: Efficiency of the search mechanism should
not degrade with increase in network size. In addition
the number of links per node should not increase a
lot with the growth in network size. Join and topology
maintenance overhead depends largely on the number of
links that a node has to maintain, especially in dynamic
environments.

• Flexibility: Due to content dynamism, users do not
usually have the exact information about the advertised
objects. The query semantics offered by the search
mechanism should be flexible to support inexact or sub-
set queries. The scalability and efficiency requirements
should not be sacrificed for achieving the flexibility
requirement.

• Search completeness: Search completeness is measured
as the percentage of advertised objects (matching the
query) that were discovered by the search. Required
level of search completeness varies from application to
application. A search mechanism should have guarantee
on the discovery of rare objects. In the case of popular
or highly replicated objects, only a predefined number
of matches would suffice for most cases. For specific
queries, the number of matching objects would be low
and all of them should be discovered by the search.
Broad queries, on the other hand, would match a large
number of advertised objects. In this case search result
may be restricted within a predefined limit to avoid high
bandwidth consumption.

• Fault-resilience: In large scale distributed systems, par-
ticipating nodes connect autonomously without admin-
istrative intervention. Nodes depart from the network
without a priori notification. The search mechanism is
expected to advertise and discover objects in a con-
tinuously evolving overlay topology, resulting from the
frequent arrival and failure of nodes. In many cases index
replication and pair-wise, alternate routing paths are used
to improve availability.

• Load distribution: Heterogeneity in nodes’ capabilities,
including processing power, storage, bandwidth and up-
time, is prominent in large scale distributed systems. To
avoid hot spots and to ensure efficiency, the advertisement
and search mechanisms should distribute routing, storage
and processing loads according to the capabilities of the
participating nodes. In other words, uniform distribution
of load may result into poor system performance in a
large scale distributed system.

In addition to the above mentioned design requirements, a
number of other requirements of secondary importance may
arise in different scenarios. For example,

• autonomy of index placement and routing path selection
may be required for security and performance reasons;

• anonymity of the advertising, indexing and searching
entities may be required in censorship resistance systems;

• ranking of search results may be required for full-text
search or information retrieval systems; etc.

IV. COMPONENTS OF A DISTRIBUTED SEARCH SYSTEM

In a large scale distributed system, a distributed search
mechanism usually consists of four components as depicted
in Figure 9 and presented in the following list.
1) Query semantics refer to the expressiveness of a query
and the allowed level of semantic difference between
queried and advertised information.

2) Translation is a function, governing the transformation
of semantic information present in a query to a repre-
sentation that is suitable for query routing.

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 155

Fig. 9. Components of distributed search mechanism

3) Routing refers to the mechanism of forwarding a query
to the nodes suitable for answering the query.

4) Indexing mechanism determines the distribution and
placement of indices (meta information on shared con-
tents) on the overlay network. In many approaches
indexing and routing mechanisms are so closely related
that it is very hard to separate one from the other.

Each of these components are explained in greater detail in
the following subsections.

A. Query Semantics

Any visible (e.g., shared or advertised) object in a dis-
tributed system is associated with a set of properties describing
the behavioral and functional aspects of that object. Meta
information on a set of related properties associated with a
class of objects is defined as the schema for that class of
objects. In a distributed search system, structure and scope
(temporal and spatial) of the available schemas influence the
query language capability and underlying routing mechanism.
The rest of this section highlights two aspects of query
semantics: schema and query expressiveness.
1) Schema: Based on the temporal and spatial scope of the

schema, large scale distributed systems can be classified as
follows:

• Static schema: Most of the file sharing P2P systems have
been designed to share one or more specific types of files,
e.g., song, movie, software etc. For each type of file a
specific set of properties is defined that remain unchanged
throughout the lifetime of the system. Essentially these
systems have one or more static schemas that are globally
known.

• Quasi-static schema: Most of the service discovery sys-
tems fall into this category. Unlike file sharing P2P sys-
tems, service discovery systems allow dynamic creation
of schema for describing services. Each service instance
is advertised as a Service Description governed by a
predefined Service Schema (or template). All schemas
in a given service discovery system have to contain a
minimal set of predefined properties to comply with the
specific system under consideration. Though schema can
be created dynamically, the rate of such events is very
low and the number of available schemas in a given
system is much lower than that in PDBS. Furthermore,

it is assumed that all the existing schemas in the system
are globally known.

• Dynamic schema: Most of the PDBSs fall into this
category. In these systems heterogeneous schemas exist.
Temporal scope of a schema is often bounded by the
lifespan of the peer advertising data with that schema.
Spatial scope is local to the originating peer and its neigh-
bors; no global knowledge is assumed. Automating the
process of semantic mapping between similar schemas
is a challenging problem, which may require additional
support from the underlying routing mechanism.

2) Expressiveness: Query expressiveness refers to the capa-
bility of the query language in expressing information retrieval
requirements. Existing research works focus on a wide variety
of query expressiveness ranging from simple keyword-based
queries to complex queries, such as LDAP filter [45] and
XPath [54]. Below is a non-exhaustive list of the different
levels of query expressiveness commonly found in distributed
search techniques.

• Exact keyword match is the minimum level of query
expressiveness supported by any search mechanism, and
is present in most of the file sharing P2P systems,
especially the ones based on DHT1 techniques. For this
level of expressiveness, a globally known fixed schema
(with a limited number of properties) is assumed.

• Partial keyword match is supported by most of the
unstructured techniques as well as some extensions to
the DHT techniques. Two major variants in this category
can be found. Most extensions to DHT techniques sup-
port partial prefix matching and unstructured techniques
support true partial matching.

• Property-value list is used by many service discov-
ery techniques. Service Descriptions are specified as a
property-value list, and queries are specified as a subset of
the advertised property-value list. Most service discovery
techniques assume a flat list of property-value pairs
and do not support wildcard-based partial matching in
property names or values.

• Complex queries involve logical and relational operators
(i.e., range queries), and hierarchical relationships be-
tween properties. Complex queries are supported by a few
service discovery approaches and most of the distributed
XML database systems. For expressing a query, formal
query languages, such as LDAP filter [45], XQuery [26],
XPath [54], SPARQL [75], RDQL [93] etc., are used.

B. Translation

In most distributed systems the query expression specified
by a user is not used “as is” by the underlying routing
mechanism. Instead, the query expression goes through some
kind of transformation before it is fed to the routing process.
This translation function works as a bridge between user
specified queries and the routing mechanism. The domain of
a translation function is governed by the query semantics as
discussed in the previous section. The range of a translation

1Distributed Hash Tables (DHTs) refer to a class of decentralized search
techniques that provide efficient numeric key to node ID lookup service in
distributed systems.

156 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

function, on the other hand, depends on the routing mechanism
used by the underlying overlay. Based on the particular
combination of query semantics and routing mechanism, this
function can exhibit a wide variation. Translation functions
can be broadly classified into the following three categories:

• Flat: This type of translation functions do a very little
(e.g., filtering) or no change to the query expression and
associated semantic information. Such functions are usu-
ally used by unstructured and semi-structured indexing
mechanisms, and most of the industrial approaches to
service discovery.

• Hash : Hashing is mostly used by structured and semi-
structured search mechanisms. A wide variety of hashing
techniques have been proposed for distributed search
systems. However, the major problem with this type of
translation functions is that they loose semantic infor-
mation during the hash transformation process. As a
result only exact or prefix matching is supported by the
search mechanisms that adopt hashing as the translation
function.

• Hash-summary: This type of translation enables efficient
query routing while preserving query semantics. Variants
of Bloom filters [18] are the most popular means of repre-
senting hash summaries. Hash summaries are mostly used
by unstructured and semi-structured search mechanisms.

C. Routing

In overlay networks, routing refers to the process of for-
warding a message from a source node to a destination
node. The source and the destination nodes are usually at a
number of hops away from each other on the overlay. Routing
algorithms in overlay networks can be broadly classified into
two categories: uninformed and informed. Uninformed routing
algorithms do not use the knowledge of query semantics or
target node’s address in making message forwarding decisions
at each hop. Flooding [2] [51], Random walk [67] and Iterative
deepening [67] [107] are the representative algorithms in
this category. These algorithms are not efficient in terms of
generated search traffic, but the robustness is good in highly
dynamic environment. Based on the nature of the information
used for next hop selection, Informed routing algorithms can
be classified into the following three categories:

• Content routing (CR): Content routing algorithms uti-
lize the semantic information, embedded in user query
for making routing decisions at each hop. Hence, the
associated translation function should be from the flat
category. Content-routing allows partial match and com-
plex queries, but the offered query routing efficiency is
low. Moreover, there exists no guarantee on search com-
pleteness or the discovery of unpopular objects. Some of
the most commonly used content routing techniques are
listed below.

– Intelligent flooding: In these techniques a message is
selectively forward to some of the neighbors based
on some routing knowledge like previous query
results, nodes’ capacity, type of hosted content,
etc. Generated message volume is BTTL, where B

is the average fan-out and TTL is the time-to-live
value.

– Hint based routing: Tentative location of the
searched content in the network is used for message
forwarding decision at each hop.

– Biased walkers: Fixed number of biased walkers
are used in conjunction with routing intelligence
like neighbor’s capacity, interest, responsiveness,
etc. Generated message volume is K×TTL, where
K is the number of walkers used by the search
mechanism.

• Address routing (AR): Address routing is adopted in
DHT-based structured P2P overlays, such as Chord [97],
CAN [81], Pastry [87] and Kademlia [68]. Different hash
techniques are used to transform a query into a virtual
address on the overlay, and this address is used to route
the query to a responsible node. Routing algorithms in
this category are efficient in terms of query routing traffic,
but they are not appropriate for semantic laden search
(e.g., partial matching and complex queries).

• Signature routing (SR): A number of distributed search
techniques construct a signature (usually a Bloom fil-
ter [18]) 2 of the target object and routes queries based
on this signature. These techniques strive to combine
the merits of both content-routing and address-routing
strategies. Signatures retain (part of or the whole) query
semantics and allow information aggregation for efficient
indexing. However, search completeness and robustness
are not as good as that in address-routing and content
routing, respectively.

D. Indexing

Based on indexing mechanism and placement of indexed
information distributed search techniques can be classified [10]
into the following three categories:

• Unstructured techniques do not build any index and
use uninformed search mechanisms, like Flooding and
Random walk.

• Semi-structured techniques build index information but
do not place any restriction on index placement. Indexed
information contains hints on possible location of the
content.

• Structured techniques rely on some index placement rule
that allows one to pinpoint the peer(s) responsible for a
given index. Each peer knows the exact location of the
contents it has indexed.

V. SEARCH TECHNIQUES IN CONTENT SHARING P2P
SYSTEMS

We present various search techniques in this category based
on the routing mechanism as follows. Table I summarizes the
query semantics, translation functions and routing mechanisms
as observed in different search techniques in P2P content

2A Bloom filter [18], B(m, h1, h2, . . . , hk), is an m-bit array that can
represent a set, S = {a1, a2, . . . , an}. Here, hj are hash functions in range
[0, m]. B[i] = 0 for all 1 ≤ i ≤ m if S = φ. B[hj(ai)] is set to 1
(1 ≤ j ≤ k) to insert ai into B. c /∈ S if ∃j B[hj(c)] equals 0, otherwise
c ∈ S with very high probability.

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 157

TABLE I
COMPONENTS OF SELECTED SEARCH TECHNIQUES IN P2P CONTENT SHARING

P2P content sharing
Ref Name Query Translation Type Routing Mechanism
[64] Keyword fusion Multi-keyword Inverted index AR Chord
[49] Joung et al. Multi-keyword Query superset AR Chord
[101] pSearch Full text, multi-keyword VSM/LSI AR CAN
[16] Bender et al. multi-keyword Hashing+term frequency AR Chord
[91] Squid Prefix match Hilbert SFC AR Chord
[48] MKey Subset match Query superset AR Chord + local flooding
[43] SkipNet Prefix match Flat AR Skip List
[30] Associative Search Multi-Keyword Flat CR Restricted flooding
[24] ForeSeer Multi-Keyword Flat CR Result bias+1-hop flooding
[102] APS Partial keyword Flat CR Result bias+random walk
[31] RI Document category Flat CR Content bias+random walk
[27] GIA Partial keyword Flat CR Capacity bias+random walk
[62] NSS Multi-keyword Bloom filter (BF) SR Informed flooding
[82] PLR Multi-keyword Attenuated BF SR Hint bias
[59] EDBF Partial keyword Exp. decay BF SR Hint bias

3

sharing domain. In the rest of this section details on these
mechanisms are presented.

A. Address Routing Techniques

Majority of the address routing techniques rely on Dis-
tributed Hash Tables (DHT). In general DHT-based tech-
niques, like Chord [97], CAN [81], Tapestry [108], Pastry [87],
Kademlia [68] are not adequate for supporting flexibility
requirement for content sharing P2P systems, which warrant
minimum flexibility of partial keyword matching. This in-
adequacy stems from two reasons. Firstly, DHT-techniques
use numeric distance based clustering of hashed keywords
which is not suitable for partial keyword matching. Secondly,
DHT-techniques cannot handle common keywords problem
well. Popular keywords can incur heavy load on the peers
responsible for these keywords; as a result, the distribution of
query load will become unbalanced among the participating
peers. Moreover, as studied in [12] and [52], the routing per-
formance degrades significantly in address routing techniques
in presence of churn.
Attaining partial matching capability without sacrificing

routing efficiency is a challenging problem. In this section we
consider the research works that focus on solving some variant
of the partial matching problem in distributed environment.
We do not consider here DHT techniques, like Chord [97],
CAN [81], Pastry [87], Kademlia [68] etc., since these tech-
niques focus on achieving efficiency at the cost of flexibility
and offer exact matching capability only. Rather we discuss
the research works like Twine [14], Squid [91], pSearch [101],
etc., which strive to extend DHT-functionality for achieving
partial matching capability.
Inability to support partial keyword matching is considered

a handicap for DHT-techniques. In the last few years a number
of research efforts have focused on extending DHT-techniques
for supporting partial keyword search. Most of these ap-
proaches adopted either of the following two strategies:

• Build an additional layer on top of an existing DHT
routing mechanism. The aim is to reduce the number of
DHT lookups per search by mapping related keywords
to nearby peers on the overlay. This strategy is proposed

in a number of research works including [49], [64], [91]
and [101] .

• Combine structured and unstructured approaches in
some hierarchical manner to gain the benefits of both
paradigms. Few research works, including [38], [48] and
[100], focus on this strategy.

In [42], a generic inverted index for supporting partial
keyword matching on top of a DHT overly has been presented.
A keyword is translated into an address for routing in two
steps. First, the keyword is fragmented into η-grams. Then
each η-gram is hashed separately to obtain routing addresses.
Each peer stores the keyword(s) it is responsible for, along
with the list of document links containing that keyword(s). The
hashed η-grams form an inverted index, where an advertised
η-gram can be discovered by specifying its hash value. This
approach requires O(ω log N) hops for advertising a keyword
containing ω η-grams, assuming that the underlying DHT
network has logarithmic routing efficiency. If the advertised
document has many keywords then this approach will incur
significant advertisement overhead.
Keyword fusion [64] is an inverted indexing mechanism

on top of Chord routing protocol. Supported level of query
expressiveness is exact matching on multiple keywords. A
document advertised with keywords {k1, k2, . . . , kt} is routed
to peers responsible for keys h(k1), h(k2), . . . , h(kt), where
h(·) is the DHT’s hash function. To reduce the number of
DHT-lookups per advertisement and search, a system-wide
dictionary of common keywords is maintained. This dictionary
is used to eliminate the common keywords from a query
or advertisement, then the query or advertisement is routed
using the most specific keyword(s) and filtered at the target
peer(s) using the more common keywords specified in the
query. In essence the translation function filters out common
keywords and then applies hashing. This strategy suffers from
two problems. Firstly, the advertisement overhead is signifi-
cant and proportional to the number of keywords. Secondly,
maintaining the global dictionary for common keywords is not
suitable for large, dynamic networks.
Joung et al. [49] proposed a distributed indexing scheme,

built on a logical, d-dimensional hypercube vector space over
Chord routing. In this scheme each advertisement is translated

158 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

into a d-bit vector according to its keyword set (similar to
Bloom filter construction). They treat d-bit vectors as points
in d-dimensional hypercube. No restriction on the mapping of
a d-dimensional point to a 1-dimensional key space (required
for Chord) has been specified. An advertisement is registered
to the peer responsible for the d-bit advertisement vector. A
query vector (say Q) is computed in the same manner as the
advertisement vector. A query is routed to all the peers in the
Chord ring4 that are responsible for a key (say Pi) that is a
superset of the query vector Q. Number of DHT lookups per
search and query is significant for this approach.
The work by Joung et al. [49] and the inverted indexing

method used in Keyword Fusion [64] represent the two
extremes of advertisement and query traffic trade off. In [49],
an advertisement is registered at one peer (responsible for the
advertised key) and a query is routed to all possible peers that
may contain a matching advertisement. On the other hand, in
Keyword Fusion [64] an advertisement is registered at all the
peers responsible for the advertised keywords and the query
is routed to the peer responsible for the most uncommon
keyword specified in the query.
pSearch [101] utilizes Information Retrieval (IR) tech-

niques for the query translation process. It is built on top
of CAN routing protocol and offers content-based full-text
search. Keywords associated with an advertised document (or
query) are represented as unit vectors. IR techniques like
vector space model (VSM) and latent semantic indexing (LSI)
are used to compute a unit vector from the keyword list
specified in an advertisement (or a query). Similarity between
a query and an advertisement (or between two advertisements)
is measured using the dot product of the vector representation
of the corresponding advertisement and query. Semantically
close advertisements and queries are expected to be translated
to geometrically close point vectors in the Cartesian space.
Now the semantic point vectors from LSI or VSM are treated
as geometric points in the Cartesian space of CAN. CAN
partitions a d-dimensional, conceptual, Cartesian space into
zones and assigns each zone to a peer. However this mapping
technique (from LSI/VSM to d-dimensional CAN space) uses
the same dimensionality for LSI space and CAN. Thus it needs
to have a priori knowledge of the possible keywords (or terms)
in the whole system. In reality there can be thousands of
possible keywords, and CAN performance degrades at higher
dimensions.
In [16], a query correlation based scheme for Web content

search on P2P networks has been proposed by Bender et
al.. In that scheme an advertising peer computes the term
frequency for each of the advertised document, and uses Chord
to route and store each term in the advertisement, separately.
An indexing peer on the Chord ring stores peerlist and term
frequency per peer for each keyword. To resolve a query, each
term in the query is hashed and routed to the responsible
indexing peers in the Chord ring. Each of the contacted
indexing peers, returns a list of advertising peers with term
frequency vector. Finally, the querying peer uses these term
frequency lists to infer k advertising peers most relevant to the

4Chord overlay is often referred to as Chord ring, since the peers in Chord
protocol are arranged in a circular linked list like manner.

queried terms, and downloads the matching documents from
those advertising peers.
Squid [91] has been designed to support partial prefix

matching and range queries on top of the Chord routing
protocol. It uses Hilbert Space-filling Curve (HSFC) [88]
for translating keywords to keys. HSFC is a special type of
locality preserving hash function that can map points from a d-
dimensional grid (or space) to a 1-dimensional curve in such a
way that the nearby points in d-dimensional space are usually
mapped to adjacent values on the 1-dimensional curve. Squid
converts keywords to base-26 (for alphabetic characters) num-
bers. A d-dimensional point is constructed from d keywords
specified in the query or advertisement. Then a d-dimensional
HSFC is used to translate a d-dimensional region (i.e., set of
points) specified by the query into a set of curve segments
in 1-dimension. Finally, each segment is searched using a
Chord-lookup followed by a local flooding. Squid supports
partial prefix matching (e.g., queries like compu* or net*)
and multi-keyword queries; however, Squid does not have
provision for supporting true inexact matching of queries like
net. Another major problem is that the number of (partial)
keywords specified in a query or advertisement is bounded by
the dimensionality d of the HSFC in use. Another approach
analogous to the Squid mechanism has been presented by
Rosch et al. in [85]. That approach utilizes Z-Curve (instead
of HSFC) on top of CAN network.
MKey [48] is a hybrid approach to keyword search. Ar-

chitecturally there exists a DHT (here Chord) backbone. A
backbone node in the Chord ring works as a head for a
cluster of nodes, organized in an unstructured fashion. Search
within a cluster is based on flooding. On the other hand,
Bloom filter is used as index in the backbone. But DHT
techniques do not allow Hamming distance based indexing
as required for matching Bloom filters. For allowing pattern
matching on Chord, the following strategy is used. Nodes on
the Chord ring are allowed to have an ID with at most two
1-bits. An advertisement pattern, say 01010111, is advertised
to peers 01010000, 00000110 and 00000001; i.e., DHT-keys
are obtained from an advertisement pattern by taking pairs
of 1-bits in sequential order from left to right. To construct
DHT-keys from a query pattern, say 01010011, only the
leftmost three 1-bits are used. In this example the 1-bits at
2nd,4th and 7th positions. The DHT-keys are obtained by
taking the 1-bit in center position (here 4th) and another
bit within the left position (here 2nd) and the right position
(here 7th). Hence for the query pattern 01010011, generated
DHT-keys are 01010000, 00110000, 00011000, 00010100 and
00010010. Evidently the number of DHT-lookups per search
or advertisement depends linearly on the number of keywords
and the size of the used Bloom-filter. This can be more
inefficient than a generic inverted indexing mechanism for
inappropriate parameter settings. Besides, the nodes on Chord
ring may become points of performance bottleneck for the
system.
There exists only a few non-DHT structured approaches

to the search problem in P2P networks. SkipNet [43] and
SkipGraph [13] are prominent among them. Both of these
approaches use Skip List [76] for routing. A skip List is
a probabilistic data structure consisting of a collection of

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 159

ordered linked lists arranged into levels. The lowest level (i.e.,
level 0) is an ordinary, ordered linked list. The linked list in
level i skips over some elements from the linked list at level
(i − 1). An element in level i linked list can appear in level
(i+1) linked list with some predefined, fixed probability, say
p. Storage overhead can be traded for search efficiency by
varying p. Search for an element say Q starts at the topmost
level. Level i list is sequentially searched until Q falls within
the range specified by current element and next element in
the list. Then the search recurs to level i − 1 list from the
current element until level 0 is reached. In both SkipGraph and
SkipNet, nodes responsible for the upper level elements of the
Skip List become potential hot spots and points of failure. To
avoid this phenomena, additional lists are maintained at each
level. A multi-level indexing mechanism for keyword search
based on SkipNet has been proposed in [94]. However, none
of these approaches can efficiently support partial keyword
search because the underlying data structure used by these
techniques, i.e., Skip List, supports prefix matching only.

B. Content Routing Techniques

In content routing systems objects are identified by key-
words. Advertisements and queries are expressed in terms
of the keywords associated with the shared objects. Address
routing systems, on the other hand, identify objects by keys,
generated by applying one-way hash function on keywords
associated with an object. Key-based query routing is more
efficient than keyword-based query routing. The downside of
key-based query routing is the lack of support for partial-
matching semantics as discussed in the previous section.
Content routing systems, utilizing blind search methods, can
support partial-matching queries. But, due to the lack of proper
routing information, the generated query routing traffic would
be very high. Besides, these techniques do not ensure any
guarantee on search completeness.
Majority of the content routing techniques in P2P content

sharing networks uses either Flooding or Random-walk. In
the following we present representative solutions from each
of these techniques.
1) Flooding-based Techniques: In the originalGnutella [2]

protocol, time-to-live (TTL)-restricted flooding is used for
searching. Since, this type of flooding generates huge query
traffic and is not scalable, a number of improvements over
the flooding algorithm has been proposed. Representative
proposals under this category are presented below.
In modified-BFS [51] and directed-BFS [107] techniques,

the flooding process is restricted with selective fan-out at
each node, i.e., at each hop a query message is forwarded
to a certain percentage of randomly chosen neighbors. These
approaches reduce query traffic volume at the cost reduced
query hit rate.
Another variant of the original TTL-restricted flooding,

as adopted in [67] and [107], is to gradually increase the
TTL value starting from one. This method is analogous to
the iterative depending or expanding ring search algorithms.
This routing strategy is suitable for discovering popular and
hence densely replicated objects. Moreover, this approach can
support user controlled incremental retrieval of search results.

This approach will generate higher query traffic volume than
flooding if the searched object is not available at a nearby
peer.
In Associative Search [30], peers are organized based

on common interest, and restricted flooding is performed
in different interest groups. In ForeSeer [24], each peer
index information from two sets of peers, based on network
proximity and recent query responses. All of these techniques
reduce the volume of search traffic to some extent, but none
provides guarantee on search completeness.
Routing performance in flooding can be improved by se-

lectively forwarding the query messages to superpeers, i.e.,
peers that remain online for longer and connects with higher
number of regular peers. This concept has been utilized in a
number of techniques including GUESS [33], Gnutella2 [98],
etc. In these systems a regular peer connects to one or
more superpeers in the system and the superpeers selectively
connect to each other to form a superpeer network. In GUESS
a leaf peer submits it query to a superpeer it knows. Then this
superpeer gradually forwards the message to its neighboring
superpeers until a specified number of matches are discovered.
To resolve a query the neighboring superpeers forwards the
query to all of its descendent leaf peers. In Gnutella2, the
superpeers maintain an index of the contents of its leaf peers.
To resolve a query, a superpeer forwards it to the relevant leaf
peers based on local index. The superpeer also blindly floods
the query within one hop in the superpeer network.
2) Walker-based Techniques: In the overlay network con-

text, the term walker refers to a message that actively moves
along some sequence of nodes within the overly, until a
termination criteria is reached. There exists a lot of proposals
for selecting the sequence of nodes followed by a walker.
Some of those approaches will be discussed later in this
section. Possible termination criteria for a walker include:

• successful discovery of the searched content
• failure to discover the searched content within pre-
specified number of hops (i.e. TTL or Time-To-Live) and

• explicit termination by the initiating node during an
iterative routing process.

Compared to flooding, random walkers have much lower
bandwidth requirement and the achieved success rate is also
very low. Majority of the walker-based search techniques
adopt multiple simultaneous walkers to improve success rate
and response time at the expense of network bandwidth.
Random-walkers [67] use the simplest message forwarding

mechanism, where an incoming walker message is forwarded
to a randomly chosen neighbor. Random-walkers exhibit poor
success rate because of their blind forwarding mechanism. A
number of research proposals attempt to improve the success
rate of the naive random-walk mechanism by introducing
intelligent routing mechanisms that utilize the knowledge of
network topology, available objects and query keywords.
In Adaptive Probabilistic Search (APS) [102], each peer

gathers knowledge from query keywords and their results.
Each node creates a local index on < Qi, nID, {Rj} >, which
stores the results {Rj} return by the neighbor nID against the
query keyword Qi. Whenever a query hit occurs, the walker
retraces back to the query initiator updating local indices on

160 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

the intermediate nodes. Future query forwarding decisions are
made based on this information.
In contrast to the reactive index construction mechanism

of APS, the Routing Index (RI) [31] mechanism proactively
gathers index information from neighboring peers. In the RI
protocol, documents are classified into thematic categories and
each peer maintains local indices as a list of <categoryID,
linkID, goodness> triples. Here categoryID is the ID of the
thematic category. goodness is a scalar metric quantifying the
quality of results returned by any peer accessible through the
link linkID. RI has better success rate than APS and random
walks, but in RI document creation and update requires local
flooding.
In GIA [27], network topology and heterogeneity are ex-

ploited to bias the walkers. In this approach each node declares
its capacity, based on its network bandwidth, storage and
processing power. This capacity value has two-fold impact:
firstly, on network topology and secondly, on query forward-
ing. In GIA, a node’s degree is proportional to its capacity,
which results into the tendency to achieving a superpeer-
based network. During query routing, a walker is forwarded
to a higher capacity node with a higher probability. Expected
indexing overhead is much lower in GIA compared to APS
and RI. GIA will exhibit unbalanced distribution of query
load, which is usually good for heterogeneous P2P networks
as outlined in Section III.

C. Signature Routing Techniques

A number of P2P search techniques construct signatures or
bit-vectors from advertised or queried keywords and use these
signatures for the indexing and lookup operations, respec-
tively. Bloom filters are the most commonly used signature
construction technique. A comprehensive survey on network
applications of Bloom filters can be found in [21]. In general,
signature based routing techniques incur lower index overhead
due to the compact nature of Bloom filters. These techniques
offer flexible query matching capability, which is inherent to
the to Bloom filter construction mechanism. In this section
we focus on a few representative P2P search techniques in
this category.
In Neighbor Signature Search (NSS) [62], each peer creates

and advertises an index (Bloom filter) representing all of its
advertised objects. Each peer indexes Bloom filters from all
of the neighboring peers within radius r. To resolve a query, a
peer searches the content in peers within radius r based on its
local index. If no result is found within radius r, the query is
forwarded to a peer 2r+1 hops away, and the process recurs.
Indexing information from peers within r hop neighborhood
is expensive. To mitigate storage overhead, two aggregation
techniques have been proposed. These methods trade off local
index storage and maintenance overhead at a peer with query
traffic volume. The first aggregation method performs bit-wise
OR of all the indices within radius r. Whenever a query
matches a local index it is flooded within the indexing radius
r. In the second aggregation method, one index is maintained
per link. An index for a link, say L, contains the bit-wise
OR of the indices from the peer within radius r that are
accessible through link L. If a query matches a local index,

then it is forwarded to the associated link. Experimental results
presented in this work show that logical OR-based aggregation
of Bloom filters is not suitable for indexing information from
peers more than one hop away.
In bitwise-OR based aggregation of Bloom-filters, informa-

tion loss occurs significantly as more Bloom-filters and ORed.
To minimize this impact different variants of Bloom-filters
have been proposed. We present two such alternates below.
In Probabilistic Location and Routing (PLR) [82] each

peer stores a list of Bloom filters, named Attenuated Bloom
filter (ABF), per link. The ith Bloom filter in the ABF for
link L summarizes the resources that are i − 1 hops away
through link L. A query is forwarded through the link with
a matching Bloom filter at the smallest hop-distance. This
approach aims at finding the closest replica of a document
with a high probability. However, index maintenance overhead
is high in this approach and convergence is hard to achieve if
the peers exhibit high degree of dynamism.
To reduce the impact of peer dynamism, Exponentially

Decaying Bloom Filter (EDBF) has been proposed in [59].
In EDBF, the 1-bits in a Bloom filter decay (i.e., set to zero)
with an exponential probability depending on the hop distance
from the peer originating the Bloom filter. Each peer gathers
advertisement EDBF from its neighbors; constructs its own
advertisement EDBF; and advertises it to the neighbors. To
construct its own advertisement, a peer resets each of the 1-
bits in the received Bloom filter with a constant probability and
ORs them with its own Bloom filter. This approach effectively
reduces the number of 1-bits (i.e., information content) in
an aggregated Bloom filter, but at the cost of an increased
probability of false positives.

VI. SEARCH TECHNIQUES IN SERVICE DISCOVERY

Many service discovery systems rely on a three-party ar-
chitecture, composed of clients, services and directory entities.
Directory entities gather advertisements from service providers
and resolve queries from clients. Major protocols for service
discovery from industry, like SLP [41], Jini [99], UPnP [69],
Salutation [89], etc, assume a few directory agents, and do
not provide any efficient mechanism for locating Service De-
scriptions. Solutions from academia, like Secure Service Dis-
covery Service (SSDS) [32] and Twine [14], target Internet-
scale service discovery and face the challenge of achieving
efficiency and scalability in locating Service Descriptions
based on partial information. A survey on service discovery
mechanisms can be found in [9]. A survey on the naming
and Service Description schemes used in service discovery
techniques and in general in distributed systems can be found
in [8]. Another comprehensive survey on the service discovery
approaches in global grids can be found in [80].
Table II summarizes the query semantics, translation func-

tions and routing mechanisms for different search techniques
in service discovery domain as discussed in the reset of this
section.
Secure Service Discovery Service (SSDS) [32] arranges

directory entities in a tree-like structure and uses hierarchical
routing. It uses Bloom filters for translating service descrip-
tions into routing signatures. A bitwise OR-based aggregation

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 161

TABLE II
COMPONENTS OF SELECTED SEARCH TECHNIQUES IN SERVICE DISCOVERY

Service discovery
Ref Name Query Translation Type Routing
[41] SLP LDAP filter Flat CR Flooding
[32] SSDS Subset/PV-list Bloom filter SR Global hierarchy
[7] INS Subtree match Flat CR tree-based flooding
[14] Twine Subtree match Stranding + hash AR Chord
[47] Hu et al. Service category Hashing and concatenation AR Chord
[90] Schlosser et al. Semantic match Ontology concept → d-coord. CR+AR 2-tier Hypercube
[63] PWSD XML path prefix Stranding + hash AR Chord
[92] Schmidt et al. Prefix match Hilbert SFC AR Chord

scheme is adopted for reducing the volume of index infor-
mation at higher level directory entities in the directory tree.
In SSDS an advertisement can be discovered by specifying
a subset of the advertised property-value list in the query
expression. SSDS suffers from load-balancing problem and
is vulnerable to the failure of higher level directory entities
along the directory tree.
Twine [14] is the scalable version of INS [7]. Both INS

and Twine use a hierarchical naming scheme. A resource is
described using a name-tree, composed of the properties and
values associated with the resource. Hierarchical relations be-
tween properties are reflected in the tree, e.g., while describing
the location of a resource, “room no.” appears as a child of the
“building” in which it resides. INS uses a tree-based flooding
protocol while Twine relies on Chord as the underlying routing
mechanism. The translation function in Twine generates a
set of strands (substrings) from the advertisement or query
(which are expressed in XML format), computes keys for
each of these strands, and finally uses these keys for the
search or advertisement process. The stranding algorithm in
Twine is designed to support partial prefix matching within
a name-tree. In Twine, the number of DHT-lookups increases
with the number of property-value pairs in the advertisement
(or query) and consequently the amount of generated traffic
becomes high. Load-balancing is another major problem in
Twine. Peers responsible for small or popular strands may
become overloaded, and the overall system performance may
degrade.
Hu et al. have presented another Chord-based service

discovery approach in [47]. In that work, the ID space
is partitioned into two parts. The higher bits of an ID
is generated by hashing the category of the service be-
gin advertised, while the lower bits are obtained by hash-
ing the IP address of the peer itself. For example, if
a peer with IP 172.20.23.10 hosts services of category
“services.audio.mp3”, then its ID will be generated as
ID = hash(services.audio.mp3)

⊙
hash(172.20.23.10),

where
⊙

is the concatenation operator. This ID construction
mechanism essentially clusters the peers, hosting services of
same category, along consecutive positions on the Chord ring.
The query routing starts with a Chord lookup of the queried
service category followed by a local flooding along the Chord
ring. Routing efficiency of this approach may degrade if the
number of peers hosting same service (i.e., in same cluster)
increases.
Web Services (WS) [20] provide a standard way of inter-

operating between different software applications, running

TABLE III
SUMMARY OF WEB SERVICE DISCOVERY ARCHITECTURES

C
en
tr
al
iz
ed Registry Authoritative, centrally controlled store of ser-

vice descriptions, e.g., UDDI registry [104]
Index Non-authoritative, centralized repository of ref-

erences to service providers; see [20] for details.
Web crawlers are used for populating an index
database.

D
ec
en
tr
al
iz
ed Federation Publicly available UDDI nodes collaborate to

form a federation and act together as a large scale
virtual UDDI registry [84].

P2P-based
Semantic-
laden

In [90] peers are arranged into a
hypercube topology [34] and ontol-
ogy [105] is used to facilitate effi-
cient and semantically-enabled discov-
ery. An agent-based approach is pro-
posed in [71]. It uses DAML [23]
representation for ontology and relies
on unstructured search techniques.

Semantic-
free

Both [63] and [92] use Chord overlay
for indexing and locating service in-
formation. [63] extracts property-value
pairs from service descriptions and
uses MD5 hashing. [92] uses Hilbert
Space Filling Curves for mapping sim-
ilar Service Descriptions to nearby
nodes on the Chord ring. These two
approaches are similar to Twine [14]
and Squid [91], respectively. In [46],
another Chord based solution has been
proposed. Here, the ID-space is par-
titioned in numerically ordered sub-
spaces, and each peer in the Chord-
ring maintains links to one peer in
each subspace in addition to the reg-
ular Chord links. In [53], a Gnutella
based unstructured approach utilizing
DAML-S and standard WS technology
has been proposed for Web-service dis-
covery.

on a variety of platforms and/or frameworks. Universal De-
scription, Discovery and Integration (UDDI) [104] is the de
facto standard for WS discovery. Many research activities
are devoted to enhancing and overriding the legacy UDDI
specification thriving for efficiency, scalability and flexibil-
ity in the discovery mechanism. A detailed survey of such
activities can be found in [39]. Table III summarizes some
of the proposed architectures for WS discovery. Based on
the use of WS ontologies, these approaches can be broadly
classified as semantic-laden and semantic-free. Semantic-laden
approaches rely on WS ontology mapping techniques like
OWL (Web ontology language) [11] or DAML (DARPA
Agent Markup Language) [23] for incorporating intelligence
to the discovery process, i.e., for intelligently mapping concep-

162 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

tually related terms in queries and advertisements. Semantic-
free approaches, on the other hand, do not utilize WS ontology
mapping techniques. These approaches are closely related
to the traditional service discovery systems. A number of
research work in this category rely on locality preserving
hash techniques for translating queries to semantically close
advertisements.

VII. SEARCH TECHNIQUES IN P2P DATABASES SYSTEMS

Several research works on distributed XML databases have
adopted DHT techniques, such as Chord [97], CAN [81] and
Hypercube [90], for routing. A number of these proposals,
including [19], [25] and [37], rely on Chord as the underlying
P2P substrate, while the hypercube topology has been used
in [72].
Table IV summarizes the query semantics, translation func-

tions and routing mechanisms for different search techniques
in distributed XML database domain as discussed in the rest
of this section.
XP2P [19], uses XML data model for schema representa-

tion, and provides support for resolving XPath [54] queries.
Any XML document can be represented as a tree, and an
XPath query is used to specify a subtree using a prefix-path
originating from the root of the document. For supporting
partial prefix-path matching, all possible paths, originating
from the root, have to be registered with the Chord ring.
To reduce the number of paths to be hashed in the Chord
ring during the advertisement and query processes, XP2P
adopts the fingerprint construction technique presented in [77].
In this technique, the fingerprint of a binary string A(t) =
(a1, a2, . . . , am) = a1 × tm−1 + a2 × tm−2 + · · · + am is
computed as f(A) = A(t)%P (t), where P (t) is an irreducible
polynomial. A useful property of the fingerprint function,
utilized by XP2P, is that f(A�B) = f(f(A)�B), where �
is the concatenation operator.
Galanis et al. [37] presented a framework for supporting

XPath queries on top of Chord routing. XPath queries of the
form /a1[b1]/a2[b2]/ . . . /an op value and queries containing
relative path operator (i.e., //) are supported. Here, ai is an
element in an XML document, bi is an XPath expression
relative to element ai, op is an XPath operator like = or
<, and value is an atomic element in the XML document.
The core idea is to build a distributed catalog, where a peer
in the Chord ring stores all the prefix-paths for a given
element in any XML document stored in the network. In
other words, if E is an element in some XML files, then the
peer responsible for the key hash(E) stores all the absolute
paths (i.e., /a1/a2/ . . . /E) leading to E in any document
stored in the network and the contact information of the
peers storing those documents. An XPath query of the form
/a1/a2/ . . . /ak//E is routed to the peer (say N) responsible
for the key hash(E) and the list of all peers containing XML
documents matching the query are extracted. Finally the query
is forwarded and executed in the corresponding peers.
Bhattacharya et al. [17] have presented a DHT based

approach for distributed XML databases. Their approach is
similar to the pSearch [101] technique for P2P content search.
Similar to pSearch, they have used Vector Space Model

(VSM) for constructing the DHT keys from keywords for
indexing and searching. Unlike pSearch, their mechanism is
independent of the underlying DHT mechanism. In addition,
they have proposed a popularity-based adaptive replication
mechanism that dynamically maintains the number of replica
of an object proportional to its request rate (i.e., popularity).
They also proposed a randomized lookup mechanism that
routes a given query to a randomly chosen replica of the target
object. Adaptive replication together with the randomized
lookup mechanism aid in balancing query load.
RDFPeers [25] uses Resource Description Framework

(RDF) [60] for document representation and Chord
for routing. An RDF document contains many
< Subject, Predicate, Object > triples presented in
XML format. A triple, say < S, P, O >, is stored in three
peers (in the Chord ring) responsible for the keys hash(S),
hash(P) and hash(O), respectively. For string literals SHA1
hash function is used. For numeric values (in the value
component of a RDF-triple), locality preserving hash function
is used. A query can be constructed by specifying any of the
three components in a triple. In RDFPeers each document
has to be indexed at three peers, which results into increased
advertisement and update traffic.
Gu et al. [40] have proposed a two tier model for facil-

itating RDF triple search in structured overlay network. The
upper tier of the proposed architecture follows small world
network model (SWNM), where each node knows its local
neighbors and a small number of randomly chosen distant
nodes with a probability inversely proportional to distance.
SWNM usually provide small path length between two nodes
and large clustering coefficient [56]. In this way, a set of
semantic clusters is obtained at the upper layer. Placement of
node within a semantic cluster (i.e., in lower tier) is controlled
by Chord protocol. To store a RDF triple in the network,
the advertisement is first routed to the appropriate semantic
cluster in the upper tier, then within the target semantic
cluster it is stored in two places as determined by hashing
the < Subject, Predicate > and < Predicate, Object >
pairs of the advertised RDF triple.
PeerDB [73] uses an agent-based framework on top of

unstructured P2P overlay to achieve distributed data sharing.
To accommodate heterogeneity in schema definitions from
autonomous peers in the system, PeerDB associates keywords
as synonyms with each schema and elements under that
schema. These keywords are used as a means of semantic
mapping and finding semantically similar schemas. PeerDB
uses flooding as the underlying search mechanism. Mobile
agents are blindly sent to neighboring peers and a query is
executed locally at the each peer, which helps in reducing the
volume of network traffic.
JXTA [22] routing has been used by Kim et. al [55]. In

JXTA architecture a loosely-consistent distributed hash table
(LHDHT) is maintained by a set of special peers called
Rendezvous peers. Each rendezvous peer maintains a list of
known Rendezvous peers and the range of keys associated
with each of them. Query routing is performed based on
the local information at each Rendezvous peer. In [55], a
fixed global schema has been used, whereas existence of
heterogenous schema is allowed in [35].

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 163

TABLE IV
COMPONENTS OF SELECTED SEARCH TECHNIQUES IN PDBS

P2P databases
Ref Name Query Translation Type Routing
[19] XP2P XPath(absolute) Fingerprint AR Chord
[37] Galanis et al. XPath(relative) XML element hash AR Chord
[25] RDFPeers Partial RDF triple RDF element hash AR Chord
[17] Bhattacharya et al. Multiple-keyword VSM AR DHT
[40] Gu et al. Partial RDF triple Hashing and concatenation AR SWNM + Chord
[73] PeerDB SQL Synonym/flat CR Flooding
[44] Humboldt Discoverer SPARQL/RDF URI-hash+Flat AR+CR Chord+ Controlled Flooding

A hybrid technique, named Humboldt discoverer, has been
presented in [44]. RDF [60] has been used for describing
an advertised resource. SPARQL (Simple Protocol and RDF
Query language) [75] has been used for constructing query
expressions. SPARQL is a query language for RDF documents
that allows formation of complex queries involving relational
and logical operators. Routing is done using a three tier
architecture, where peers are classified as bottom, middle or
top tier peers. Bottom tier peers provide information sources.
These peers are clustered into many groups based on the
similarity of used ontologies. A middle tier peer is responsible
for an ontology and manages a single cluster of bottom tier
peers. Middle tier peers advertise their existence to top tier
peers, which are organized in a Chord ring and are addressed
by the hash of the URIs of the ontologies. In effect, middle
tier peers covering the same ontology are grouped under the
same top level peer. To resolve a query, all the required
ontologies are first determined. For a given ontology, the set
of responsible middle tier peers can be reached through the
top tier Chord network. Finally, the query is forwarded to each
of the middle-tier peers that are responsible for the ontologies
used in the query.

VIII. COMPARISON

In this section we compare the capabilities of different
search techniques, as discussed in Sections V, VI and VII,
in satisfying the search requirements presented in Section III.
Indexing and routing mechanisms are the key factors de-

termining the performance and expressiveness of a search
mechanism. For this subjective comparison we classify the
search techniques into nine categories based on the indexing
and routing mechanisms, as outlined in Table V. In the rest
of this section we consider the categories in Table V against
the search requirements.

A. Decentralization

Decentralized index construction process and distributed
index maintenance are necessary for the success of any
distributed search technique. All of the P2P content sharing
systems discussed in this survey exploit decentralized search
techniques. Among the service discovery techniques SSDS
shows lower level of decentralization since the root and
higher level nodes in the indexing hierarchy become central
components and points of failure. Most of the discussed ap-
proaches in PDBS domain have adopted decentralized search
techniques.

TABLE V
ROUTING MECHANISM VS. INDEXING MECHANISM

Content Signature Address

Unstructured Gnutella [2],
SLP [41],
INS [7],
PeerDB [73]

Semi-
structured

Associative
[30], ForeSeer
[24], APS
[102], RI
[31], GIA
[27]

NSS [62],
PLR [82],
EDBF [59],
SSDS [32],
GIA [27]

FreeNet [29],
JXTA [22]

Structured SkipNet [43],
SkipGraph
[13]

Keyword Fusion
[64], Joung et
al. [49], pSearch
[101], Bender et
al. [16], Squid
[91], MKey [48],
Twine [14], Hu et
al. [46], PWSD
[63], XP2P [19],
Galanis et al.
[37], RDFPeers
[25], Gu et al.
[40]

B. Efficiency

Network bandwidth is considered to be the most critical
resource in each of the three application domains. Overall
success of a distributed search technique is determined by its
bandwidth efficiency during the search and the advertisement
processes. In general Address routing is more efficient than
signature routing, which is more efficient than content routing.
However performance of address routing based approaches
degrades while supporting inexact matching queries, which is
essential for all of the three application domains. As presented
in Section V many search techniques in P2P content shar-
ing networks including keyword fusion [64], pSearch [101],
Squid [101] and MKey [48], aim to support inexact matching
queries by transforming an inexact query to a set of exact
queries. To resolve each of these exact queries a number
of DHT-lookups have to be performed. Thus query routing
performance in these systems highly depends on the nature of
the query under consideration. A similar situation arises for
the address routing based techniques in the service discovery
domain (e.g., Twine [14], PWSD [63], Schmidt et. al [92]
etc.) and PDBS domain (XP2P [19], RDFPeers [25], Galanis
et al. [37] and Gu et al. [40]).
Compared to content routing techniques, signature routing

techniques using different varieties of Bloom filters have
lower indexing and search overhead. This is because these

164 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

techniques can store and transmit more information due to
the compact nature of the Bloom filter.

C. Scalability

A good distributed search technique should autonomically
adopt to changes in network size without degrading rout-
ing performance and search completeness. Address routing
based approaches including, Keyword fusion [64], Bender et
al. [16], Squid [91], PWSD [63], Twine [14], RDFPeers [25],
XP2P [19], etc., are expected to provide complete search
results regardless of network size, but their search traffic may
increase significantly with the growth in network size, since
these techniques require multiple DHT-lookups per query.
CAN and Hypercube based approaches, i.e., pSearch [101]
and Joung et al. [49], respectively, will exhibit degraded per-
formance in large networks due to their requirement of higher
dimensional structures in larger networks. On the other hand
Chord-based techniques will suffer from increased churn rates
of larger networks. Chord’s limitation in presence of churn is
due to its one-way routing table and finger table maintenance
overhead. In these cases, Kademlia routing protocol can be
adapted instead of Chord. Kademlia has a two-way symmetric
routing table and its routing table is automatically updated
during the query or advertisement routing process without any
extra overhead.
Scalability is a major issue in signature and content routing

techniques, due to the indeterminacy of their routing mech-
anisms. In these systems search completeness can not be
guaranteed. Success probability, i.e., probability of finding at
least one result, is proportional to the percentage of visited
peers and replication factor. Thus in large networks these
systems will perform poorly and many queries will fail despite
the presence of a matching result somewhere in the network.

D. Flexibility

As depicted in Figures 2, 5 and 7, inexact or similarity based
matching amongst advertised and queried information is es-
sential in all of the three application domains considered in this
survey. However, existing routing techniques do not offer effi-
cient mechanism for inexact matching in distributed systems.
DHT-based techniques have sub-linear relationship between
network size and routing cost. However, these systems support
exact match queries only. Systems using DHT-techniques for
supporting inexact query use an additional conversion layer
in order to transform each similarity matching query to more
than one exact queries. For example, Squid [91] uses HSFC,
pSearch [101] uses LSI/VSM, XP2P [19] uses fingerprinting,
etc. This conversion mechanism trades-off query semantics for
routing efficiency.
Signature routing and content routing techniques, on the

other hand, retain semantic information within the query
string and use this information for routing. Majority of the
signature routing and content routing based approaches use
either semi-structured or unstructured indexing, resulting into
poor routing performance in large networks. SkipNet [43] and
SkipGraph [13] are the only approaches in these categories
offering structured indexing over content routing. These two
content routing approaches are based on SkipList [76] and

support prefix matching only. Moreover, peer join and neigh-
bor link maintenance overhead in these two systems is high,
making them inappropriate for large overlay networks.
In summary, inexact matching is necessary in large overlay

networks due to high population and content dynamism. But
none of the existing search techniques provide satisfactory
solution for both efficient routing and inexact matching capa-
bilities. A good solution should adopt structured indexing and
content or signature routing techniques for supporting efficient
routing and inexact matching queries, respectively. In addition,
the solution should have low network overhead for join, leave,
failure recovery and link maintenance.

E. Search Completeness

Perception of search-completeness varies in structured and
unstructured search techniques. Structured search techniques
strive to discover all of the advertised objects matching a
query. Unstructured and semi-structured techniques, on the
other hand, focus on the discovery of at least one matching
result, even if the searched object is rare and is not well repli-
cated in the network. Very high levels of search completeness
are achievable in DHT-based structured routing approaches.
Since the location of an index within the network is well
specified, all of the matching indices can be discovered with
high routing efficiency.
Content routing and signature routing based search methods

use unstructured or semi-structured indexing mechanisms,
which cannot deterministically store and locate the indices
within the network. In these approaches, the probability of
discovering an object depends on the percentage of visited
peers and the level of replication. Hence for large networks,
these systems cannot provide complete search results. For
discovering rare objects these systems generate a huge query
traffic, making them inappropriate for large networks.

F. Fault-resilience

A good distributed search mechanism should function un-
interruptedly in a continuously changing overlay topology.
Replication and redundant routing paths are necessary for
ensuring resilience to peer failures. Structured indexing tech-
niques, including Squid [91], pSearch [101], SkipNet [43],
etc., exhibit poor fault resilience due to a number of rea-
sons. Firstly, structured indexing techniques impose strict
restrictions on index placement within the overlay, which
incurs high index maintenance overhead during node join and
leave/failure. Secondly, constraints for neighbors selection are
strictly defined in structured indexing techniques, which makes
neighbor link maintenance overhead significant in presence of
frequent arrival and departure of nodes.
Compared to structured indexing techniques, semi-

structured indexing techniques have relaxed constraints on
neighbor selection and index placement. As a result these
techniques can adapt to population dynamism more easily
than structured indexing techniques. Unstructured indexing
techniques are the most resilient to population and content
dynamism. Since there exists no restriction on neighborhood
selection and index placement, topology maintenance over-
head is minimal in these networks. Peers can join or leave the

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 165

overlay without hampering regular operation of the system.
However, the resilience in unstructured indexing techniques is
achieved at the cost of reduced routing efficiency and search
completeness.

G. Load Distribution

To exploit the heterogeneity in large distributed systems,
it is required to distribute the load proportional to the par-
ticipating peers’ capabilities. In structured address routing
techniques, index placement within the overlay is strictly
defined by the routing mechanism, which makes it expensive
and infeasible to dynamically adjust load distribution among
the available peers. For example, in pSearch [101], Squid [91]
and Twine [14], nodes responsible for common keywords or
popular attribute-value pairs may become heavily loaded and
choke the performance of the system. Since key assignment
is not performed according to the capabilities of the nodes,
these systems may suffer from performance problems in
heterogeneous environments.
Semi-structured and unstructured indexing techniques

adopting content or signature routing mechanisms can success-
fully exploit the heterogeneity in the participating nodes to im-
prove search performance. For example GIA [27], APS [102]
and PLR [82], use neighbors’ capabilities like connection
bandwidth, stored index size, responsiveness etc., to make
routing decisions at each hop and improve over blind routing
mechanisms, like flooding and random walk.

IX. CONCLUSION

In this work we have surveyed the prominent search tech-
niques in three application domains, namely, P2P content shar-
ing, Service Discovery and PDBS. These domains exhibit the
same characteristics of high content volatility and population
dynamism. The majority of the search techniques in these
three domains focus on bandwidth efficient routing mecha-
nisms for enabling semantic-aware and flexible search. Proper
combination of indexing and routing mechanisms is essential
for achieving bandwidth efficiency and expressiveness, within
the same system.
DHT-based address routing techniques utilizing structured

indexing mechanisms provide highest level of bandwidth
efficiency, but these techniques do not support partial matching
between advertisements and queries. On the other hand, con-
tent routing techniques utilizing unstructured routing mecha-
nisms deliver the highest level of expressiveness, but exhibit
very low bandwidth efficiency. Semi-structured indexing tech-
niques do not provide any guarantee on search completeness,
yet they offer moderate level of query expressiveness.
The combination of structured indexing and signature rout-

ing mechanisms seems to be a promising candidate for an-
swering the efficiency and flexibility requirements. The reason
behind this assertion can be explained as follows. Structured
indexing techniques provide guaranteed bandwidth efficiency
by pinpointing the location of a content in the network,
while signature routing uses the semantic information in query
expression for making intermediate routing decisions and
message forwarding.

Over the last few years a large body of research works
has explored the issues related to distributed search and a
number of alternate solutions have been proposed. Each of
these solutions has its own merits and demerits, but none
of them is satisfactory with respect to bandwidth efficiency
and query expressiveness requirements, simultaneously. As
explained in Table V, all possible combinations of indexing
and routing mechanisms have not been explored yet. Hence,
future research in distributed search should focus on unveiling
the unexplored alternatives in order to realize the promise
for an efficient and flexible distributed search in large scale
distributed systems..

ACKNOWLEDGMENT

This work was supported in part by the Natural Science
and Engineering Council of Canada (NSERC) and in part
by the WCU (World Class University) program through the
Korea National Research Foundation funded by the Ministry
of Education, Science and Technology (Project No. R31-2008-
000-10100-0).

REFERENCES

[1] Alta Vista website, [Online]. Available: http://www.altavista.digital.
com/.

[2] The Gnutella website, [Online]. Available: http://www.gnutella.com/.
[3] The KaZaA website, [Online]. Available: http://www.kazaa.com/.
[4] The Morpheus website, [Online]. Available: http://morpheus.com/.
[5] The Napster website, [Online]. Available: http://www.napster.com/.
[6] Yahoo website, [Online]. Available: http://www.yahoo.com/docs/info/

faq.html.
[7] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. “The

Design and Implementation of an Intentional Naming System," in
Symp. Operating Syst. Principles, pp. 186–201, 1999.

[8] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, T. Li, N. Limam, J. Xiao,
and J. Ziembicki. “Service naming in large-scale and multi-domain
networks," IEEE Commun. Surveys Tuts., vol. 7, no. 3, pp. 38–54,
July 2005.

[9] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba. “Resource
and service discovery in large-scale multi-domain networks," IEEE
Commun. Surveys Tuts., vol. 9, no. 4, pp. 2–30, Oct. 2007.

[10] S. Androutsellis-Theotokis and D. Spinellis. “A survey of peer-to-peer
content distribution technologies," ACM Comput. Surveys, vol. 45, no.
2, pp. 195–205, Dec. 2004.

[11] G. Antoniou and F. V. Harmelen. Web Ontology Language: OWL.
Handbook on Ontologies in Information Systems, pp 76–92, 2003.

[12] J. Aspnes, M. Safra, and Y. Yin. “Ranged hash functions and the price
of churn," in ACM-SIAM Symp. Discrete Algorithms, pp. 1066–1075,
Jan. 2008.

[13] J. Aspnes and G. Shah. “Skip graphs," in Proc. Annual ACM-SIAM
Symp. Discrete Algorithms (SODA), pp. 384–393, 2003.

[14] M. Balazinska, H. Balakrishnan, and D. Karger. “INS/Twine: A scal-
able peer-to-peer architecture for intentional resource discovery. in
Proc. International Conf. Pervasive Comput., pp. 195–210. Springer-
Verlag, 2002.

[15] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The
Google cluster architecture. IEEE Micro, vol. 23, no. 2, pp. 22–28,
Apr. 2003.

[16] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer.
“P2p content search: Give the web back to the people," in International
Workshop Peer-To-Peer Syst. (IPTPS), 2006.

[17] I. Bhattacharya, S. R. Kashyap, and S. Parthasarathy. “Similarity
searching in peer-to-peer databases," in Proc. IEEE Intl. Conf. Dis-
tributed Comput. Syst. (ICDCS), pp. 329–338, 2005.

[18] B. H. Bloom. “Space/time trade-offs in hash coding with allowable
errors," Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[19] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. “XPath lookup
queries in P2P networks," in Proc. ACM International Workshop Web
Inf. Data Management (WIDM), pp. 48–55, New York, NY, USA, 2004.
ACM Press.

166 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

[20] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard. Web Service Architecture, 2004. [Online]. Available.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[21] A. Broder and M. Mitzenmacher. “Network applications of bloom
filters: A survey," Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2003.

[22] D. Brookshier, D. Govoni, and N. Krishnan. JXTA: Java P2P Pro-
gramming. SAMS, 2002.

[23] M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott,
S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, and K. P.
Sycara. “DAML-S: Web service description for the semantic web,"
in Proc. International Semantic Web Conf. Semantic Web (ISWC), pp.
348–363, London, UK, 2002. Springer-Verlag.

[24] H. Cai and J. Wang. “Exploiting geographical and temporal locality to
boost search efficiency in peer-to-peer systems," IEEE Trans. Parallel
Distributed Syst., vol. 17, no. 10, p. 1189–1203, Oct. 2006.

[25] M. Cai and M. Frank. “RDFPeers: A scalable distributed RDF repos-
itory based on a structured peer-to-peer network," in International
World Wide Web Conf. (WWW), 2004.

[26] D. Chamberlin, J. Siméon, S. Boag, D. Florescu, M. F. Fer-
nández, and J. Robie. “XQuery 1.0: An XML query lan-
guage," W3C recommendation, W3C, Jan. 2007. [Online]. Available:
http://www.w3.org/TR/2007/REC-xquery-20070123/.

[27] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
“Making Gnutella-like P2P systems scalable," in Proc. ACM SIG-
COMM, pp. 407–418, 2003.

[28] D. Choon-Hoong, S. Nutanong, and R. Buyya. Peer-to-Peer Com-
puting: Evolution of a Disruptive Technology, ch. 2–Peer-to-Peer
Networks for Content Sharing, pp. 28–65. Idea Group Inc., 2005.

[29] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. “Freenet: A dis-
tributed anonymous information storage and retrieval system," Lecture
Notes Comput. Science (LNCS), 2009, pp. 46–66, 2001.

[30] E. Cohen, A. Fiat, and H. Kaplan. “Associative search in peer-to-
peer networks: Harnessing latent semantics. in Proc. IEEE INFOCOM,
2003.

[31] A. Crespo and H. Garcia-Molina. “Routing indices for peer-to-peer sys-
tems," in Proc. International Conf. Distributed Comput. Syst. (ICDCS),
2002.

[32] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H.
Katz. “An architecture for a secure service discovery service," in Proc.
International Conf. Mobile Comput. Netw. (MOBICOM), pp. 24–35,
1999.

[33] S. Daswani and A. Fisk. “Gnutella udp extension for scalable searches
(guess)," vol. 1.

[34] S. Decker, M. Schlosser, M. Sintek, and W. Nejdl. “Hypercup -
hypercubes, ontologies and efficient search on P2P networks," in
International Workshop Agents Peer-to-Peer Comput., July 2002.

[35] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. “The coDB ro-
bust Peer-to-Peer database system," in Proc. Workshop Semantics Peer-
to-Peer Grid Comput. International World Wide Web Conf. (WWW),
May 2004.

[36] M. Fuchs, P. Wadler, J. Robie, and A. Brown. “XML schema: Formal
description," W3C working draft, W3C, Sept. 2001. [Online]. Avail-
able: http://www.w3.org/TR/2001/WD-xmlschema-formal-20010925/.

[37] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. “Locating data sources
in large distributed systems," in Proc. VLDB Conf., 2003.

[38] P. Ganesan, Q. Sun, and H. Garcia-Molina. “Adlib: A self-tuning index
for dynamic peer-to-peer systems," in Proc. International Conf. Data
Eng. (ICDE), pp. 256–257, Los Alamitos, CA, USA, 2005. IEEE
Computer Society.

[39] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis. “Web
service discovery mechanisms: Looking for a needle in a haystack?"
in International Workshop Web Eng., 2004.

[40] T. Gu, D. Zhang, and H. K. Pung. “A two-tier semantic overlay network
for p2p search," in Proc. Intl. Conf. Parallel Distributed Syst., Dec.
2007.

[41] E. Guttman, C. Perkins, J. Veizades, and M. Day. “Service Location
Protocol (SLP), version 2," Technical report, IETF, RFC2608, [online].
Available: http://www.ietf.org/rfc/rfc2608.txt, June 1999.

[42] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and
I. Stoica. “Complex queries in DHT-based peer-to-peer networks," in
Proc. International Workshop Peer-to-Peer Syst. (IPTPS), pp. 242–259,
2002.

[43] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. “Skip-
Net: A scalable overlay network with practical locality properties," in
Proc. USENIX Symp. Internet Technol. Syst. (USITS), Mar. 2003.

[44] S. Herschel and R. Heese. Humboldt Discoverer: A semantic P2P index
for PDMS. in Proc. International Workshop Data Integration Semantic
Web (DISWeb’05), June 2005.

[45] T. Howes. “Rfc 2254: The string representation of ldap search filters,"
1997.

[46] H. Hu and A. Seneviratne. “Autonomic peer-to-peer service directory,"
IEICE/IEEE Joint Special Section Autonomous Decentralized Syst.,
vol. E88-D, no. 12, pp. 2630–2639, Dec. 2005.

[47] T. H. Hu, S. Ardon, and A. Seneviratne. Semantic-laden peer-to-peer
service directory. in Proc. IEEE Intl. Conf. P2P Comput., pp. 184,
2004.

[48] X. Jin, W. P. Ken Yiu, and S. H. Gary-Chan. “Supporting multiple-
keyword search in a hybrid structured peer-to-peer network," in Proc.
IEEE International Conf. Commun. (ICC), pp. 42–47, Istanbul, June
2006.

[49] Y. Joung, L. Yang, and C. Fang. “Keyword search in DHT-based peer-
to-peer networks," IEEE J. Sel. Areas Commun. (JSAC), vol. 25, no.
1, pp. 46–61, Jan. 2007.

[50] Y. Kalfoglou and M. Schorlemmer. “Ontology mapping: The state of
the art," Knowledge Eng. Rev. J. (KER), vol. 18, no 1, pp. 1–31, 2003.

[51] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. “A local
search mechanism for peer-to-peer networks," in Conf. Inf. Knowledge
Management (CIKM), 2002.

[52] D. R. Karger and M. Ruhl. “Simple efficient load balancing algorithms
for peer-to-peer systems," Theory Comput. Syst., vol. 39, vol. 6, pp.
787–804, Nov. 2006.

[53] F. B. Kashani, C. C. Chen, and C. Shahabi. “Wspds: Web services
peer-to-peer discovery service," in Proc. Intl. Conf. Internet Comput.,
pp. 733–743, 2004.

[54] M. Kay, M. F. Fernández, S. Boag, D. Chamberlin, A. Berglund,
J. Siméon, and J. Robie. “XML path language (XPath) 2.0.
W3C recommendation, W3C," Jan. 2007. [Online]. Available:
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

[55] J. Kim and G. Fox. “A hybrid keyword search across peer-to-peer fed-
erated databases," in Proc. East-European Conf. Advances Databases
Inf. Syst. (ADBIS), Sept. 2004.

[56] J. Kleinberg. “The small-world phenomenon: an algorithm perspec-
tive," in Proc. ACM Symp. Theory Comput., 2000.

[57] G. Koloniari and E. Pitoura. “Peer-to-peer management of xml data:
Issues and research challenges," ACM SIGMOD Record, vol. 34, no.
2, pp. 6–17, June 2005.

[58] G. Koloniari and E. Pitoura. “Peer-to-peer management of XML data:
Issues and research challenges," ACM SIGMOD Record, vol. 34, no.
2, pp. 6–17, 2005.

[59] A. Kumar, J. Xu, and E.W. Zegura. “Efficient and scalable query rout-
ing for unstructured peer-to-peer networks," in Proc. IEEE INFOCOM,
pp. 1162–1173, 2005.

[60] O. Lassila and R. R. Swick. “Resource description framework
(RDF) model and syntax specification, supersed work, W3C,"
Feb. 1999. [Online]. Available: http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222.

[61] C. Lee and S. Helal. “Protocols for service discovery in dynamic and
mobile networks," International J. Comput. Research, vol. 11, no. 1,
pp. 1–12, 2002.

[62] M. Li, W. Lee, and A. Sivasubramaniam. “Neighborhood signatures
for searching P2P networks," in Proc. Seventh International Database
Eng. Appl. Symp. (IDEAS), pp. 149–159, 2003.

[63] Y. Li, F. Zou, Z. Wu, and F. Ma. “PWSD: A scalable web service
discovery architecture based on peer-to-peer overlay network," in Proc.
APWeb, Lecture Notes Ccomput. Science (LNCS), vol. 3007, 2004.

[64] L. Liu, K. D. Ryu, and K. Lee. “Supporting efficient keyword-based
file search in peer-to-peer file sharing systems," in Proc. GLOBECOM,
2004.

[65] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. “A survey and
comparison of peer-to-peer overlay network schemes," IEEE Commun,
Surveys, pp. 72–93, Second Quarter 2005.

[66] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. “A survey and
comparison of peer-to-peer overlay network schemes," IEEE Commun.
Surveys Tuts., vol. 7, no. 2, pp. 72–93, 2005.

[67] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. “Search and replication
in unstructured peer-to-peer networks," in Proc. International Conf.
Supercomput. (ICS), 2002.

[68] P. Maymounkov and D. Mazireres. “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric," in Proc. International Workshop
Peer-to-Peer Syst. (IPTPS), pp. 53–65. Springer-Verlag, Mar. 2002.

[69] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood. “Home networking
with Universal plug and play," IEEE Commun. Mag., pp. 104–109,
Dec. 2001.

AHMED and BOUTABA: A SURVEY OF DISTRIBUTED SEARCH TECHNIQUES IN LARGE SCALE DISTRIBUTED SYSTEMS 167

[70] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. “Peer-to-peer computing," Tech.
Rep. HPL-2002-57R1, HP Labs, 2002.

[71] M. Montebello and C. Abela. “DAML enabled web service and agents
in semantic web," in Workshop Web, Web Services Database Syst.,
Lecture Notes Ccomput. Science (LNCS), 2003.

[72] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunk-
horst, and A. Loser. “Super-peer-based routing strategies for RDF-
based peer-to-peer networks," J. Web Semantics, vol. 1, no. 2, pp.
177–186, Feb. 2004.

[73] W. Siong Ng, B. Chin Ooi, K. Lee Tan, and A. Zhou. “PeerDB: A
P2P-based system for distributed data sharing," in Proc. International
Conf. Data Eng. (ICDE), pp. 633–644, 2003.

[74] M. Tamer Ozsu and P. Valduriez. Principles of Distributed Database
Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[75] E. Prud’Hommeaux and A. Seaborne. “SPARQL query language for
RDF," Working Draft WD-rdf-sparql-query-20061004, World Wide
Web Consortium (W3C), Oct. 2006.

[76] W. Pugh. “Skip lists: A probabilistic alternative to balanced trees,"
Commun. ACM, vol. 33, no. 6, pp 668–676, 1990.

[77] M. Rabin. “Fingerprinting by random polynomials," Technical report,
CRCT TR-15-81, Harvard University, 1981.

[78] E. Rahm and P. Bernstein. “A survey of approaches to automatic
schema matching," International J. Very Large Data Bases (VLDB),
vol. 10, no. 4, pp. 334–350, 2001.

[79] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw-Hill Professional, 2002.

[80] R. Ranjan, A. Harwood, and R. Buyya. “Peer-to-peer-based resource
discovery in global grids: A tutorial," IEEE Commun. Surveys Tuts.,
vol. 10, no. 2, pp. 6–33, 2008.

[81] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. “A
scalable content-addressable network," in Proc. ACM SIGCOMM, pp.
161–172, 2001.

[82] S. Rhea and J. Kubiatowicz. “Probabilistic location and routing," in
Proc. IEEE INFOCOM, 2002.

[83] J. Risson and T. Moors. “Survey of research towards robust peer-to-
peer networks: Search methods," Comput. Netw., vol. 50, no. 17, pp.
3485–3521, Dec. 2006.

[84] P. Rompothong and T. Senivongse. “A query federation of UDDI reg-
istries," In Proc. International Symp. Inf. Commun. Technol. (ISICT),
pp. 578–583, 2003.

[85] P. Rosch, K. Sattler, C. Weth, and E. Buchmann. “Best effort query
processing in dht-based p2p systems," in Proc. Intl. Conf. Data Eng.
(ICDE), 2005.

[86] K. W. Ross and D. Rubenstein. Tutorial on p2p systems. presented at
Infocom, 2004.

[87] A. Rowstron and P. Druschel. “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. in Proc.
IFIP/ACM International Conf. Distributed Syst. Platforms (Middle-
ware), Heidelberg, Germany, Nov. 2001.

[88] H. Sagan. Space-filling Curves. Springer-Verlag, 1994.
[89] emphSalutation Consortium. Salutation architecture specification ver-

sion 2.0c, June 1999.
[90] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. “A scalable and

ontology-based P2P infrastructure for semantic web services," in Proc.
International Conf. peer-to-peer Comput. (P2P), Sept. 2002.

[91] C. Schmidt and M. Parashar. “Enabling flexible queries with guarantees
in P2P systems," IEEE Internet Comput., vol. 8, no. 3, pp. 19–26, June
2004.

[92] C. Schmidt and M. Parashar. “Peer-to-peer approach to web service
discovery. in WWW: Internet Web Inf. Syst., vol. 7, pp. 211–229, 2004.

[93] A. Seaborne. “RDQL - a query language for RDF," (member submis-
sion). Technical report, W3C, Jan. 2004.

[94] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. “Making peer-
to-peer keyword searching feasible using multi-level partitioning," in
Proc. International Workshop Peer-to-Peer Syst. (IPTPS), pp. 151–161.
Springer, 2004.

[95] P. Shvaiko and J. Euzenat. “A survey of schema-based matching
approaches," J. Data Semantics, vol. IV, pp. 146–171, 2005.

[96] C. M. Sperberg-McQueen, Tim Bray, Eve Maler, Jean Paoli, and
François Yergeau. “Extensible markup language (XML)," 1.0 (fourth
edition). W3C recommendation, W3C, Aug. 2006. [Online]. Available:
http://www.w3.org/TR/2006/REC-xml-20060816.

[97] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. “Chord: A scalable peer-to-peer lookup

protocol for internet applications," IEEE/ACM Trans. Netw. (TON), vol.
1, pp. 17–32, 2003.

[98] M. Stokes. “Gnutella2 specifications part one," [Online]. Available:
http://www.gnutella2.com/gnutella2 search.htm.

[99] Sun Microsystems. Jini Technology Core Platform Specification, Oct.
2000. [Online]. Available: http://www.sun.com/jini/specs/.

[100] C. Tang and S. Dwarkadas. “Hybrid global-local indexing for efficient
Peer-to-Peer information retrieval," in Proc. Symp. Netw. Syst. Design
Implementation (NSDI), June 2004.

[101] C. Tang, Z. Xu, and M. Mahalingam. “PSearch: Information retrieval
in structured overlays," ACM SIGCOMM Comput. Commun. Rev., vol.
33, no. 1, pp 89–94, 2003.

[102] D. Tsoumakos and N. Roussopoulos. “Adaptive probabilistic search
for peer-to-peer networks," in Proc. International Conf. Peer-to-Peer
Comput. (P2P), 2003.

[103] D. Tsoumakos and N. Roussopoulos. “Analysis and comparison of p2p
search methods," in Proc. International Conf. Scalable Inf. Syst., pp.
25–39, New York, NY, USA, 2006. ACM Press.

[104] UDDI Consortium. UDDI Technical White Pa-
per, 2002. [Online]. Available: http://www.uddi.org/
pubs/Iru_UDDI_Technical_White_Paper.pdf.

[105] M. Uschold and M. Gruninger. “Ontologies: Principles, methods and
applications," Knowledge Sharing Rev., vol. 11, no. 2, 1996.

[106] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster,
H. Neumann, and S. Huebner. “Ontology-based integration of informa-
tion - a survey of existing approaches," in Proc. Workshop Ontologies
Inf. Sharing International Joint Conf. Artificial Intelligence (IJCAI),
pp. 108–117, 2001.

[107] B. Yang and H. Garcia-Molina. “Improving search in peer-to-peer
networks," in Proc. International Conf. Distributed Comput. Syst.
(ICDCS), 2002.

[108] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
“Tapestry: A resilient global-scale overlay for service deployment,"
IEEE J. Sel. Areas Commun. (JSAC), vol. 22, no. 1, pp. 41–53, Jan.
2004.

[109] F. Zhu, M. Mutka, and L. Ni. “Classification of service discovery in
pervasive computing environments," Technical Report MSU-CSE-02-
24, Michigan State University, East Lansing, 2002.

Reaz Ahmed is working as Assistant Professor
at the department of Computer Science and En-
gineering, Bangladesh University of Engineering
and Technology (BUET), Dhaka, Bangladesh. He
received the PhD. Degree in Computer Science from
the University of Waterloo, in 2007. He received the
MSc. and BSc. degrees in Computer Science from
BUET in 2002 and 2000, respectively. He received
the IEEE Fred W. Ellersick award 2008. His re-
search interests include wide area service discovery,
loosely-coupled distributed databases and content-

sharing peer-to-peer networks with focus on search flexibility, efficiency and
robustness.

Raouf Boutaba is a Professor of Computer Science
and a Cheriton Faculty Fellow at the University of
Waterloo (Canada). His main research interests are
in network, resource and service management. He is
the founding Editor-in-Chief of the IEEE Transac-
tions on Network and Service Management and on
the editorial boards of other journals. He served as a
distinguished lecturer of the IEEE Communications
and the IEEE Computer Societies. He also served
as the chairman of the IEEE Technical Committee
on Information Infrastructure and the IFIP Working

Group on Network and Distributed Systems Management. He has received
several recognitions such as the Premiers research excellence award, the
IEEE Harold Sobol, Fred W. Ellersick, Joe LoCicero awards and the Don
Stokesburry award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

