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Abstract—Distributed denial-of-service (DDoS) attacks remain
a major security problem, the mitigation of which is very hard es-
pecially when it comes to highly distributed botnet-based attacks.
The early discovery of these attacks, although challenging, is nec-
essary to protect end-users as well as the expensive network infra-
structure resources. In this paper, we address the problem of DDoS
attacks and present the theoretical foundation, architecture, and
algorithms ofFireCol. The core ofFireCol is composed of intrusion
prevention systems (IPSs) located at the Internet service providers
(ISPs) level. The IPSs form virtual protection rings around the
hosts to defend and collaborate by exchanging selected traffic in-
formation. The evaluation of FireCol using extensive simulations
and a real dataset is presented, showing FireCol effectiveness and
low overhead, as well as its support for incremental deployment in
real networks.

Index Terms—Collaboration, detection, distributed de-
nial-of-service (DDos), flooding, network security.

I. INTRODUCTION

D ISTRIBUTED denial-of-service (DDoS) attacks still con-
stitute a major concern [1] even though many works have

tried to address this issue in the past (ref. survey in [2]). As they
evolved from relatively humble megabit beginnings in 2000, the
largest DDoS attacks have now grown a hundredfold to break
the 100 Gb/s, for which the majority of ISPs today lack an ap-
propriate infrastructure to mitigate them [1].
Most recent works aim at countering DDoS attacks by

fighting the underlying vector, which is usually the use of bot-
nets [3]. A botnet is a large network of compromised machines
(bots) controlled by one entity (the master). The master can
launch synchronized attacks, such as DDoS, by sending orders
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to the bots via a Command & Control channel. Unfortunately,
detecting a botnet is also hard, and efficient solutions may
require to participate actively to the botnet itself [4], which
raises important ethical issues, or to first detect botnet-related
malicious activities (attacks, infections, etc.), which may delay
the mitigation.
To avoid these issues, this paper focuses on the detection of

DDoS attacks and per se not their underlying vectors. Although
nondistributed denial-of-service attacks usually exploit a vul-
nerability by sending few carefully forged packets to disrupt a
service, DDoS attacks are mainly used for flooding a particular
victim with massive traffic as highlighted in [1]. In fact, the pop-
ularity of these attacks is due to their high effectiveness against
any kind of service since there is no need to identify and ex-
ploit any particular service-specific flaw in the victim. Hence,
this paper focuses exclusively on flooding DDoS attacks.1

A single intrusion prevention system (IPS) or intrusion de-
tection system (IDS) can hardly detect such DDoS attacks, un-
less they are located very close to the victim. However, even
in that latter case, the IDS/IPS may crash because it needs to
deal with an overwhelming volume of packets (some flooding
attacks reach 10–100 Gb/s). In addition, allowing such huge
traffic to transit through the Internet and only detect/block it at
the host IDS/IPS may severely strain Internet resources.
This paper presents FireCol, a new collaborative system

that detects flooding DDoS attacks as far as possible from the
victim host and as close as possible to the attack source(s) at
the Internet service provider (ISP) level. FireCol relies on a
distributed architecture composed of multiple IPSs forming
overlay networks of protection rings around subscribed
customers.
FireCol is designed in a way that makes it a service to which

customers can subscribe. Participating IPSs along the path to
a subscribed customer collaborate (vertical communication) by
computing and exchanging belief scores on potential attacks.
The IPSs form virtual protection rings around the host they pro-
tect. The virtual rings use horizontal communication when the
degree of a potential attack is high. In this way, the threat is
measured based on the overall traffic bandwidth directed to the
customer compared to the maximum bandwidth it supports. In
addition to detecting flooding DDoS attacks, FireCol also helps
in detecting other flooding scenarios, such as flash crowds, and
for botnet-based DDoS attacks.
This paper proceeds as follows. Section II describes the ar-

chitecture and the global operation of FireCol. The different
leveraged metrics and components of the system are presented
in Section III. Section IV presents FireCol attack detection algo-
rithms. Section V explains the mitigation technique used once

1This paper substantially extends our previous work in [5].
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Fig. 1. FireCol architecture.

Fig. 2. Horizontal and vertical communication in FireCol.

an attack has been detected. Section VI presents the simulations
we conducted in order to evaluate FireCol. The complexity of
FireCol is analyzed in Section VII. Section VIII summarizes re-
lated work. Finally, Section IX concludes the paper and outlines
future research directions.

II. FireCol ARCHITECTURE

A. Ring-Based Overlay Protection

The FireCol system (Fig. 1) maintains virtual rings or shields
of protection around registered customers. A ring is composed
of a set of IPSs that are at the same distance (number of hops)
from the customer (Fig. 2). As depicted in Fig. 1, each FireCol
IPS instance analyzes aggregated traffic within a configurable
detection window. The metrics manager computes the frequen-
cies and the entropies of each rule (Section III-A). A rule de-
scribes a specific traffic instance to monitor and is essentially a
traffic filter, which can be based on IP addresses or ports.
Following each detection window, the selection manager

measures the deviation of the current traffic profile from the
stored ones, selects out of profile rules, then forwards them to

the score manager. Using a decision table, the score manager
assigns a score to each selected rule based on the frequencies,
the entropies, and the scores received from upstream IPSs
(vertical collaboration/communication). Using a threshold,
a quite low score is marked as a low potential attack and is
communicated to the downstream IPS that will use to compute
its own score. A quite high score on the other hand is marked as
high potential attack and triggers ring-level (horizontal) com-
munication (Fig. 2) in order to confirm or dismiss the attack
based on the computation of the actual packet rate crossing
the ring surpasses the known, or evaluated, customer capacity
(Section II-B). As can be noticed, this detection mechanism
inherently generates no false positives since each potential
attack is checked. However, since the entire traffic cannot be
possibly monitored, we promote the usage of multiple levels
and collaborative filtering described previously for an efficient
selection of rules, and so traffic, along the process. In brief,
to save resources, the collaboration manager is only invoked
for the few selected candidate rules based on resource-friendly
metrics.

B. Subscription Protocol

FireCol protects subscribers (i.e., potential victims) based on
defined rules. A FireCol rule matches a pattern of IP packets.
Generally, this corresponds to an IP subnetwork or a single IP
address. However, the rule definition can include any othermon-
itorable information that can be monitored, such as the protocols
or the ports used.
FireCol is an added value service to which customers sub-

scribe using the protocol depicted in Fig. 3. The protocol uses
a trusted server of the ISP that issues tokens. When a customer
subscribes for the FireCol protection service, the trusted server
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Fig. 3. FireCol subscription protocol.

adds an entry with the subscribing rule along with its subscrip-
tion period (TTL) and the supported capacity. The server then
issues periodically a corresponding token to the customer with
a TTL and a unique ID signed using its private key. All com-
munications between subscribers and the server are secured a
using private/public key encryption scheme.
The ring level of a FireCol-enabled router (IPS) is regularly

updated based on the degree of stability of IP routing. This is
done using a two phase process. First, the router sends a mes-
sage RMsg to the protected customer containing a counter ini-
tialized to 0. The counter is incremented each time it passes
through a FireCol-enabled router. The customer (or first-level
FireCol router) then replies to the initiating router with the value
of its ring level. This procedure is optimized through aggrega-
tion when several routers are requesting a ring-level update.
In practice, the ring level value is network-dependent.

However, routing stability has been well investigated and en-
hanced [6], [7]. The study done in [8] shows that most routes are
usually stable within the order of several days, while flooding
attacks generally operate within the order of minutes in order to
have a high impact. For further analysis, Section VI-I quantifies
the impact of routers not assigned to the right level. It shows
that updating the ring topology at regular intervals is sufficient
even if some IPSs are not well configured with respect to the
ring to which they belong. A more sophisticated mechanism
could monitor route changes to force ring updates.
In FireCol, a capacity is associated to each rule. Rule capac-

ities can be provided either by customers or the ISP (for overall
capacity rules). For sensitive services, customers can specify
the capacity. IT services of large companies should be able
to provide such information regarding their infrastructure. For
smaller customers, statistical or learning algorithms, running at
customer premises or first hop IPS, might be leveraged to pro-
file traffic throughput [9]. Similar to [10], the threshold can be
tuned to keep a small proportion (i.e., 5%) for analysis. Finally,
for very small customers, such as a household, a single rule re-
lated to the capacity of the connection can be used. The max-
imum capacity, or throughput quota, is generally readily avail-
able to the ISP based on the customer service level agreement
(SLA) [11], [12].

C. Multiple Customers

Because of their inherent complete independence, FireCol al-
lows the coexistence ofmultiple virtual protection rings for mul-
tiple customers across the same set of IPSs. Therefore, a single

Fig. 4. FireCol with two cusomers: C1 and C2.

IPS may act at different levels with respect the customers it pro-
tects as depicted in Fig. 4. Although most of the figures in this
paper represent overlay networks with a single route, from an
ISP to a customer, this figure highlights that alternative paths
are possible. However, as discussed in the previous section, the
rings are dependent of the routing at a certain time, which is
quite stable compared to the typical duration of flooding attacks,
and so only the current route is considered for building the rings.

III. FireCol SYSTEM

A. FireCol Metrics

With set of rules , FireCol maintains the
following frequency and entropy-based metrics.
1) Frequency: The frequency is the proportion of packets

matching rule within a detection window

(1)

where is the number of packets matched by rule during
the detection window. Note that every customer rule set

is complete, in the sense that every packet must
match at least one rule. This is ensured by always having a de-
fault rule matching all traffic not covered by the supplied rules.
The frequency distribution is then defined as

.
2) Entropy: The entropy [(2)] measures the uniformity of

distribution of rule frequencies.
If all frequencies are equal (uniform distribution), the en-

tropy is maximal, and the more skewed the frequencies are, the
lower the entropy is. Fig. 5 shows the frequencies of three rules

from three distributions representing different detec-
tion windows and values for entropies and relative
entropies

(2)

3) Relative Entropy: The relative entropy metric
[(4)] (the Kullback–Leibler distance) measures the dissimilarity
between two distributions ( and ). If the distributions are
equivalent, the relative entropy is zero, and the more deviant
the distributions are, the higher it becomes

(3)

(4)
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Fig. 5. Entropy example.

The example in Fig. 5 shows that the ’s frequencies are
more similar with than are ’s with , hence

. The relative entropy metric is
necessary because even if two distributions were different, they
still can have the same simple entropy (e.g., entropy is preserved
by permutations).

B. FireCol Components

The FireCol system is composed of several collaborating
IPSs each enriched with the following components (Fig. 1 in
Section II).
1) Packet Processor: The packet processor examines traffic

and updates elementary metrics (counters and frequencies)
whenever a rule is matched.
2) Metrics Manager: The metrics manager computes en-

tropies [(2)] and relative entropies [(4)].
3) Selection Manager: The detection_window_ended event

(Fig. 1) is processed by the selection manager, which checks
whether the traffic during the elapsed detection window was
within profile. It does so by checking whether the traffic distri-
bution represented by frequencies follows the profile. This cor-
responds to check if [(4)], where is the current
distribution of frequencies, is the stored distribution of the
traffic profile, and the maximum admitted deviation from it.
If , the traffic is marked as abnormal and re-

quires further investigation. If there is a flooding DDoS attack,
the traffic volume increases and so does the frequency of some
rules. Thus, a rule with a frequency higher than a certain
threshold and a certain deviation from the profile will be se-
lected as a potential attack at time iff

(5)

(6)

In our implementation, the traffic profile is based on a weighted
moving average updated as follows:

(7)

is fixed to 0.5 to give an equivalent weight to the current and
past traffic activities.
4) Score Manager: The score manager assigns a score to

each of the selected rules depending on their frequencies and
the entropy. The entropy and the frequency are considered high
if they are respectively greater than a threshold and . The
different cases are presented in Table I:
1) High entropy and High rule frequency: In this case, the
traffic is well distributed, meaning that most rules have
about the same frequency (they cannot be all high as the

Fig. 6. Examples of score rule frequencies.

TABLE I
THE DECISION TABLE

sum is one). Hence, having one rule that is quite different
from the others is a good sign that it is a potential attack.
In Fig. 6, this is the case for rule r6 of the gray distribution.

2) Low entropy and High rule frequency: In this case, the at-
tack is only potential, but not as much as when the entropy
is high. In Fig. 6, the black distribution has several high
and low frequencies, and it is not clear if the high frequen-
cies represent direct threats as they can be only due to the
low values of other frequencies.

3) High entropy and Low rule frequency: This case represents
a potential threat. Here, all frequencies are about the same,
making it not a threat as the frequency is low. However,
since it is increasing and deviates from the profile (first
selection by the selection manager) [(5) and (6)], it may
surpass other frequencies later on in time.

4) Low entropy and Low rule frequency: This case includes
both high and low frequencies because of the low entropy.
Thus, it is not possible to conclude about any threat.

Each of the above cases is associated with a score factor
indicating the aggressiveness of the attack where

(Table I). The score of rule is then obtained as
follows:

(8)

Using a Dempster–Shafer belief combination function [13], the
scores are updated at the end of every detection window based
on the current score, previous score, and those provided by up-
stream IPSs (higher ring).
Afterwards, the rules, which the score is lower than a small

threshold , are automatically discarded as they no longer rep-
resent potential attacks. If the rule score is greater than param-
eter , the attack is considered highly potential, and this
alert is forwarded to the collaboration manager for aggressive-
ness checks. Otherwise , the decision is delegated
to a downstream IPS on the path to the victim. This process of
vertical communication is illustrated in Fig. 2.
Finally, scores are also affected by an aging factor as

follows:

(9)
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From a practical point of view, scores sent by the same IPS
to the same downstream IPS are combined in one message to
reduce the overhead.
5) Collaboration Manager: The collaboration manager is

the last component in charge of confirming potential attacks.
We claim that detecting a flooding attack can be confirmed only
if the traffic it generates is higher than the customer’s capacity.
Hence, the IPS where the alert is triggered has to initiate a ring-
level communication to calculate the average traffic throughput
for subsequent comparison with the subscribers capacity. This
is detailed in Section IV.

IV. FireCol ATTACK DETECTION ALGORITHMS

For each selected , the collaboration manager computes the
corresponding packet rate using rule frequencies and the overall
bandwidth consumed during the last detection window.
If the rate is higher than the rule capacity , an alert is raised.
Otherwise, the computed rate is sent to the next IPS on the ring
(Algorithm 1).

Algorithm 1: checkRule (IPS_id, , , )

1: if then
2: if then
3: ;
4: return
5: else
6:
7: if then
8: ;
9: raise DDOS alert;
10: return
11: else
12:
13: end if
14: end if
15: else
16: ;
17:
18: end if

When an IPS receives a request to calculate the aggregate
packet rate for a given rule, it first checks if it was the initiator.
In this case, it deduces that the request has already made the
round of the ring, and hence there is no potential attack. Oth-
erwise, it calculates the new rate by adding in its own rate and
checking if the maximum capacity is reached, in which case an
alert is raised. Otherwise, the investigation is delegated to the
next horizontal IPS on the ring.
Algorithm 1 shows the details of this procedure. It is initially

called with an empty . The first IPS fills it and sets the
boolean to true (line 16). is reset after the computation
finishes, i.e., when the request has made the round of the ring
or when the alert is triggered. With simple adjustments, ring
traversal overhead can further be reduced if several suspect rules
are investigated in one pass.
Rate computation can be performed based on the number of

packets per second (pps) or bytes per second (bps). The first
method is more suitable for detecting flooding DDoS attacks

Fig. 7. At the end of time t, an attack against host V is detected. At time ,
the traffic from attack sources is blocked.

having a small packet pattern, such as SYN floods. Bytes-based
method is better for detecting flooding attacks with large packet
payloads. FireCol customers can subscribe to either or both pro-
tection types.

V. MITIGATION

A. Mitigation Shields

When an attack is detected, FireCol rings form protection
shields around the victim. In order to block the attack as close as
possible to its source(s), the IPS that detects the attack informs
its upper-ring IPSs (upstream IPSs), which in turn apply the
vertical communication process and enforce the protection at
their ring level (Algorithm 2). To extend the mitigation, the IPS
that detects the attack informs also its peer IPSs on the same
ring to block traffic related to the corresponding rule. This is
done by forwarding the information in the same manner as done
by the collaboration manager (Algorithm 1). Only traffic from
suspected sources (i.e., triggered some rule ) is blocked as
shown in Fig. 7. This is performed by the block_IPs function
in Algorithm 2, line 5.

Algorithm 2: mitigate ( , firstRing)

1: for all do
2:
3: end for
4: for all do
5: block_IPs
6: end for
7: if then
8:
9: end if
10: setCautiousMode
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This process entails the potential blocking of benign ad-
dresses. However, this is a temporary cost that is difficult to
avoid if a flooding attack is to be stopped. Potential alternatives
are described in the next section.
It may be impossible to determine all attack sources during a

single detection window due to inherent network delays and/or
resource limitations. The attacker can also invoke an attack sce-
nario from different machines at different times to reduce the
risk of detection.
For this, after the detection andmitigation of an attack against

some host , FireCol continues the detection process looking
for some additional attack sources. Furthermore, in order to
limit the effect of potentially additional attack sources, after the
blocking period elapses, the IPS may activate a cautious mode
phase wherein a rate limitation of packets corresponding to the
triggered rule is applied.
The actual duration of the blocking and caution period

depends on the aggressiveness of the attack, i.e., on the dif-
ference between the observed packet rate and the host
capacity .

B. Careful Mitigation

This section gives an overview of common techniques to
improve attack mitigation by blocking only attacks-related
IP sources. Only those associated to high packet rates or that
have opened most of the sessions recently might be blocked
like in [14]. Moreover, identifying not-yet-seen IP addresses is
another way to detect the potential spoofed addresses or zom-
bies used to perform a DDoS attack [15]. The authors in [16]
propose other heuristics based on the difference between in-
coming and outgoing traffic. A solution could be to capture all
traffic associated with a triggered alert by the score manager
and use signatures to clearly identify an attack. Furthermore, a
general blacklist can be imported from external databases, like
SpamHaus [17], which stores IP addresses related to Spam,
meaning that they are probably zombie computers. Nonas-
signed IP addresses or abnormal source IP addresses (multicast,
private addresses, ) [18] could be also a starting point of
such blacklisting.

VI. EVALUATION

The objective of the experiments is to evaluate the accuracy
of FireCol in different configurations. Furthermore, the robust-
ness of FireCol is evaluated in abnormal situations such as the
existence of noncooperative routers or configuration errors.

A. Simulations

Although obtaining real router traces is possible, getting syn-
chronized traffic and host states of a real network along with its
detailed topology is quite difficult for security, privacy, and legal
reasons. Thus, we mainly used a simulation-based approach for
the evaluation of the FireCol system.
We tested different topologies with a variable number of

rings. Fig. 8 shows a sample topology of five customers with a
specific rule for each. The lowest ring (closest to hosts) is com-
posed of two IPSs. The fan-out effect (increase in connectivity)
is taken into consideration with the number of IPSs between
rings and multiplied by factor . This fan-out

Fig. 8. Sample simulation topology.

TABLE II
VALUES OF MAIN PARAMETERS

effect generates enough routers for highlighting the collabora-
tion. Varying it does not significantly impact the results, except
a little delay in the time needed to detect an attack due to a
larger number of collaborating routers. In fact, only extreme
cases, as described in Section VI-K, have a significant impact.
Besides, a router at level is connected to a router at level
with a probability . Each simulation lasts for 100 detec-

tion windows. Table II shows the values used for the parame-
ters. All hosts have been given the same capacity. Flow sizes
representing background traffic are distributed according to a
power-law formula to follow the behavior of flow sizes and
topology properties in the Internet [19], [20]. The main prop-
erty of power-law formulas is scale invariance.
This property is also preserved by the exponential law. There-

fore, we define the relative traffic flow size to host as

(10)

where is the skewness parameter (worst case for as-
sessing FireCol as highlighted in Section VI-J), and is chosen
so that the sum of relative sizes equals one. Each experiment is
run 25 times (except otherwise mentioned) in order to generate
different topologies and background traffic.
One specific benign traffic and two malicious ones are gener-

ated between time windows 10 and 20. To strengthen the eval-
uation, the benign one is heavy and close to a flooding attack
in terms of packet rate. The first malicious traffic simulates a
stealthy attack on H1 (Fig. 8) with a frequency 10%. The
second is targeted against host 3 and simulates a more aggres-
sive attack with a frequency 30%. Both types of malicious
traffic are generated at the outer virtual ring on about half of the
routers.
The stealthy attack targets the first host (H1 on Fig. 8) where

the normal traffic flow is the heaviest due to the formula we
used for flow generation [(10)], hence making it stealthier and
more difficult to detect. In this way, including more customers
during the simulations is not useful since this would split the
normal traffic among more hosts, and so the attack traffic would
be more distinguishable. However, experiments with real data,
in Section VI-L, involve more customers.
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Fig. 9. Effect of the score threshold on the TPR.

B. Metrics

The true positive rate (TPR) measures the proportion of
rightly detected attacks. The false positives (FPs) counter
represents the amount of benign traffic wrongly flagged as
malicious. As previously described, horizontal communication
discards all of them by computing the real packet rates. How-
ever, the number of rules to analyze the traffic has to be as
low as possible, and so we will consider the misselected rules
as false positives. From a practical point, this corresponds to
taking the output of the score manager (Section III) as the final
result.
In FireCol, an alert pertains to rules and may only be gener-

ated following the elapse of a detection window. Thus, both the
TPR (in proportion) and the FPs (absolute value) are computed
on a time-window basis.
Because FireCol works in a time-window and per-rule basis,

an alert may be generated (true or false positive) or not (true or
false negative), for each rule, at each IPS at the end of each de-
tection window. Due to that, evaluating false positives as a ratio
is irrelevant. Since benign traffic is inmajority, the false-positive
ratio does not vary significantly because calculated regarding a
large number of true negatives. For example, when 70 FPs are
observed in next experiments, it may only represent 4% with a
five-rings topology or less than 1% with 12 rings. Hence, using
the absolute value of FPs is more suitable and helps to evaluate
the efficiency of FireCol, which has to discard, as much as pos-
sible, candidate rules along the selection process.
Last is the detection time, i.e., the delay between the attack

occurs and when it is detected. In the evaluation, we focused on
the detection phase and not the counter measures.

C. Impact of the Score Threshold

Fig. 9 reports the effect of the score threshold on the TPR,
where each point represents an average of the 25 simulation
runs. When increases, fewer rules are suspected of being re-
lated to highly potential attacks. This reduces the number of
raised alerts and thus the number of false positives and the TPR.
Simulations helped to determine the optimal value for de-
pending on the input topology. We found, for example, that

is best for a five-rings topology (TPR close to 100%).
The average number of false positives is about 10 in this case,
which is only 2% of the maximal number of false positives.
For a five-rings topology, there are 24 IPSs, thus the average

number of false positives per IPS is 0.42. Assuming a TPR ob-
jective of at least 90%, the five-rings topology is found to be
the most suitable. This explains why this configuration is used
in most of our evaluations. In addition, the detection time is

Fig. 10. Insignificant impact of the attack injection location (using an attack
injected at the first ring as reference value)—five-rings configuration.

relatively low and is less than one detection window in most
cases, with the highest observed value being 2.32 windows.
As can be noticed from Fig. 9, a single-ring topology re-

veals poor performance unless a small score threshold is used
(in which case seven times more false positives are generated).
Since a single-ring topology implies no vertical score exchange,
the figure demonstrates the benefit of collaboration. Thus, the
FireCol rule selection process is not fitted for a single IPS.

D. Ring Levels of the Attack

The previous experiment assumes attacks come from beyond
outer rings. A skilled attacker, however, might launch an attack
fromwithin the vicinity of the victim, hence avoiding high-order
rings. The extreme case corresponds to a single ring. However,
this rare case implies that the attack is no more distributed and
can be detected without collaboration since its traffic is more
concentrated and distinguishable. The previous experiment of
Section VI-C (Fig. 9) shows that deployments with a few rings
are not efficient. has to be decreased for detecting attacks at
the lower-level rings also leading to higher false positives. How-
ever, this does not mean that FireCol cannot detect attacks in-
jected at the lowest rings. For instance, using only one or two
rings is not efficient because all traffic, including benign one, is
also analyzed by only these rings and so is not really distinguish-
able from attack traffic. However, by using a five-rings topology
with attacks injected at the first or the second rings, the benign
traffic is also analyzed by the upper rings, which helps in distin-
guishing it from the malicious ones. Hence, Section VI-C shows
the interest in having five-ring topologies. Moreover, Fig. 10
highlights that such a five-rings topology is also suited to detect
attacks emanating from lower-order rings. The figure depicts
both the number of false positives (right vertical axis) and true
positives, i.e., the TPR (left vertical axis) as a ratio compared to
an attack launched at the first ring. This proves that there is no
significant impact on accuracy when attacks are launched from
the lowest rings, i.e., in the vicinity of the victims.

E. Impact of the Entropy Threshold and Profile Parameter

In this phase, is fixed so that the TPR 90%. Table III
shows that the TPR can vary 10 points when the high entropy
threshold varies from 0.6 to 0.8. The number of false positives
increases in the sameway. In the considered case, false positives
are multiplied by 1.5.

determines if a rule frequency is out of the profile. The
TPR is improved by about 10 points from 0.830 to 0.938 when
varies from 0.4 to 0.2 (Table IV). However, the number of
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Fig. 11. Results of a five-rings topology with a mix of attacks. (a) Detection accuracy. (b) False positives. (c) Detection delay.

TABLE III
EFFECT OF ON A FIVE-VIRTUAL-RINGS TOPOLOGY

TABLE IV
EFFECT OF ON A FIVE-VIRTUAL-RINGS TOPOLOGY

false positives for is more than twice that for
. Therefore, it is better to improve the accuracy by adjusting

the high entropy threshold rather than by adjusting . This is
because the accuracy is improved in a similar manner, but the
variation in false positives is worse when is adjusted.

F. Ring Efficiency

In this experiment, four attacks are generated on a five-rings
topology with : two stealthy (frequency 10%) at
times 40 and 50, and two aggressive (frequency 50%) at
times 50 and 60. The 20th, 50th (median), and 80th percentiles
and minimum and maximum values of 250 simulation runs are
computed. The TPR is detailed for each ring, with the best ring
being number 4 followed by ring 3 as shown in Fig. 11(a). In
fact, 60% of the computed TPRs are within the 20th and 80th
percentiles, which means that 60% of TPRs are between 0.5
and 0.75 for the ring 4. The fifth ring has a relatively low TPR
close to 0.33 for 60% of simulations because it receives no
information from upstream routers. This proves that the vertical
exchange of scores between rings improves the accuracy.
The TPRs of rings 1 and 2 are very low because the upper

rings have already detected most attacks and hence no vertical
communication is performed. A similar argument also ex-
plains why rings 1 and 2 have less false positives [Fig. 11(b)].
Fig. 11(c) shows the minimum, the 20th, 50th (median), and
80th percentile and the maximum detection delay. The median
value is always 0 for all rings, and 0.33 by considering all of
them. This means that the attacks are generally detected in
the same window where they occur. The detection delay is
generally very low, and the worst case corresponds to the ring 3
where 80% of attacks are detected after two detection windows
at most.
Thus, it can also be observed that the core of the preven-

tion system is located at rings 3, 4, and 5 due to an efficient

Fig. 12. False positives reduction according to manager activity.

detection accuracy for a fast detection of attacks. This informa-
tion is useful for a real deployment because it identifies routers
that are the best candidates for supporting FireCol. It also shows
that the attack is promptly detected and early before reaching the
final host.

G. Efficiency of the MultiLevel Approach

Fig. 12 plots the relative number of FPs compared to the value
if no system is used. The first value represents the results when
both the selection and score managers are enabled. The second
value is when only the selection manager is enabled. is fixed
to have a detection rate higher than 0.9.
The selection manager reduces the number of FPs by more

than 50%, whereas the score manager is generally less effi-
cient. However, it can be noticed that 49 FPs are avoided when
a five-rings shield is used. The reduction of false alerts is more
important for simulations with a lower number of virtual rings.

H. Percentage of Collaborative Routers

FireCol effectiveness relies on the collaboration between dif-
ferent IPSs. Since a real deployment of such a system is ex-
pected to be incremental, we provide in here a way to check
its performance when only few routers support it. A router that
does not support FireCol is referred to as noncollaborative. We
study two types of noncollaborative routers. The first are routers
that cannot perform detection but can forward score packets to
downstream routers. An operator could use this type of router
to test FireCol on only few routers while still ensuring the IPS
collaboration. The second type of routers acts as black holes and
does not forward score packets. This can be due to software or
hardware limitations or the fact that the routers have been com-
promised in preparation for a future attack.
A four-rings topology is used in Fig. 13(a). The -axis

represents the proportion of collaborative routers, and
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Fig. 13. Effect of the percentage of collaborative routers. (a) TPR. (b) False positives.

200 simulations are conducted for each case. The TPR is
plotted against the case when all routers collaborate. Even if
FireCol cannot be enabled on all routers, forwarding score
packets without processing still provides a gain in attack
detection.
It can be noticed that noncollaborative routers do not have

a high impact on the number of false positives as depicted in
Fig. 13(b). In addition, for a high percentage of collaborative
routers, such as 0.8 or 0.9, the number of false positives is higher
than the case of 100% collaborating routers. This is due to a
lack of shared information, which leads to additional false posi-
tives. This occurs, for instance, when a router does not have the
low score from an upstream router of a rule, which would de-
crease its combined score. However, this value decreases when
the percentage of participating routers is less than 80%. During
this stage, the IPS does not have enough information to con-
clude, resulting in few false positives. However, this is also due
to a reduced number of participating routers. For example, with
30% collaborating routers, 20 false positives correspond propor-
tionally to 67 false positives for a complete 100% collaboration
( 20/0.3).
Finally, when very few routers are deployed, they have var-

ious locations regarding the different simulations, leading to a
high instability in the information exchanged as well as for the
TPR and FPs in Fig. 13. Based on the previous experiments,
protecting a new customer with a precision equivalent to 80%
of a full deployment requires at least 80% of configured IPSs
with a four-rings-based topology.

I. Configurations Errors

Section II mentions issues related to routing instabilities
where an IPS might be assigned to the wrong ring. This is
referred to as a configuration error in this section. During a con-
figuration error, an IPS may receive information not sent by a
real upstream one. This configuration error may be deliberately
input by an attacker. In Fig. 14, the ratio of IPSs concerned by
such errors is referred to as the error rate and varies from 0%
to 100%. The figure plots the TPR and number of FPs as ratios
compared to the reference value when there is no error. The
TPR is never affected by more than 14% since a misconfigured
IPS still continues to send information to another randomly
selected IPS. Hence, the collaboration is not totally disrupted,
but is only perturbed. For instance, ring level 5 may directly
send score information to the second one. The variation of FP
is more chaotic, however quite limited. This concludes that
FireCol exhibits good robustness against configuration errors.

Fig. 14. Impact of FireCol configuration errors.

Fig. 15. Skewness impact on the TPR.

J. Impact of the Skewness Parameter

The distribution of traffic flows at the routers is defined by the
power-law formula [(10)], where is the skewness parameter.
The TPR is plotted in Fig. 15, where varies. As can be no-
ticed, there are limited variations, and the TPR is always higher
than 0.7. This shows that the skewness parameter has a limited
impact. Moreover, this proves that our system also works with
different types of background traffic. The worst results are ob-
served for , which is the value we selected for the other
simulations in order to test FireCol in worst scenarios.

K. Validation With Real Internet Topologies

In this experiment, Ark’s publicly available router adjacency
dataset [21] is used to assess FireCol against real topologies.
Since knowledge about most end-hosts in this data is not pro-
vided, nodes in the undirected adjacency graphwith a single link
are considered final hosts (assuming they are close to the actual
end-hosts). Attacks are simulated as before. For each consid-
ered end-host, a five-rings overlay of IPSs around it is extracted.
Fig. 16 plots the TPR plotted against the FPs using 400 topolo-
gies (out of about 42 000). The average TPR is around 0.87 with
about 41 FP. These results are similar to those observed with the
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Fig. 16. Accuracy assessment with real topologies (each dot represents one
tested topology)

TABLE V
DARPA’99 DATASET STATISTICS

TABLE VI
DOS ATTACKS IN THE DARPA’99 DATASET (FOURTH WEEK)

generated topologies. However, the relationship between TPR
and FP is more unclear since the meantime increase of TPR and
FP is not easily distinguishable. When looking into cases with
a low TPR ( 0.75), it appears they correspond to topologies
with a large fan-out effect. One such topology has 11 IPSs in the
second ring and around 4000 in the fifth. This looks abnormal,
but, as mentioned before, may be due to the nonavailability of
data about the actual end-hosts.

L. Validation With the DARPA’99 Dataset

1) Description: In this experiment, the effectiveness of
FireCol is tested using traces from the DARPA’99 dataset [22].
Table V gives an overview of this dataset. Even if considered
as outdated nowadays, we still tested FireCol with it because
it is publicly available and heavily used in related work. The
fourth week was chosen because it contains real attacks. There
are only 4 days with different DoS attack types as detailed
in Table VI. Since there is no available dataset that provides
simultaneous parallel traffic traces on different routers, we
simulate this by distributing the dataset traffic over the simu-
lation network. The topology is constructed as before, and all
destination IP addresses are connected to the rings through a
unique first router.
The dataset is run with different topologies of varying ring

numbers. All the 52 internal IP addresses are considered as cus-
tomers, resulting in exactly one rule per destination address. To
simulate DDoS attacks, the entry points of packets vary. Since
the totally random selection is not realistic, we defined for each
single source different routers as entry points over which
packets are uniformly distributed.
Fig. 17 shows an example with . In our experiments,
is fixed to 5.

Fig. 17. Dataset injection on a three-rings configuration with . Example
with one packet from B that is randomly assigned to R2.

Fig. 18. DARPA’99: TPR and FP.

TABLE VII
SUCCESSFUL DDOS ATTACKS IN THE DARPA’99 DATASET

In addition, because the prior knowledge of the capacity of the
potential victim is unavailable, FireCol relies on a confidence
level to confirm potential attacks. This level is computed from
the difference between the score and the high potential attack
threshold (the denominator normalizes the value between 0 and
1)

(11)

An attack is confirmed if this level is higher than 0.2. Finally,
the detection window was set to 120 seconds.
2) Results: In the evaluation, FireCol detects a DoS attack

only if it does so before the attack ends. The output shown in
Fig. 18 confirms the results of the previous simulations, i.e., the
TPR still proportionally follows the number of protection rings.
However, the maximal value it can reach is 0.7 regardless of
how many rings are added.
Some attacks, listed in Table VII, always fail to be detected.

All but the last one are in fact of application level because their
goal is to send few specific messages to exploit a flaw in the
protocol or the application. By design, FireCol detects flooding
attacks and cannot logically detect other kinds of attacks. The
last attack is a mail bomb, which is an application-level DoS at-
tack whose goal is to saturate the queue of the mail server. In the
DARPA dataset, the mail bomb generates about five packets per
second, which is not a flooding attack at the network capacity
level. The mail bomb attack can be detected only if the capacity
of the mail server is known.
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Fig. 19. Number of IPSs per level [Eq. (12)].

TABLE VIII
FALSE POSITIVES FOR THE DARPA’99 DATASET

The number of false positives is also plotted in Fig. 18. It
can be noticed that it increases proportionally to the number
of protection rings. However, considering the temporal aspect
and the different IPSs, the number of false positives is rela-
tively low as shown in Table VIII. We can deduce that there
is an optimal number of rings to be determined. In our simu-
lation, the 12-rings architecture generates more false positives
than the eight-rings one without improving the TPR. Moreover,
attacks are better detected on the three highest rings as shown
in Fig. 11(a) (Section VI-F). By discarding the alerts of lowest
rings ( three highest), it can be observed that the number of
false positives is divided by 1.82, which shows that it is better
to focus the detection on the three highest rings.

VII. COMPLEXITY ANALYSIS

A. Communication Requirements

To evaluate the scalability of FireCol, we study the number of
exchanged messages. This requires knowing the number of IPSs
composing a ring at a certain level. Because of the fan-out effect

and that each client is directly connected to one single
FireCol IPS, the number of IPSs at ring level (as shown in
Fig. 19) is given by

if
otherwise.

(12)

An IPS of level is connected to one IPS of level with
probability . Hence, the average number of connections be-
tween rings and is equal to

(13)

Since attacks are blocked at the highest virtual rings, we simu-
late the case where messages are exchanged between the highest
two, three, and four rings. Fig. 20 shows the maximal number

Fig. 20. Messages per number of virtual rings.

of messages per number of rings by considering the average
number of connections between two rings and only one cus-
tomer targeted with one attack. The scalability is closely depen-
dent on the number of rings. The number of messages is less
than 500 for less than six-rings topology. Considering good con-
figurations highlighted in previous sections, five-rings topology
with the three highest rings participating, the average number of
messages is only 13.75. In this case, an attack or a false positive
generates an overhead of about 17 messages in the network. If
we consider an eight-rings topology (best case with the DARPA
dataset experiment), the value is about 90, which means that in
every of 120 s, 90 messages are exchanged, which is still
reasonable. Moreover, it is the maximum number of messages,
and so it does not always reflect the reality because multiple
alerts may be aggregated within a single message.
Fig. 20 does not consider messages exchanged for computing

packet rates. However, as this is computed on a single ring, this
value is always very low. For instance, computing the packet
rate at ring 3 requires at most four messages because there are
four IPSs. To avoid that, different rings separately compute the
same packet rate; only one ring can be dedicated to that. For
example, if ring 4 detects a highly potential attack, it may re-
quest ring 3 to compute the rate. Ultimately, computing the rate
at ring 1 is faster as performed by only one IPS. However, it
is better to keep some distance from lower-level rings because
they are more vulnerable to flooding.

B. Main Metrics

At the end of each detection window, FireCol computes
different metrics. Assuming that it has incremented the
counters [(1)] on the fly for the rules, divisions are re-
quired to compute the frequencies [(1)], operations for the
entropy [(2)], operations and one comparison for the rela-
tive entropy [(4)], operations and comparisons to extract

suspect rules [(5)], and comparisons to examine
these rules (Table I). For score factors , when ,

rules are selected requiring operations for score
computation [(8)]. It results that the complexity for suspect rule
selection is linear both in the required computations
and storage.
The score exchange phase (vertical communication) is ex-

pected to occur less frequently and for only a small number of
rules. Although in the general case the Dempster–Schaffer be-
lief combination can be exponential, it is almost linear for our
case because we only investigate one rule at a time [23]. Hence,
the linearity property is still respected.
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Fig. 21. probability function [Eq. (18)].

C. Case of Multiple Customers

In practice, the FireCol system is expected to simultaneously
protect multiple customers. Assuming IPSs and customers
to protect, the average number of IPSs at a certain ring level, , is
computed. For this, we first compute the probability to
have different IPSs at level . At level , there are at least dif-
ferent IPSs corresponding to the ring of a single customer [(12)].
Hence, the maximal number of IPSs for customers is

(14)

We then have

(15)

The number of IPSs at level , , is hence between and
. Let denote the number of ways to de-

fine the customer–IPS relationships of the customers
with at most different IPSs at level . Since for each customer,
IPSs from among the are assigned, we have

(16)

Let be the number of ways to choose the different
IPSs. The total number of different IPSs has to be (and not

)

for

for
(17)

Therefore, the definition of for is

(18)

Fig. 21 plots the probability function of . When the
number of customers increases, the observed peak is thinner,
meaning that most IPSs act at the considered level because the
load is shared. The peak highlights the most probable number
of IPSs with the corresponding configuration. The same effect
(for the same reasons) can be observed when the ring level in-
creases because more IPSs are needed to provide protection to
all clients. Finally, when the number of IPSs increases, the curve
is shifted because more IPSs are available.
Fig. 22(a) and (b) highlights the number of IPSs at a cer-

tain level with a fan-out effect of 1.5 and a three-rings con-
figuration (from 3 to 5). Logically the curves tend to the total
number of IPSs in the system, where each IPS act at most at each
level. Moreover, the more IPSs there are, the less they partici-

Fig. 22. Average number of IPSs per virtual ring [Eq. (18)]. (a) .
(b) .

Fig. 23. Average number of different ring levels for a single IPS.

pate into the rings because the responsibility of the protection of
the different hosts is distributed among all IPSs, as illustrated in
Fig. 23. This proves that the detection has to be distributed. Fur-
thermore, Fig. 22(a) and (b) shows the worst case, i.e., the max-
imal number of IPSs, equivalent to having the maximal number
of disjoint routes among customers. If they share more paths,
the system can be better optimized by having more IPSs shared
between multiple customers.

VIII. RELATED WORK

Our previous paper [5] describes a preliminary architecture of
FireColwith initial simulations. In this paper, these are substan-
tially extended by enhancing and detailing the communication
algorithms. A mitigation technique is provided as well as a de-
tailed investigation of FireCol configuration. Experimentation
with a real dataset and different traffic patterns was also per-
formed, as well as an analytical analysis of the complexity.
Even though a publicly available dataset was used, this does

not ease the quantitative comparison to related work. Unlike
packet-based methods, false and true positives are computed
globally taking into account each router and each time window.
This is why the focus of the comparison needs to be on qualita-
tive aspects.
Bellovin proposes in [24] the use of distributed firewalls,

which is implemented in [25]. However, only firewall rules are
exchanged, and each firewall must detect the attacks on its own.
The authors of [26] propose a similar solution where a Gateway
is requested to block the traffic of an attack. In [27]–[29], only
the DDoS mitigation of the attacks is distributed, but the de-
tection is located very close to the victim. Unlike FireCol, all
previously mentioned solutions do not exploit effective use of
collaboration.
In [30], the approach is based on content-filtering. [31], a

peer-to-peer approach is introduced, and in [32] mobile-agents
are leveraged to exchange newly detected threats. FireCol pro-
vides a simpler solution in the sense that it uses simple metrics,



1840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 6, DECEMBER 2012

while the former approaches can be costly in terms of resource
consumption. Other approaches promoting the use of simple sta-
tistics are not distributed. Reference [33] uses a packet counter
per flow, while [34] proposes entropy for better expressiveness.
The authors in [35] use the conditional legitimate probability to
determine the deviation from a defined profile.
Mahajan et al. introduce in [36] a technique for detecting

overloaded links based on traffic aggregation. Belief functions
are also used by Peng et al. in [37] to detect DDoS attacks based
on counting new IP addresses. These works are close but differ
from FireCol, in which detection is focused on the potential
victim. The authors in [38] dealt with DoS-related overload is-
sues by a cluster architecture to analyze firewall observations.
In [39], a DoS resistant communication mechanism is

proposed for end-hosts by using acknowledgments. Another
solution [40] relies on tokens delivered to each new TCP flow.
In [41], each router between the source and the destination
marks the path to detect spoofed addresses. Detection of spe-
cific SYN flooding attacks at the router level is investigated
in [42]. The authors in [43] also analyzed the correlation
between the requests and replies to detect flooding attacks to
limit overhead. The observation of past attacks or legitimate
traffic in order to create a community-of-interest is another
alternative [44]. Information sharing about DDoS attacks is also
addressed in [45], but from a high-level perspective where a
trusted network of partners (networks) is built. Detecting DDoS
attacks by detecting IP spoofing is addressed in [46]–[49] and
is related to our work as the goal is to speed up and limit the
costs of packet filtering, especially in the case of DoS attack
in [47]. Moreover, statistics on the network traffic are used like
the entropy in [48] and [49]. There are also DDoS countering
techniques dedicated to specific applications such as Web
servers [50] or clouds [51].
Detecting the DDoS attacks at the ISP level was also studied

in [52] and [53], but these approaches analyze all traffic, unlike
FireCol, which is based on a local mechanism enhanced by the
collaboration when needed. Although [54] shares information
between different network nodes to mitigate efficiently flooding
attacks, FireCol leverages ring semantic in order to enhance the
analysis of shared information.

IX. CONCLUSION AND FUTURE WORKS

This paper proposed FireCol, a scalable solution for the early
detection of flooding DDoS attacks. Belief scores are shared
within a ring-based overlay network of IPSs. It is performed as
close to attack sources as possible, providing a protection to sub-
scribed customers and saving valuable network resources. Ex-
periments showed good performance and robustness of FireCol
and highlighted good practices for its configuration. Also, the
analysis of FireCol demonstrated its light computational as well
as communication overhead.
Being offered as an added value service to customers, the

accounting for FireCol is therefore facilitated, which represents
a good incentive for its deployment by ISPs.
As a future work, we plan to extend FireCol to support dif-

ferent IPS rule structures.
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