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Abstract Cloud computing is by far the most cost-effective
technology for hosting Internet-scale services and applica-
tions. The MapReduce model, in particular, is largely used
nowadays in Cloud infrastructures to meet the demand of
large-scale data and computation intensive applications. De-
spite its success, the implications of MapReduce on the
management of Cloud workload and cluster resources are
still largely unstudied. In this article, we show that dealing
with the heterogeneity of workloads and machine capabili-
ties is a key challenge. In today’s cloud environment, work-
loads can have varied sizes, lengths, resource requirements,
and arrival rates. The machines also have varied CPU, mem-
ory, I/O speed, and network bandwidth capacities. Jointly
they pose difficult challenges pertaining, among others, to
job scheduling, task and data placement, resource sharing
and resource allocation. We analyze the heterogeneity chal-
lenge in these specific problem domains and survey the rep-
resentative state-of-the-art works that try to address them.
We found that although advances are made that partially ad-
dress some of the outlined challenges, there are even more
open challenges yet to be explored, and this topic at large is
ripe for scientific contributions.
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1 Introduction

Cloud computing has become the most cost-effective tech-
nology for hosting Internet-scale applications. Companies
like Google and Facebook generate enormous volumes of
data on a daily basis that need to be processed in a timely
manner. To meet this requirement, Cloud providers use com-
putational models such as MapReduce [9] and Dryad [17].
In these models, a job spawns many small tasks that can
be executed concurrently on multiple machines, resulting in
significant reduction in job completion time. Furthermore,
to cope with software and hardware exceptions frequent in
large-scale clusters, these models provide built-in fault tol-
erance features that automatically restart failed tasks when
exceptions occur. As a result, these computational models
are very attractive not only for running data-intensive jobs,
but also for computation-intensive applications.

The MapReduce model, in particular, is largely used
nowadays in Cloud infrastructures for supporting a wide
range of applications and has been adapted to several com-
puting and cluster environments. Despite this success, the
adoption of MapReduce has implications on the manage-
ment of Cloud workload and cluster resources, which is still
largely unstudied. In particular, many challenges pertaining
to MapReduce job scheduling, task and data placement, re-
source allocation, and sharing are yet to be addressed.

Several studies attempted to characterize the workload in
production MapReduce clusters (e.g., [5, 6, 18, 21, 28]). An
analysis of the data reported in these studies reveals a key
observation about the heterogeneity of the workload in terms
of job sizes, lengths, resource requiremens and arrival rate.
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The difference in job sizes can span several orders of mag-
nitude. Although many jobs contain only a few tasks, a large
job can spawn thousands of parallel tasks to speed up its ex-
ecution, consuming a lot of computation resources in a short
period. The length of jobs can also differ significantly. Al-
though most jobs have short running time, some jobs can
take a very long time (e.g., several days) to complete. Jobs
also have heterogeneous resource demands. Some jobs are
CPU intensive, some are memory intensive, and some have
high demand for I/O speed or network bandwidth. For in-
stance, Mishra et al. [21] reported that Google’s compute
clusters are often shared by application tasks with diverse
service level requirements in terms of throughput and la-
tency. Finally, like many other service systems, the arrival
rate of job requests can be spiky. In order to ensure accept-
able response time during peak workload time, the capacity
of a cluster is much higher than what an average workload
needs, resulting in low resource utilization during off-peak
periods. To address this issue, a common practice is to share
the cluster resources by mixing jobs with different priorities.
Typically, production jobs (i.e., jobs that generate revenue)
are given higher priorities than nonproduction jobs (e.g., re-
search experiments). As a result, although production jobs
account for a small percentage of the total job population,
they are allowed to consume a significant portion of the clus-
ter resources.

In addition to workload heterogeneity, the machines in
MapReduce clusters are heterogeneous in resource capac-
ities and performance capabilities. This is because Cloud
providers typically leverage computing resources purchased
from previous investments, resulting in multiple generations
of server and networking equipment within the same cluster.

The aforementioned heterogeneity of workloads and ma-
chines introduces significant complexity, which needs to
be effectively dealt with in order to achieve efficient Map-
Reduce computations and cluster management. More specif-
ically, in job scheduling, heterogeneous job characteristics
and requirements affect efficiency and fairness of job com-
pletions; in data and task placement, heterogeneity hinders
job completion rate and increases communication overhead;
in resource sharing, heterogeneous job requirements calls
for flexible and job-specific capacity allocation to achieve
optimal machine utilization; in performance-aware resource
allocation, performance models need to be developed in or-
der to ensure the performance objectives of each job are
achieved. There has been a large body of recent work on im-
proving the performance of MapReduce computations. As
MapReduce applications are becoming critical to the oper-
ations of cloud companies, optimizing their performance is
becoming a hot research topic and has attracted many re-
searchers from different fields.

The contributions and organization of this paper are as
follows. We first provide an overview of the MapReduce

computational model and describe Apache Hadoop, the
most popular open-source implementation of MapReduce
(Sect. 2). Second, we provide a detailed analysis of work-
load characteristics in production clusters at Microsoft,
Google, and Facebook (Sect. 3). Our analysis particularly
emphasizes the heterogeneity of workloads and machines in
Cloud computing environments. Third, we discuss the key
research challenges posed by heterogeneity in production
MapReduce clusters and highlight related research direc-
tions (Sect. 4). Finally, we survey in Sect. 5 the state-of-
the-art work trying to address some of these key research
challenges and draw our conclusions in Sect. 6.

2 Cloud computational models

Cloud computing is defined by the National Institute of
Standards and Technology (NIST) as a model for enabling
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or ser-
vice provider interaction [22]. Essentially, Cloud computing
is not a new technology, but rather a new operational model
that uses existing technologies to meet the technological and
economical requirements of today’s demand for high per-
formance, flexible, scalable, and cost-effective IT infrastruc-
ture. Cloud computing is similar to Grid computing in that
it also employs distributed resources to achieve application-
level objectives. However, cloud computing takes one step
further by leveraging virtualization technologies at multi-
ple levels (hardware and application platform) to realize re-
source sharing and dynamic resource provisioning. Cloud
computing adopts a utility-based pricing scheme entirely for
economic reasons. With on-demand resource provisioning
and utility-based pricing, service providers can truly maxi-
mize resource utilization and minimize their operating costs.
Virtualization is fundamental to Cloud computing, as it pro-
vides the capability of pooling computing resources from
clusters of servers and dynamically assigning or reassign-
ing virtual resources to applications on-demand. For a de-
scription of Cloud computing concepts, architectural prin-
ciples, state-of-the-art implementations and research chal-
lenges, the reader is referred to [29]. The focus of this paper
is on Cloud computational models designed for large scale
computations commonly used in Cloud environments to-
day. In particular, this section introduces MapReduce and its
most popular open-source implementation, Apache Hadoop.

2.1 The MapReduce computing model

Parallel computing frameworks like MapReduce [9] and
Dryad [17] have become the dominant programming mod-
els for data-intensive computing in Cloud computing envi-
ronments. Originally proposed by Google, MapReduce has
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been designed for processing and generating large data sets
[9]. In essence, MapReduce exploits the well-known divide
and conquer design philosophy. A MapReduce job consists
of two types of tasks, namely map and reduce tasks. The
original input of a MapReduce job is divided into multiple
file blocks of equal size, typically 64MB or 128MB. Each
file block is processed by a map task that generates a set of
intermediate key/value pairs. Map tasks are independent of
each other and do not communicate or exchange data during
execution. Reduce tasks are responsible for merging all the
intermediate values associated with the same key and gen-
erate the final output. For example, consider a word count
job whose input may consist of a large collection of files.
A single map task emits each word plus an associated count
of occurrences in the particular file block it processes. These
map tasks are executed independently of each other. In the
next phase, intermediate results produced by map tasks will
be shuffled, sorted, and it is the responsibility of reduce tasks
to compute the total count for each word and generate the fi-
nal output.

The MapReduce computing model has two significant
benefits. First, it is scalable. Map tasks as well as reduce
tasks can be distributed and executed in parallel on multiple
machines. A large job with hundreds of gigabytes input files
will spawn thousands of tasks that may be distributed across
the whole cluster and executed at the same time to signifi-
cantly cut down the job completion time. Second, this model
is fault tolerant which is of vital importance since software
and hardware exceptions are common in large-scale clus-
ters. Because tasks are independent within each phase (map
or reduce), every single task can be killed and restarted in-
dependently when exceptions happen, without having to re-
execute any of the other tasks. Moreover, job schedulers
speculatively re-execute tasks that appear to be slower than
other tasks of a particular job to further cut down on job
response time. These reasons make the MapReduce model
ideal for running large-scale data- and computation- inten-
sive applications in Cloud environments.

2.2 Apache Hadoop

Apache Hadoop [4] is a framework that allows for the dis-
tributed processing of large data sets across clusters of com-
puters. As a subproject of Hadoop, Apache Hadoop is an
open source implementation of the MapReduce model pro-
posed by Google. It is now widely used in many Cloud envi-
ronments including those of Yahoo!, Facebook, and twitter.

Apache Hadoop uses a master-slave architecture. The
master consists of a JobTracker and a NameNode, which
usually run on dedicated machines in a large cluster.
A Hadoop cluster typically has multiple slaves, each of
which acts as both a DataNode and TaskTracker. When a file
is copied into Hadoop clusters, the Hadoop Distributed File

System (HDFS) [14] splits the file into multiple file blocks
of equal size, and stores these file blocks on DataNodes.
HDFS uses NameNode to locate a file block.

Before users submit their jobs, input files of jobs must
have already been copied into the cluster’s filesystem. Once
the data becomes available, users can submit jobs to the Job
Tracker, and the Job Tracker uses job schedulers to assign
tasks spawned by the job to TaskTrackers that actually ex-
ecute these tasks. The data block of a job may or may not
reside on a TaskTracker that executes the tasks of that par-
ticular job. In the latter case, data must be transferred to
that TaskTracker before the tasks can proceed. TaskTrack-
ers report the status of tasks to the JobTracker in heartbeat
messages every few seconds, and the Job Tracker uses this
information to make scheduling decisions, speculatively re-
execute tasks, and restart failed tasks in case of exceptions.

3 The heterogeneity challenge

Cloud computational models must consider many factors
such as energy consumption, resource utilization, job re-
sponse time, performance variability and cost. These factors
often conflict with one another, and as a result tradeoffs are
often required. The impact of these factors is further exac-
erbated by the heterogeneity of workloads and resources in
Cloud computing environments. Understanding the impact
of heterogeneity is fundamental for devising such complex
tradeoffs, and consequently achieving better performance in
a cost-effective manner.

Recent literature reported useful data on typical work-
loads in production clusters at Microsoft, Google, and Face-
book. Based on these data, we provide in this section a de-
tailed analysis of the heterogeneity challenge faced by Cloud
computational models in terms job lengths, job sizes, arrival
rates, performance requirements, and machine capabilities.

3.1 Bimodal distribution of job lengths

Table 1 shows the distribution of MapReduce and Dryad job
response time. The data are collected from a dedicated 600-
node Hadoop cluster at Facebook [28], a 40-node Hadoop at
an anonymous Internet Company (hereon referred to as IC)
[5], and a production cluster used inside Microsoft’s search
division [18].

Table 1(A) shows that at Facebook the median job length
is 84 s and the average length of jobs is between 300 s and
450 s. Table 1(B) indicates that the median as well as av-
erage job response times at IC are close to those at Face-
book. In the Microsoft’s research cluster, the median job is
approximately 30 minutes, as shown in Table 1(C). Average
job lengths at Facebook and IC are close to Google’s statis-
tic of 395 s [21], while significantly shorter than the average
length of jobs in Microsoft’s research cluster.
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Table 1 CDF of MapReduce/Dryad jobs response times at Facebook,
Internet Company, and Microsoft

(A): Data in a Hadoop cluster at Facebook

%Jobs 40% 50% 60% 70% 80%

Job Run time (s) 55 90 120 250 350

%Jobs 90% 95% 98% 99% 99.5%

Job Run time (s) 650 1200 3000 5000 >10000

(B): Data in a Hadoop cluster at Internet Company

%Jobs 40% 50% 60% 70% 80% 90%

Job Run time (s) 45 80 130 190 450 650

(C): Data in a Microsoft research cluster

%Jobs 18.9% 28.0% 34.7% 51.3% 72.0% 95.7%

Run time (minutes) 5 10 15 30 60 300

Table 2 CDF of number of map tasks In a Hadoop cluster at Facebook

% Jobs 39% 55% 69% 78% 84% 90%

#Maps 1 2 20 60 150 300

% Jobs 94% 97% 98% 99% 99.5% The largest in
a week

#Maps 500 1500 3065 3846 6232 25000

From Table 1, it is evident that most jobs in current Cloud
computing clusters are short. However, in all of the three
clusters there are long jobs with running time at least 2 to 3
orders of magnitude longer than the running time of the short
ones. Moreover, the distributions of job response time show
bimodal behavior, with a transition region between 200 and
400 seconds at Facebook and IC, and between 60 and 100
minutes at Microsoft.

More recently, similar observations have been reported
by Mishra et al. [21] on workload characteristics in Google’s
cloud backend. Even though their dataset contains non-
MapReduce jobs, the workload characteristics reported in
[21] are still similar to what we can see in Table 1. Specifi-
cally, the duration of task executions follows a bimodal dis-
tribution as tasks either have short or long running time.
Even though most tasks are short, long tasks are multiple
orders of magnitude longer than the short ones.

3.2 Bimodal distribution of jobs sizes

How about the distribution of job sizes? Table 2 describes
the job size distribution in terms of number of map and
reduces tasks at Facebook [28]. The number of map tasks

Fig. 1 CDF of the number of map and reduce tasks in a Hadoop cluster
at Internet Company [5]

reflects the input file size, because in Hadoop clusters, the
number of map tasks is equal to the input file size divided
by the size of a block, which is normally 64MB or 128MB.
From Table 2, it can be observed that most jobs have a small
number of map tasks. On the other hand, a small fraction of
large jobs have very large number of map tasks. In the ex-
perimental workload used in [28], which is designed based
on the metrics of real workloads at Facebook, among 100
jobs the 4 largest jobs account for 73% of the total 26,410
map tasks. Figure 1 shows the number of map and reduce
tasks per job at IC. Around 40% jobs contain less than 10
map or reduce tasks, but another 40% jobs or so have more
than 100 map or reduce tasks. Also, at Facebook and IC, the
smallest jobs each contains only one task, but a single large
job can have up to tens of thousands of tasks. Similar to the
length of jobs, the distribution of job sizes is bimodal [5].

Based on the above discussion, we know the job length
and size both can vary across multiple orders of magnitude.
Statistically, if we add the running time of all the jobs to-
gether, a few long jobs constitute a large portion of the total
running time; and if we add up the number of all the tasks,
a few large jobs take a large proportion of the total number
of tasks. These characteristics also match with have been ob-
served at Google [21] where most resources are consumed
by a few jobs with long duration that have large demands for
CPU and memory.

The aforementioned characteristics of MapReduce work-
loads share many similarities with what is already known
in traditional distributed computing systems [10]. Harchol-
Balter [16] observed workload in many real environments
and found that it has a mixture of job lengths and sizes span-
ning many orders of magnitude. Typically, there are many
small jobs and a few large ones. As another example, mea-
surements have shown that running time of Unix processes,
sizes of files transferred through the Web and stored in Unix
file systems have heavy-tailed distributions [11, 15, 16].

3.3 Fluctuating job arrival rates

Similar to job sizes and length, the arrival rate of Map-
Reduce jobs is also highly variable from time to time. The
distribution of job interarrival times at Facebook in October
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2009 was first reported in [28]. Chen et al. [5] also studied
job interarrival times at Facebook and IC. For both compa-
nies, interarrival time exhibits an on-off pattern according
to the time of the day. During daytime, job arrival can be
intense, with around 40% of job interarrival times less than
10 s. Consequently, the system is often very busy. However,
at nighttime, job arrival intervals can be very long. In this
case, most resources in the clusters become idle.

Combined with job characteristics discussed above, we
can further see that slot requests in clusters are even spikier
than job arrival rates. This is because the distribution of job
sizes is bimodal and, therefore, a large portion of the re-
quests for computation slots will arrive at the same time with
the arrival of large-sized jobs.

Bursty job arrival rate is also commonly observed in other
service systems like telecommunication networks and public
transportation systems. For example, in VoIP networks, the
traffic during the busiest hour accounts for approximately
15 to 20% of the traffic for that day [26]. Similar measure-
ments have been reported for Telecommunications networks
[19, 20]. In these systems, the average traffic intensity dur-
ing the busiest periods is 3 to 4 times higher than the average
workload intensity.

3.4 Heterogeneous resource requirements of jobs

In addition to the size and the length, jobs have very hetero-
geneous resource demands. Some jobs are CPU intensive,
some are memory intensive, and some have high demand
for I/O speed and network bandwidth. This diversity often
intensifies resource contention or resource wastage. For ex-
ample, when multiple CPU-intensive tasks are scheduled on
the same machine, the contention for CPU resource among
the tasks will cause them to slow down. At the same time,
however, there may be a large portion of unused memory
wasted on the same machine. Even if the amounts of un-
used resources on a single machine are small, they accu-
mulate to significant resource wastage in a large cluster. In
addition to contention for CPU, memory and networking re-
sources, MapReduce tasks also compete for locations where
they are executed. Many jobs have data blocks distributed
across the entire cluster. Constrained by network bandwidth,
processing a local data block is faster than copying data
from a remote machine and then processing it. During the
reduce phase, a single reduce task will communicate with
many map tasks, which may generate large volume of traf-
fic and cause network delay. Therefore, achieving data lo-
cality can significantly improve the performance of a data
intensive task. All these contentions can cause a common
phenomenon called stragglers, which refers to tasks signifi-
cantly lagging behind other tasks of a particular job. There-
fore, it is a key challenge to mitigate resource contention
while maintaining high resource utilization in the cluster.

3.5 Heterogeneous hardware

Machines in MapReduce clusters can also have heteroge-
neous capabilities. The reason is that in order to make use
of previous investment, there are often multiple generations
of server and networking equipments in a cluster [27]. Such
a heterogeneous execution environment has great impact on
resource sharing among jobs. In the original MapReduce pa-
per, Dean et al. [9] noted that speculative execution can im-
prove job response time by 44%, that is, job schedulers spec-
ulatively reexecute tasks that appear to be stragglers. This
technique was implemented in Apache Hadoop to improve
job response time. However, Zaharia et al. [27] observed that
the Hadoop job scheduler implicitly assumes cluster ma-
chines are homogeneous and tasks make progress linearly,
and decides when to speculatively reexecute tasks that ap-
pear to be stragglers based on these assumptions. With het-
erogeneous clusters, however, Hadoop’s scheduler can cause
severe performance degradation as some servers may have
better computation power whereas others can have better
storage capacity. It is therefore essential to leverage the het-
erogeneous capabilities of individual machines to best sat-
isfy resource requirements of individual tasks.

4 Research challenges posed by heterogeneity

The heterogeneity of workload and machines introduces
many challenges for effectively managing MapReduce clus-
ters in production Clouds. In this section, we discuss the key
challenges posed by heterogeneity, namely: job scheduling,
data and task placement, resource sharing, and resource al-
location.

4.1 Job scheduling

The responsibility of the job scheduler is to assign tasks
to machines with consideration for both efficiency and fair-
ness. To achieve efficiency, job schedulers must reduce re-
source wastage and maintain high utilization in the cluster.
At the same time, fairness is also an important concern since
a cluster is often shared by many jobs from multiple users.
The most common requirements with respect to fairness are
[18]: (1) preventing one user’s jobs from monopolizing the
whole cluster, delaying the completion of everyone else’s
jobs; (2) ensuring low latency for small or short jobs while
maintaining a high overall throughput. The level of fairness
also reflects stability of service quality, as job response time
becomes steady and predictable under fair scheduling. This
is because when traffic intensity is high in the cluster, fair
scheduling will ensure jobs of the same priority will experi-
ence similar delays so that no job will be delayed much more
heavily than others. Similarly, when workload is light, each
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job will experience similar increase in execution rate. A sys-
tem with reasonable and predictable response time may be
considered more desirable than a system that is faster on the
average but is highly variable in job performance.

In today’s production, clusters up to millions of tasks
with different performance objectives such as response time
or throughput are executed daily. The conjunction of such
scale and the heterogeneity of workloads and machines
makes the design of effective scheduling policies very chal-
lenging. To a certain extent, job scheduling can be seen as
a multi-dimensional bin-packing problem. Even if all tasks
have similar characteristics and all the cluster nodes have
the same capacity, it is still a well-known combinatorial NP-
hard problem. Furthermore, the heterogeneity in hardware,
the communication constraints as well as the dynamicity in
job arrival rates make this problem even harder to solve in
practice.

As mentioned in Sects. 3.1 and 3.2, job sizes and lengths
are not evenly distributed. Given that production and non-
production jobs often share the same cluster in practice,
preemption is commonly used to make sure high priority
tasks are given adequate resources and large jobs will not
starve others. However, preemption can sometimes signifi-
cantly delay the completion time of long running jobs and
results in a waste of resources. Indeed, the completion of
a job requires fulfillment of map tasks followed by reduce
tasks. This feature of the MapReduce programming model
results in situations where the whole job is held up in the sys-
tem even if a single task is lagging behind (possibly due to
repeated preemptions), leading in turn to increased response
time and wastage of resources.

4.2 Data and task placement

Another key issue somewhat related to MapReduce schedul-
ing is the placement of data and tasks. Modern MapReduce
clusters operate on top of distributed file systems (e.g.,
Google File System [12] and HDFS) where datasets are di-
vided into data blocks of fixed size and replicated on mul-
tiple machines. To reduce communication overhead and im-
prove job completion time, it is desirable to achieve data
locality by executing a task locally to the input data, or as
close to the input data as possible. This raises the question
of finding effective placement of data and tasks in Map-
Reduce clusters. It should be pointed out that data placement
and task placement are related problems that must be solved
jointly, as task placement is often dependent on data place-
ment. Both problems are difficult to solve, as they generalize
the bin packing problem. Finally, the communication pattern
between data and tasks (e.g., multicasting, shuffling, and in-
casting) must be taken into consideration when solving these
problems.

4.3 Resource sharing

In addition to deciding the placement of tasks on machines,
another challenge is to decide how physical resources in the
cluster, including CPU, memory, disk I/O, and network re-
sources, should be shared among tasks in each job. As tasks
have heterogeneous resource requirements, it is important to
decide how much resources should be allocated to each task
in order to mitigate performance bottlenecks and to achieve
high performance in terms of throughput. For computing
resources such as CPU, memory, and disk, Hadoop uses a
simple approach that divides the physical resources on each
machine into identical slots, and assigns each task to a single
slot. Even though this approach achieves fairness, it is often
suboptimal for tasks with different resource requirements.
For instance, consider a CPU intensive task colocated with
a disk intensive task. In this case, it is desirable to allocate
more CPU resources to the CPU intensive task, and more
disk resources to the disk intensive task. Such an objec-
tive is not achievable with the current slot-based allocation
scheme. Thus, more effective resource sharing strategies are
needed.

Another related issue is the sharing of network resources.
Data-intensive tasks often require transferring large volumes
of data across multiple machines. Given the limited net-
work capacity in data centers, it is essential to find fair yet
efficient mechanisms for allocating network bandwidth to
tasks with different usage characteristics and performance
requirements. Furthermore, common communication pat-
terns, such as multicasting, shuffling, and incasting must
be considered in solving the problem. Many research chal-
lenges need to be addressed in order to effectively support
these communication patterns so as to achieve fairness while
minimizing the total network cost.

4.4 Performance-aware resource allocation

Another challenge concerns job performance requirements.
As described in Sect. 3.4, jobs in production MapReduce
environments often have different performance objectives in
terms of job completion time. In this context, it is essential to
find suitable resource allocations to ensure the performance
objectives of each job are achieved. However, little work
so far focused on developing performance models for Map-
Reduce jobs, which makes performance management a dif-
ficult task. There are two important applications of a Map-
Reduce performance model: (1) estimating the completion
time and cost of a given job; and (2) finding appropriate re-
source allocation to satisfy job completion time constraints
while minimizing total resource cost. Both applications are
of crucial importance to job owners. However, developing
an accurate performance model for MapReduce jobs is not
easy, as it requires a careful modeling of every aspect of
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a MapReduce job, such as resource requirements, machine
capacity and capability, location of input data, failure rates,
and dynamic network conditions. Devising such a compre-
hensive performance model is a clear research opportunity.

5 Representative literature review

The goal of this section is to survey some of the prominent
works related to MapReduce, and how they address the chal-
lenges outlined in Sect. 4.

5.1 Job scheduling

Zaharia et al. [27] designed a new scheduling algorithm
called Longest Approximate Time to End (LATE), that is ro-
bust to heterogeneity in cluster machines. The LATE sched-
uler uses a simple heuristic to estimate the progress of
each task and launches speculative copies of tasks that take
longest time to finish compared to other tasks of this job on
fast machines. LATE has been incorporated into the current
version of Hadoop. In [28], a policy called delay scheduling
was designed to improve data locality. The job that should
be scheduled next does not launch tasks on a node that does
not have its file blocks. It waits for a small amount of time
to find opportunities to schedule on local machines. To avoid
starvation, the job is allowed to start nonlocal tasks if it has
been waiting for a long time. This policy effectively im-
proves data locality and job performance.

Quincy [18] is developed based on Microsoft Dryad
framework. It encodes the scheduling decisions as a flow
network where edge weights represent the demands of job
scheduling. In this way, the cost of each scheduling deci-
sion is quantified in terms of the cost for data transfer and
the overhead of terminating tasks. Each time a scheduling
decision needs to be made (for example, a new job arrives),
a min-cost flow algorithm [24] is used to find a minimum
cost assignment. Quincy then kills some of the running tasks
and launches new tasks to place the cluster in the configura-
tion returned by the algorithm. Each Dryad job has a root
task which monitors execution of other tasks, so the job
scheduler knows fine-grained information about the tasks.
Before making a decision, Quincy compares different types
of costs, such as the cost of transferring 100MB data across
certain switching layers and the cost of killing a task that
has been running for 60 seconds. In order for the compari-
son between different types of costs to be reasonable, sev-
eral parameters have to be carefully adjusted according to
the settings of the cluster as well as the characteristics of
the workloads. This can be a limitation of Quincy in some
cases. Quincy, as well as delay scheduling try to improve
job schedulability and resource utilization by designing or
improving allocation policies, that is, how to assign tasks to
resources.

In addition to allocation policies, post-scheduling actions
can further help improve performance. Ananthanarayanan
et al. [2] pointed out that heterogeneous machines and
data skew can cause stragglers that significantly prolong
job completion in an operational MapReduce cluster at
Microsoft. They presented Mantri, a system that monitors
tasks and reduces outliers using cause- and resource-aware
techniques. Mantri’s strategies include restarting outliers,
network-aware placement of tasks and protecting outputs
of valuable tasks. Similar to LATE, Mantri preempts and
restarts a task elsewhere if doing so can improve the task
running time. Compared to LATE, Mantri further consid-
ered the impact of network congestion on tasks progress,
which makes it achieve better performance since currently
most jobs are data intensive in MapReduce clusters. In the
experiments reported in [7], we observed that the average
network bandwidth between nodes could be as low as 40–
50KB per second on Amazon EC2 [1], although the data
transfer speed can be up to 10MB per second when the clus-
ter is not busy and many nodes in the same rack are compet-
ing for bandwidth.

Lastly, as MapReduce clusters are shared by jobs with
different priorities there is a need for designing preemp-
tion policies that achieve high performance while minimiz-
ing the negative impact of preemptions. Our previous work
on MapReduce scheduling deals with this issue [7]. During
our research experiments and in particular our experience
with Google’s production clusters, from time to time we
have observed that some tasks with long running time are
killed repeatedly when large production jobs arrive. Specif-
ically, the arrival of a large production job can significantly
cut down the share of each nonproduction job, resulting in
large number of tasks being preempted. Since production
jobs usually have short response time, after their completion
the low-priority jobs (e.g., nonproduction jobs) are allowed
to launch more tasks again. But before a long task can fin-
ish, it is often killed again when the next large production
job arrives. Consequently, jobs consisting of these long tasks
are heavily delayed and the resources allocated for their ex-
ecution are wasted. We proposed a simple mechanism that
works in conjunction with existing job schedulers to address
this problem and implemented it on top of Apache Hadoop.
Our technique, called Global Preemption (GP), consists in
judiciously selecting tasks to be preempted by job sched-
ulers in order to reduce the cost of preemption. The gist of
GP is to trade short-term fairness for better efficiency. In the
existing implementations of Hadoop job schedulers, when a
large production job arrives, the scheduler will first compute
the share of each job, and then kill tasks beyond each job’s
fair share to release slots when there is a shortage of slots to
accommodate this job. Usually, a certain number of most re-
cently launched tasks of each job will be killed. With GP, in-
stead of killing newly launched tasks of each individual job,
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the policy is to globally select the most recently launched
from all the running tasks rather than from an individual job
to minimize the cost of preemption. GP was evaluated under
various types of workloads in Amazon EC2 and was able
to improve system normalized performance by 15% during
busy periods by effectively avoiding unnecessary preemp-
tions while preserving fairness.

5.2 Data and task placement

Optimizing data and task placement is an important concern
in MapReduce clusters. For example, Mantri [2] studied
the problem of network-aware task placement using a sim-
ple greedy algorithm. More recently, Balaji et al. proposed
Purlieus [23], a resource allocation system that uses a set
of heuristics for optimizing the placement of both data and
tasks. Purlieus first categorizes jobs into map-input heavy
jobs and reduce-input heavy jobs, based on the input size of
their map and reduce tasks. For each job category, Purlieus
decides the placement of input data and then determines the
placement of tasks. For map-input heavy jobs, Purlieus sim-
ply places data based on storage utilization and expected
load on each machine. Afterward, a greedy algorithm is used
for placing tasks in order to minimize the distance between
task and input data. For reduce-input heavy jobs, Purlieus
first places data close to each other to account for shuf-
fling traffic generated for reduce tasks. An approximation
algorithm is used to find a densely connected subgraph for
data placement. Once data placement is determined, task
placement can be performed greedily similar to the case of
map-input heavy jobs. Experiments show Purlieus is able to
achieve significant reduction (70% in some cases) in cross-
rack traffic.

A related problem is data replication, which can be de-
scribed as a dynamic data placement problem. Data repli-
cation is an important technique for improving job perfor-
mance, because when multiple jobs need to access the same
input data, the disk I/O of the machine possessing the data
can become a performance bottleneck. By effectively repli-
cating the data, this performance bottleneck can be allevi-
ated. Recently, Ananthanarayanan et al. proposed Scarlett
[3] as a framework for dynamic data replication in Map-
Reduce clusters. The authors first observed uneven distri-
bution of file popularity in production MapReduce clus-
ters, and found that file popularity may change over time.
Based on these observations, Scarlett dynamically repli-
cates each data block using a prediction for file popular-
ity. The placement of replicas is decided based on the ex-
pected load of each machine. To reduce the overhead of dy-
namic data replication, Scarlett employs (1) a multisource
replication scheme similar to peer-assisted content distribu-
tion in P2P networks, and (2) data compression techniques.
Experiments show that Scarlett significantly mitigates disk
hotspots and improves job completion time by 20%.

5.3 Resource sharing

As mentioned in Sect. 3.4, heterogeneous jobs and machine
capacities intensify resource contention, a major cause of
performance degradation in MapReduce environments. Ex-
isting work so far primarily focused on one resource type,
such as memory, among multiple resource types in a sin-
gle machine. Ghodsi et al. [13] recently introduced a new
fairness criterion called Dominate Resource Fairness (DRF).
DRF is essentially a generalization of max-min fairness to
multiple resource types. As different tasks have different
resource bottlenecks (called dominate resource), DRF es-
sentially ensures the share of the dominate resource is allo-
cated according to the max-min principle. The authors fur-
ther showed that compared to many other fairness criteria,
DRF is Pareto-efficient, strategy-proof, envy-free, and in-
centivize users to share their resources. Experiments show
that DRF can significantly outperform the current slot-based
allocation scheme in terms of throughput and job comple-
tion time. Another potential performance bottleneck is the
underlying data center network. It has been shown that data
transfer across the network is a contributor to job comple-
tion time. As mentioned previously, much work has been
carried to improve data locality and to avoid heavily loading
the network (e.g., [28]).

More recently, Chowdhury et al. [8] studied the prob-
lem of optimizing data transfers for MapReduce clusters.
The authors first pointed out that network scheduling should
be carried out at data transfer level rather than individual
flow level. Generally speaking, data transfer for MapReduce
jobs can be divided into 3 types: broadcast, shuffle, and in-
cast. The authors presented several techniques for improving
the performance of these 3 data transfer types. Specifically,
peer-to-peer based content distribution techniques have been
used to improve communication locality. A weighted trans-
fer scheduling mechanism was also devised to prioritize data
transfers in order to reduce job competition time. However,
much work still needs to be done for optimizing network
transfers especially while taking into account the perfor-
mance requirements of individual jobs.

5.4 Performance-aware resource allocation

As discussed in Sect. 4.4, developing performance models
for predicting job performance and managing resource al-
location is a key research challenge in MapReduce clusters.
Tian et al. [25] proposed a technique for estimating the com-
pletion time of MapReduce jobs using a simple performance
model. Based on a few assumptions, their model breaks a
map task into 4 phases: Read, Map, Partition/sort, and Com-
bine. The cost of each phase is modeled as a function of
the total number of map tasks in the job and number of
slots available for the job. Similarly, a reduce task is divided
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into 4 phases: Copy, Sort, Reduce, and Write Back. The
actual values of parameters used in the cost model can be
estimated using small scale experiments. Using this perfor-
mance model, the authors formulated optimization problems
for (1) optimizing job performance subject to budget con-
straint, and (2) minimizing the budget used subject to com-
pletion time constraint. Initial experiments show the predic-
tion model achieves good accuracy.

Another related work [23] proposes to control the re-
source allocation (e.g., minimum number of map and reduce
slots) of each job subject to service level objectives (SLOs).
The authors developed an analytic model for task schedul-
ing and derived upper and lower bounds on completion time
for all three phases: map, shuffle, and reduce. The param-
eters of the model are determined either through historical
logs or using small scale experiments. The scaling factors
can be determined using linear regression analysis. Using
the proposed model, the authors gave a polynomial time al-
gorithm for determining the number of map and reduce slots
required for guaranteeing the completion of a job before its
deadline. Realistic experiments show the proposed model
achieves high prediction accuracy. However, similar to the
work in [25], existing MapReduce performance models typ-
ically do not consider the dynamics in MapReduce clusters,
such as task failures and network conditions. Thus, it is still
an open challenge to find more accurate and realistic job
performance models for production environments.

6 Conclusions

Cloud computational models such as MapReduce are crucial
to the operations of Cloud computing environment in their
ability to effectively deal with enormous volumes of data
and computations at large-scale. However, to design an ef-
fective MapReduce computation model, one must be aware
of and capable of dealing with the heterogeneity of work-
loads and cluster machines in Cloud environments.

In this article, we have analyzed the various types of het-
erogeneity in Cloud computing systems. In terms of work-
loads, the challenges arise from the bimodal distribution of
job lengths and sizes, the burstiness of job arrival rates,
and the heterogeneous resource requirements of jobs. In
terms of machines, their diverse capacities in CPU, mem-
ory, I/O speed, and network bandwidth have immediate im-
plications on the management MapReduce clusters. Con-
sequently, many research challenges are present in differ-
ent aspects of Cloud operations including job scheduling,
data and task placement, resource sharing, and performance-
aware resource allocation. In job scheduling, heterogeneous
job characteristics and requirements affect efficiency and
fairness of job completions; in data and task placement, het-
erogeneity hinders job completion rate and increases com-
munication overhead; in resource sharing, heterogeneous

job requirements calls for flexible and job-specific capac-
ity allocation to achieve optimal machine utilization; in
performance-aware resource allocation, performance mod-
els need to be developed in order to ensure the performance
objectives of each job are achieved.

In surveying representative state-of-the-art work, it is
clear that although advances are made to partially address
some of the outlined challenges, there is even more open
challenges yet to be explored. As MapReduce is still a rela-
tively new technology, we can expect increased interest and
attention on its design in the coming years. We believe this is
a highly active and relevant research topic with much room
for scientific exploration, and its undertaking will undoubt-
edly lead to many exciting discoveries.
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