
12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 1, MARCH 2012

Performance Modeling and Analysis of
Network Firewalls

Khaled Salah, Member, IEEE, Khalid Elbadawi, Member, IEEE, and Raouf Boutaba, Fellow, IEEE

Abstract—Network firewalls act as the first line of defense
against unwanted and malicious traffic targeting Internet servers.
Predicting the overall firewall performance is crucial to network
security engineers and designers in assessing the effectiveness
and resiliency of network firewalls against DDoS (Distributed
Denial of Service) attacks as those commonly launched by today’s
Botnets. In this paper, we present an analytical queueing model
based on the embedded Markov chain to study and analyze the
performance of rule-based firewalls when subjected to normal
traffic flows as well as DoS attack flows targeting different rule
positions. We derive equations for key features and performance
measures of engineering and design significance. These features
and measures include throughput, packet loss, packet delay, and
firewall’s CPU utilization. In addition, we verify and validate
our analytical model using simulation and real experimental
measurements.

Index Terms—Network firewalls, performance modeling, per-
formance analysis, queueing systems.

I. INTRODUCTION

NETWORK firewalls act as the first line of defense in
protecting network and server resources from unautho-

rized access and malicious attacks. Firewalls are typically
deployed at the edge of the network or at the entry point
of a private network. Incoming and outgoing Internet traffic
is inspected by network firewalls. Based on a set of rules,
firewalls can allow or block incoming or outgoing traffic. To
accomplish this, network firewalls have a rule-based engine
that interrogates incoming packets sequentially rule by rule
until a match is found. In particular, commercial firewalls
such as the popular Cisco PIX in addition to PC-based open-
source network firewalls such as Linux Netfilter and FreeBSD
ipfw have a huge rulebase or ACL (Access Control List)
comprising a list of rules, where each rule represents a set
of conditions [1]–[5]. If an incoming packet matches all
conditions of a particular rule, then a certain action is taken,
e.g., to pass or drop the packet. A packet can match the
conditions of more than one rule. In such a case, the first rule
will have priority and its action will be applied to the packet.
Accordingly, the firewall checks the rules sequentially, one by
one, until a rule is matched.

Manuscript received May 31, 2011; revised September 14, 2011. The
associate editor coordinating the review of this paper and approving it for
publication was E. Bertino.

K. Salah is with the Department of Computer Engineering, Khalifa Uni-
versity of Science, Technology and Research, PO Box 573, Sharjah, UAE
(e-mail: khaled.salah@kustar.ac.ae).

K. Elbadawi is with the School of Computing, DePaul University, Chicago,
IL, USA (e-mail: badawi@cdm.depaul.edu).

R. Boutaba is with the David R. Cheriton School of Computer Science,
University of Waterloo, ON, N2L 3G1 Canada, and the Division of IT
Convergence Engineering, POSTECH, Pohang, KB 790-784, Korea (e-mail:
rboutaba@cs.uwaterloo.ca).

Digital Object Identifier 10.1109/TNSM.2011.122011.110151

Firewalls themselves can be subjected to malicious attacks
from the Internet as they are typically deployed at the edge of
the network. One of the most serious attacks is the Distributed
Denial of Service (DDoS) attack. According to the 2010
Report conducted by Arbor Networks, there is a staggering
and alarming 102 percent increase of DDoS attack bandwidth
in 2010 when compared to 2009 [6]. The increase of this
bandwidth has been attributed to the exponential growth of
botnets from which such attacks originate.

In light of the above, it is becoming a design impera-
tive to analyze the performance of network firewalls when
subjected to DDoS attacks. If network firewalls are poorly
designed to withstand DDoS attacks, the overall security
of the protected network will be jeopardized. Specifically,
there is an increasing demand for analytical models to aid
firewall designers in predicting how effective and efficient
is the network firewall under DDoS attacks. In addition,
modeling and analyzing the performance of network firewalls
can be extremely useful in gaining a deeper understanding
of firewalls’ behavior and characteristics. Firewall designers
and system administrators can identify bottlenecks and key
parameters that impact its performance, and then perform
the necessary tuning for optimal performance. Analysis can
provide quick answers to numerous design and operational
questions. For instance, firewall designers can use analysis
to carry out a first cut design to reduce the set of design
alternatives and then use simulations and/or experiments to
assess few good designs before building and deploying the
system. In this paper, we present an analytical queueing model
developed for the study and analysis of the performance of
rule-based (also known as list-based) firewalls. Rule-based
firewalls are the most widely deployed among other types of
firewalls [7].

This paper builds on and significantly extends our prelim-
inary work presented in [8]. The most notable extensions
include a detailed analysis and mathematical derivations of
a number of key performance measures namely throughput,
delay, CPU utilization, and packet loss. In [8], a brief analysis
and preliminary results were presented only for firewall’s
throughput and delay. In addition, this paper presents an easy
to implement algorithm for the derivation of the state probabil-
ities of the introduced Markov chain model. Furthermore, this
paper presents and experimental verification and validation of
the analytical model. Finally, this paper offers more insights
into the understanding of firewalls’ behavior and performance,
particularly in terms of how the firewall’s throughput and CPU
utilization are affected under DoS attack flows of varying rates.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III presents our analytical model

1932-4537/11/$26.00 c© 2011 IEEE

SALAH et al.: PERFORMANCE MODELING AND ANALYSIS OF NETWORK FIREWALLS 13

of a finite queueing system which represents and captures
network firewall behavior and dynamics. Section IV is dedi-
cated to the verification and validation of our analytical model
and describes our experimental setup. Section V presents and
compares analytical and experimental performance results of
a network firewall under normal traffic flows and DoS attack
flows targeting different positions in the rulebase. Finally,
Section VI concludes the paper and describes future work.

II. RELATED WORK

The literature comprises little or no work on modeling
and performance analysis of network firewalls, particularly
under DoS attacks. The majority of research work that exists
in the literature is geared towards improving the overall
firewall performance by proposing techniques to optimize and
detect misconfiguration in firewall security policies as reported
in [9]–[19]. In [20], two optimization approaches on using
Ternary Content Addressable Memories (TCAM) chip have
been presented. TCAM chip is a hardware chip dedicated for
fast packet classification. Acharya, et al. in [7] developed a
simulation framework to study and analyze firewall operations
in order to improve its performance against dynamically
changing network traffic characteristics. In [21] and [22], an
experimental evaluation of firewall performance is presented
using firewall analysis tools. Some work has also been done
on the analysis of firewalls vulnerability to traffic-specific
attacks, such as IP spoofing attacks [23]. In [24], performance
metrics for vulnerabilities resulting from firewall operations
are presented and analyzed. In [25], a traceroute technique
was used to determine whether or not a particular packet can
pass from an outside remote host to a destination host behind
a firewall.

The analysis presented in this paper is based on a queueing
model with multi-phase service. In the literature, multi-phase
queueing systems are studied to some extent, particularly in
the work presented in [26]–[29]. However, these studies only
offer general guidelines on how to analyze such queueing
systems, with no handling of the problem at hand, particu-
larly with regards to solving state-transition probabilities and
finding a closed-form solution for the general distribution of
the service times. Such a solution is required to derive the key
performance characteristics of the system. Other related work
on two-phase queueing systems was presented by Krishna and
Lee in [30] and then by Doshin in [31]. However this particular
work considers a separate infinite queue for each service phase
and with only two phases of service, which does not capture
our particular system behavior where we have a finite buffer.
In fact, all solutions for infinite queueing systems require that
the arrival rate to be less than the service rate; otherwise, the
system will be unstable. With today’s Gigabit and 10 Gigabit
Ethernet networks, such stability requirement is not practical
as arrival rate of packets can far exceed the service rate of
network servers.

Our analytical model can be used to analyze firewall
performance when the firewall is subjected to normal traffic
flows as well as DoS attack flows. The performance can
be analyzed when launching DoS attack flows targeting top
and bottom rules. Analyzing the performance of a firewall
when targeting bottom rules is of a paramount importance

Incoming
packet

flow
Kernel’s Packet

Processing
Rx DMA

Ring Rule 1
Rule 2
Rule 3

.

.

.
Rule M

.

.
Last Rule

Matching Rule
at position M

Firewall Rulebase

Fig. 1. Interrogation of firewall rulebase for incoming packets.

to network designers and security engineers to assess the
resiliency of the firewall against worst-case DoS attacks. It was
shown in [5] that bottom rules can be remotely discovered by
an outside attacker. An attacker then can launch a complexity-
algorithmic attack that primarily target bottom rules, and ef-
fectively degrading rapidly the performance of a firewall with
a low-rate DoS attack flow. Complexity-algorithmic attacks,
which have been first described in [32], are a class of low-rate
DoS attacks that exploit algorithmic deficiencies in software
design. The authors in [33]–[36] have shown how complexity
algorithmic attacks can be mounted against network servers
including Linux, Snort NDIS (Network Intrusion Detection
System), and IPSs (Intrusion Prevention Systems).

III. ANALYTICAL MODEL

In this section, we present a finite queueing model to
represent the behavior and study the performance of a rule-
based network firewall. Typically, and as shown in Figure 1,
incoming packets carrying requests arrive at the firewall and
get queued for processing in multiple stages. The first stage
involves performing data-link and network layer functionali-
ties, and subsequently the firewall rulebase search engine is
activated to process incoming packets. Specifically, in Linux
and FreeBSD [37]–[39], incoming packets are received by
the Rx NIC (Receiving Network Interface Card) and copied
using DMA (Direct Memory Access) into the Rx DMA Ring.
The Rx DMA Ring is the receiving buffer and is located
within the kernel memory. After successfully queueing the
received packet into the Rx DMA Ring, an interrupt is
generated to notify the device driver of the reception of a
new packet. The device driver starts executing Data Link
layer (known as Layer 2) functionalities and then invokes
the kernel IP processing task. The kernel packet processing
is responsible for performing IP Network layer (known as
Layer 3) functionalities which include checking headers for
errors, looking up routing tables, and forwarding the packet
to the next destination or delivering it to user application, or
in our case, to get processed or interrogated sequentially by
the firewall rulebase search engine one rule at a time until a
rule match occurs.

Figure 2 illustrates a finite queueing model to capture the
behavior and dynamics of the system represented in Figure 1.
In this model, incoming packets arrive to the firewall with an
arrival rate λ. The queueing system has a buffer of K packets
with a queue size of K − 1. A packet is first queued in the
buffer and then served by the first stage consisting of kernel’s

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 1, MARCH 2012

Packet
Processing

K-1 packets
R1

RM

R2

...

Rulebase
Interrogation

r

r

r

Fig. 2. Finite queueing system with multiple stages of service.

packet processing with a mean service time 1/μ. Next, the
packet is subjected to the firewall rulebase whereby each rule
is interrogated sequentially until there is a matching rule at
position M . The interrogation service time of each rule has a
mean 1/r. It is to be noted that incoming packets are served
sequentially in N stages, such that N = 1 + M , where M
is the position of the matching rule in the rulebase. A new
packet enters Stage 1 of kernel’s packet processing only after
the previous packet has departed the queueing system, i.e. left
Stage N , when rule number M was triggered. The execution
of all stages is mutually exclusive. That is, if one of the stages
is running, no other stage will be running. This is the typical
situation and the current Linux implementation in which the
CPU executes one network task at a time [37]. We assume
that incoming packets follow a Poisson arrival λ and all of the
service times are independent and exponentially distributed
with means of 1/r and 1/μ, as shown in Figure 2. Packets
are serviced according to FCFS (First Come First Served)
discipline. In practice, r > μ , since the service time of packet
processing involving device driver handling and network IP
processing is on average much larger than that of processing
individual rules.

In the following sections, we present two analytical models.
The first model represents the behavior of a rule-based network
firewall when all incoming packets are matched with a single
rule at position M . The second model extends the first one to
capture the behavior of a firewall when different rule positions
are triggered.

A. Model Analysis and Solution

Our finite queueing system with a multi-stage service can be
represented and analyzed by an embedded Markov chain with
a state space S = {(k, n), 0 ≤ k ≤ K, 0 ≤ n ≤ N}, where
k denotes the number of packets in the system and n denotes
the stage number that the CPU is performing. The queueing
system has a queue size of K − 1. When n = N , the CPU
is performing packet processing, and when n = 1 · · ·N − 1,
the CPU is performing rule interrogations. A rule match and
trigger will occur at stage number N−1 (or rule number M).
In other words, state (0, 0) represents the special case when
the system is empty. States (k, n) represent the states where
the CPU is busy handling rule n. States (k,N) represent the
states where the CPU is busy handling packet processing. The
rate transition diagram is shown in Figure 3.

0,0 1,1

1,2

2,1

2,2

r r

. . .

. . .

r

K,2

K,1K-1,1

K-1,2

r

1,3

1,N

2,3

2,N

. . .

. . . K,N

K,3K-1,3

K-1,N

r r r

3,1

3,2

r

3,3

r r

3,N

1,N-1 2,N-1 3,N-1 . . . K,N-1K-1,N-1

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

rrrrr

Fig. 3. State transition diagram for a rule-based network firewall with a
finite buffer K .

Let pk,n be the steady-state probabilities at state (k, n).
The steady-state balance equations are shown for each state
as follows:

State (0, 0)

0 = −λp0,0 + μp1,N

State (1, N)

0 = −(λ+ μ)p1,N + rp1,N−1

State (1, n)

0 = −(λ+ r)p1,n + rp1,n−1

(2 ≤ n ≤ N − 1)

State (1, 1)

0 = −(λ+ r)p1,1 + λp0,0 + μp2,N

State (k,N)

0 = −(λ+ μ)pk,N + λpk−1,N + rpk,N−1

(2 ≤ k ≤ K − 1)

State (k, n)

0 = −(λ+ r)pk,n + λpk−1,n + rpk,n−1

(2 ≤ k ≤ K − 1) ; (2 ≤ n ≤ N − 1)

State (k, 1)

0 = −(λ+ r)pk,1 + λpk−1,1 + μpk+1,N

(2 ≤ k ≤ K − 1)

State (K,N)

0 = −μpK,N + λpK−1,N + rpK,N−1

State (K,n)

0 = −rpK,n + λpK−1,n + rpK,n−1 (2 ≤ n ≤ N − 1)

State (K, 1)

0 = −rpK,1 + λpK−1,1.

SALAH et al.: PERFORMANCE MODELING AND ANALYSIS OF NETWORK FIREWALLS 15

Therefore, the state probabilities of pk,n can be expressed
recursively in terms of p0,0 as follows:

From state (0, 0),

p1,N =

(
λ

μ

)
p0,0 (1)

From state (1, N),

p1,N−1 =

(
λ+ μ

r

)
p1,N (2)

From state (1, n),

p1,n−1 =

(
λ+ r

r

)
p1,n (3)

(2 ≤ n ≤ N − 1)

From state (1, 1),

p2,N =

(
λ+ r

μ

)
p1,1 −

(
λ

μ

)
p0,0 (4)

From state (k,N),

pk,N−1 =

(
λ+ μ

r

)
pk,N −

(
λ

r

)
pk−1,N (5)

(2 ≤ k ≤ K − 1)

From state (k, n),

pk,n−1 =

(
λ+ r

r

)
pk,n −

(
λ

r

)
pk−1,n (6)

(2 ≤ k ≤ K − 1, 2 ≤ n ≤ N − 1)

From state (k, 1),

pk+1,N =

(
λ+ r

μ

)
pk,1 −

(
λ

μ

)
pk−1,1 (7)

(2 ≤ k ≤ K − 1)

From state (K,N),

pK,N−1 =
(μ
r

)
pK,N −

(
λ

r

)
pK−1,N (8)

From state (K,n),

pK,n−1 = pK,n −
(
λ

r

)
pK−1,n (9)

(2 ≤ n ≤ N − 1)

From state (K, 1),

pK,1 =

(
λ

r

)
pK−1,1 (10)

It is to be noted that the state probability pK,1 can be derived
from either Equation (9) or (10), which are equivalent. The
equivalency can be proved numerically.

Using the normalization condition, p0,0 can be obtained as
follows:

p0,0 +

K∑
k=1

N∑
n=1

pk,n = 1

Dividing both sides by p0,0, we get

p0 = p0,0 =
1

1 +

K∑
k=1

N∑
n=1

pk,n

p0,0

(11)

The above equation enables us to compute p0,0 by first
computing the terms pk,n/p0,0, which requires only λ, μ and
r. Obtaining p0,0 can then be used to find all other state
probabilities {pk,n : 1 ≤ k ≤ K, 1 ≤ n ≤ N}. Algorithm 1
shows how we can obtain recursively all state probabilities
using Equations (1-10). The computation of Algorithm 1 is
optimized by first computing loop invariants (as those expres-
sions are involving λ, r and μ) as shown in Line 4. Then, the
algorithm computes the terms pk,n/p0,0 recursively as shown
in lines 5-21. In line 22, the algorithm uses Equation 11 to
compute p0. And in line 23, the algorithm updates the other
state probabilities by multiplying the matrix P with the scalar
value p0.

Algorithm 1 Determining all state probabilities including p0
Input: The values of λ, μ, r,K,N
Output: p0 and Matrix P [1..K, 1..N]

1: for all i and j such that 1 ≤ i ≤ K and 1 ≤ j ≤ N do
2: P [i, j]← 0
3: end for

4: C1 ← λ/μ; C2 ← (λ + μ)/r; C3 ← (λ + r)/r;
C4 ← (λ+ r)/μ; C5 ← λ/r; C6 ← μ/r;

5: P [1, N]← C1

6: P [1, N − 1]← C2 × P [1, N]
7: for i = N − 1 downto 2 do
8: P [1, i− 1]← C3 × P [1, i]
9: end for

10: P [2, N]← C4 × P [1, 1]− C1

11: for i = 2 to K − 1 do
12: P [i, N − 1]← C2 × P [i, N]− C5 × P [i− 1, N]
13: for j = N − 1 downto 2 do
14: P [i, j − 1]← C3 × P [i, j]− C5 × P [i− 1, j]
15: end for
16: P [i+ 1, N]← C4 × P [i, 1]− C1 × P [i− 1, 1]
17: end for
18: P [K,N − 1]← C6 × P [K,N]− C5 × P [K − 1, N]
19: for i = N − 1 downto 2 do
20: P [K, i− 1]← P [K, i]− C5 × P [K − 1, i]
21: end for
22: p0 ← 1/(1 + Sum(P))
23: P ← p0 × P
24: return p0 and P

Consequently, key features and performance measures can
be derived as follows. First, the mean system throughput γ
is basically the departure rate, i.e. the rate at which packets
finish successfully after being processed by Stage N, that is

γ = μ

K∑
k=1

pk,N (12)

16 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 1, MARCH 2012

Equivalently, the mean system throughput γ can be expressed
as

γ = (1 − p0)/X̄ (13)

where p0 is given in Equation (11), and X̄ is the mean service
time which is basically the sum of the mean service time of
all stages, and can be expressed as

X̄ =
1

μ
+

N − 1

r
=

(N − 1)μ+ r

μr
(14)

The departure rate γ can also be expressed as the effective
arrival rate λ′ which is λ(1 − Ploss). Therefore,

γ = (1− p0)/X̄ = λ(1 − Ploss) (15)

where Ploss is the loss probability (or blocking) probability.
Ploss can be expressed from Equation (15) as

Ploss = 1− 1− p0
ρ

=
p0 + ρ− 1

ρ
(16)

where ρ = λX̄ is defined as the traffic intensity or offered
load. Alternatively, and equivalently, Ploss can be expressed
as the probability of being in states (K, 1 · · ·N), that is

Ploss =

N∑
n=1

pK,n (17)

The mean number of packets K̄ in the system can be
expressed as

K̄ =

K∑
k=1

N∑
n=1

kpk,n (18)

Using Little’s result, the mean time spent in the system by
a job succeeding in entering the queue can be expressed as

W =
K̄

γ
=

1

γ

K∑
k=1

N∑
n=1

kpk,n (19)

This gives the mean time spent waiting in the queue as

Wq = W − X̄ =
1

γ

K∑
k=1

N∑
n=1

kpk,n − (N − 1)μ+ r

μr
(20)

A key feature of interest is the firewall’s CPU utilization.
It is also called the carried load. The CPU utilization can be
expressed as follows

Uutil = γX̄, (21)

where γ is expressed in Equation (12). The carried load is
to be distinguished from the offered load. The offered load is
expressed as λX̄ .

B. Multiple Flows

In a realistic situation, the firewall can be subjected to
multiple flows, with each flow targeting the same or different
rule. Such a situation is very common in today’s DDoS attacks
launched by botnets. In this section, we model and analyze the
performance of a firewall when subjected to multiple flows.
For simplicity, we define a flow in this paper in a loose term
such that an incoming flow will always trigger one rule. If a
flow triggers more than one rule, then it would be defined as
multiple flows. Our analytical model described earlier for one

K-1 packets

Trigger positions of
incoming flows

...
R2

R1

RL

...

S

1

2

L

Fig. 4. Multiple incoming flows with each flow matching a different rule.

flow can also be used to study the performance when also
having multiple incoming flows with corresponding arrival
rates {λi : 1 ≤ i ≤ S}, such that each individual flow i
triggers a particular rule in {Rj : 1 ≤ j ≤ L} of the firewall
rulebase (as illustrated in Figure 4), where S denotes the total
number of incoming flows and L denotes the size of a firewall
rulebase. It is to be noted that more than one flow can trigger
the same rule Rj .

A solution in this case can be approximated by aggregating
all flows into one aggregated flow and determining the average
matching rule position (M̄) for the aggregated flow. The
aggregated flow rate λ̂ can be expressed as

λ̂ =

S∑
i=1

λi (22)

The average position M̄ of all matching rules for the
aggregated flow λ̂ can then be expressed as

M̄ =

⌈
S∑

i=1

(
λi

λ
×Mi

)⌉
, (23)

where Mi is the matching rule position of flow i. Note that M̄
is the ceiling of the right-hand-side expression since M̄ must
be an integer.

We can estimate p0 by applying Algorithm 1 where λ is
substituted by λ̂ and N is substituted by M̄+1. The remaining
input parameters μ, r and K are the same. Equations (12-21)
can then be used to compute the performance measures of the
aggregated flow. For individual flows, performance measures
can also be computed. For example, the individual throughput
γi can be expressed as

γi =
λi

λ̂
× γ̂ (24)

where γ̂ is the aggregated throughput given in Equation (12).
Finding γi can be used to compute other performance mea-
sures of flow i. For example, the CPU utilization per flow
Uutil,i can be expressed using Equation (21) as

Uutil,i = γiX̄. (25)

Finally, it is to be noted that the average packet delay Wi is
the same as average packet delay for aggregated flow W , i.e.
the average packet delay can be expressed using Equation (19)
as

W = Wi =
K̄

γ̂
(26)

SALAH et al.: PERFORMANCE MODELING AND ANALYSIS OF NETWORK FIREWALLS 17

The same is also true for the packet loss per flow Ploss,i

being equivalent to the packet loss of aggregated flow Ploss

given by Equation (16).

C. Infinite Queue

A related issue of special interest is considering an infinite
queue with multiple stages of service. In this case, the solution
can be approximated using our analytical model with a large
buffer size, e.g. K = 10, 000. On the other hand, a more
accurate solution can be found when modeling the system as
an M/G/1 queueing system with a service time having a
general distribution with a density function b(x). The coef-
ficient of variation Cs =

√
V ar(x)/X̄ can be determined,

and the Pollaczek-Khinchin (P-K) formula can be used to
find closed-form expressions for key features and performance
measures [26]. Such closed-form expressions are presented
and tabulated elegantly in [40]. The mean X̄ is expressed in
Equation 14 and the variance V ar(x) can be expressed as
follows:

X̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N − 1

r2
+

1

μ2
if μ �= r,

N

μ2
if μ = r

D. Limitations

Our analytical solution assumes that packet arrivals follow
Poisson distribution with fixed packet size, and the services
time follow Exponential distribution. For certain types of
network traffic, assuming Poisson arrivals is adequate. In [41],
it was concluded that modeling the voice traffic as Poisson
with fixed-size packets gives adequate approximation, espe-
cially when the voice traffic is high. However, for general
traffic such as Ethernet, network packets are not of fixed size,
and their arrivals do not always follow a Poisson process
but are rather bursty [42]–[44]. Also in reality, service times
are not necessarily always exponential. An analytical solution
becomes intractable and not a trivial task when considering
variable-size packets and non-Poisson arrivals, and when also
considering general service times. The impact of having bursty
traffic and having general distribution for packet sizes and
service times can be best modeled and studied using DES
(Discrete Event Simulation) [40]. Despite of all of these
limitations and adopted assumptions, the results obtained from
our analysis were closely matching to results obtained from
actual experimental measurements, as will be demonstrated in
Section V.

E. Summary of Key Performance Measures

As a quick reference, Table I lists the equation numbers
for the key features and performance measures for firewall
when a firewall is subjected to either a single flow or multiple
flows. The performance measures include throughput, packet
loss, packet delay and CPU utilization.

TABLE I
QUICK REFERENCE FOR KEY PERFORMANCE MEASURES

Metric Single Flow Multiple Flows
Aggregated Flows Individual Flow

Throughput (12) or (13) (12) or (13) (24)
Packet loss (16) or (17) (16) or (17) (16)

Packet Delay (19) (19) (26)
CPU Utilization (21) (21) (25)

IV. VERIFICATION AND VALIDATION

To verify the correctness of our analytical models, we
developed a discrete-event simulation taking into account the
same assumptions as those in the analysis. The simulation
followed closely the guidelines given in [45]. We used the
PMMLCG as our random number generator [45]. The simu-
lation was automated to produce independent replications with
different initial seeds that were ten million apart. During the
simulation run, we checked for overlapping in the random
number streams and ascertained that such a condition did
not exist. The simulation was terminated when achieving a
precision of no more than 10% of the mean with a confidence
of 95%. We employed and implemented dynamically the
replication/deletion approach for means discussed in [45]. In
such approach, only values beyond the warmup period from
each simulation replication are used to estimate the mean.
We computed the length of the initial transient period using
the MCR (Marginal Confidence Rule) heuristic developed by
White [46]. Each replication run lasts for five times of the
length of the initial transient period. Simulation results for all
performance metrics were very much in line with those of
analysis, which imply that our analytical model is correct.

To validate our analytical model, we compare our analysis
results to actual real experimental measurements reported
in [5]. Figure 5 illustrates the experimental setup and testbed.
In [5], reported measurements include firewall throughput,
packet loss, CPU utilization, and packet delay. These mea-
surements were taken when subjecting the firewall to two
types of traffic: (1) normal traffic, and (2) DDoS traffic
targeting different rules located at different positions in the
firewall rulebase. The experiment comprised four modern
Linux machines connected using Gigabit Ethernet links as
shown in Figure 5. The four machines were all Intel Pentium
4 processors running at 3.2 GHz with 512 MB of RAM. The
network cards were 3COM Broadcom NetXtreme Gigabit Eth-
ernet with BCM5701 controller. All machines were running
with Fedora Core 5 Linux 2.6.15 and with the default tg3 NIC
device driver.

To generate normal traffic to pass through the firewall, we
used the open-source D-ITG 2.4.4 generator [47]. To generate
a single unidirectional flow, D-ITG has to be configured to
send UDP traffic using the ITGSend agent to ITGRecv [47]
where statistics are collected. NTP (Network Timing Protocol)
protocol was used in order to synchronize timing between
the ITGSend and ITGRecv machines. This was necessary to
measure accurately the one-way packet delay. To generate DoS
traffic, we used KUTE [48]. KUTE is an open-source kernel-
level UDP traffic generator. For our measurements, the CPU
utilization was measured by the sar Linux utility. However, the
throughput, packet loss, and round trip time were measured by

18 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 1, MARCH 2012

Receiving normal traffic
(using ITGRecv)

Receiving normal traffic
(using ITGSend)

DoS Attack Machine
(using KUTE)

Linux Netfitler
Firewall

Switch

Fig. 5. Experimental setup.

D-ITG. We have used the smallest packet size of 64 bytes for
generating flows by KUTE and D-ITG. Smallest packet size
was used to generate the maximum traffic rate. More details
on measurement and configuration setup can be found in [5].

We setup the firewall with Linux Netfilter and we created a
ruleset using iptables commands that includes rules for D-ITG
traffic as well as 10,000 other dummy rules. We configured
the Linux Netfilter to accept and pass D-ITG traffic, but to
drop probing packets. Rules related to D-ITG traffic or normal
were positioned at the beginning of the firewall’s ruleset.
As discussed earlier, the firewall performance in terms of
throughput, packet loss, and round trip time will be measured
by the D-ITG being sent and received. The other 10,000
dummy rules were created without chains using a shell script
of iptables command with each rule having its own same
conditions of ”any” except for the source MAC address. All of
these dummy rules were encoded with UDP protocol type. We
used a condition for source MAC addresses since they were
experimentally found to be computationally more expensive.
This is because the MAC address is one of the last conditions
to be checked by Netfilter within a rule [3].

We measured the average processing time per rule (i.e.
1/r) to be 0.05 μs. We measured this by instrument-
ing the Linux code with timestamps at the start and fin-
ish points of Netfilter processing in Linux kernel function
ip_local_delvier_finish located in ip input.c file
as illustrated in [3]. For timestamps, we used the rdtscl
macro which basically implements the assembly instruction
of rdtsc (read time stamp counter) and returns the number
of CPU cycles since system bootup. We took 1000 reads when
subjecting the firewall to a low KUTE traffic rate λ of 1000
pps (packets per second) for a duration of one full second.
The difference between the start and finish timestamps were
summed in memory in a single variable, and then the mean
value was obtained by dividing this summed value by 1000.
We found that the mean value for 1/r was approximately
0.5 ms for interrogating 10,000 rules, or 0.05 μs per rule.
Similarly, we measured the average kernel’s processing time of
device driver and IP processing (i.e. 1/μ) by instrumenting the
Linux code with timestamps from the point of packet reception
in the device driver (at start of function tg3_interrupt()
in tg3.c file) until the start point of delivery to Netfilter pro-
cessing (in ip_local_delvier_finish() in ip input.c
file) We found the mean value for 1/μ to be approximately
2.65 μs. Finally, the default maximum for both the Tx and Rx

DMA Rings are set to 512 packets, according to the header
definition in /net/drivers/tg3.h

V. RESULTS AND DISCUSSION

In this section, we report experimental and analysis results
of the firewall performance in terms of various key mea-
sures which include throughput, packet loss, firewall’s CPU
utilization, and packet delay. In particular, we report results
of these key performance measures when sending a normal
traffic and when subjecting the firewall to DoS traffic targeting
different rules. In addition, we report analytical results and
offer interpretation in order to gain a deeper insight in the
firewall dynamics and behavior. For clarity reasons, results of
simulation were not reported in the figures as they were closely
matching those of analysis curves. For all of experimental
results reported and shown in this section, we performed
three experimental trials and final results are the average of
these three trials. For each trial, we recorded the results after
the generation of a flow with a specific rate for a sufficient
duration of 30 seconds.

Figure 6 shows the performance impact on firewall per-
formance when launching DoS attacks with different rates
targeting different rule positions. The impact was measured
by having ITGSend generates a normal constant UDP traffic
flow at a rate of 10 Kpps. We setup the first rule in the
ruleset of the Linux Netfilter to pass such traffic. We mea-
sured the performance degradation in terms of packet loss,
throughput, CPU utilization, and one-way delay when sending
ITG normal traffic and when subjecting the firewall to DoS
attack flows of different rates and targeting different rules. We
set the DoS attack flows to target firewall rules at position
1000, 5000, and 10000. In practice, DoS attack flow that
targets rules positioned at 5,000 and 10,000 can represent
complexity-algorithmic DoS attacks that target last-matching
rules, whereas DoS attack flow that targets rules positioned at
1000 can represent traditional DoS attacks.

Figure 6 exhibits analysis curves and actual experimental
measurements of the performance of the 10 Kpps normal
ITG flow. The results from analysis and experimental mea-
surements are closely matching when it comes to throughput,
packet loss, and CPU utilization. However, the results obtained
from experiments for one-way packet delay are shown to take
the same shape of the curves but relatively higher than those of
analysis, as exhibited in Figure 6(d). The reason for the extra
delay obtained from experiments is due to the nature of the
experiment setup whereby the delay is measured at the sender
machine, and includes more than the delay encountered at
the Linux Netfilter firewall machine. The experimental delay
includes the delay from sending the packet by ITGSend at
the sender machine, the delay at the firewall, the delay at the
receiver machine of receiving packets by ITGRecv, in addition
to transmission and queueing delays at the switch and links.

For CPU utilization, it is observed from Figure 6(c) that
the analysis curves of the firewall CPU utilization are closely
matching those of experimental measurements when DoS
attack flows target rules positioned at 5,000 and 10,000.
However, when targeting rules positioned at 1000, the CPU
utilization analysis curve is observed to be slightly higher

SALAH et al.: PERFORMANCE MODELING AND ANALYSIS OF NETWORK FIREWALLS 19

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

DoS Attack Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)
Targeted Rule 1000
Targeted Rule 5000
Targeted Rule 10000
Experimental

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

DoS Attack Rate (Kpps)

P
ac

ke
t L

os
s

(%
)

Targeted Rule 1000
Targeted Rule 5000
Targeted Rule 10000
Experimental

(b)

0 2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

60

70

80

90

100

DoS Attack Rate (Kpps)

C
P

U
 U

til
iz

at
io

n
(%

)

Targeted Rule 1000
Targeted Rule 5000
Targeted Rule 10000
Experimental

(c)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

DoS Attack Rate (Kpps)

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Targeted Rule 1000
Targeted Rule 5000
Targeted Rule 10000
Experimental

(d)

Fig. 6. The impact of DOS attack flows targeting different rules on firewall.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

DoS Attack Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

ITG
DoS
ITG + DoS

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

DoS Attack Rate (Kpps)

C
P

U
 U

til
iz

at
io

n
(%

)

ITG
DoS
ITG + DoS

(b)

Fig. 7. Firewall’s throughput and CPU utilization with respect to DOS attack rates targeting rule 5000.

than those of experimental results. The reason of this can
be attributed to the fact that targeting rules at 1000 does not
impose heavy processing requirement, leaving CPU processing
power to be consumed by other lower-priority user processes
or system tasks, thereby increasing slightly the reading of CPU
utilization. However, when high-priority kernel processing
consumes most of the CPU power (as is the case when

targeting 5,000 and 10,000 rules), other low-priority tasks
and processes do not run. In other words, at high rates, the
CPU is primarily dedicated to the processing of firewall rules.
This is supported by the fact when the DoS rate becomes
higher (i.e. beyond 10 Kpps), the CPU utilization analytical
curve of targeted rule 1000 starts matching closely those of
experimental measurements.

20 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 1, MARCH 2012

Figure 6(a) exhibits the degree of throughput degradation of
normal traffic launched by ITG when the firewall is subjected
to DoS attacks launched by KUTE. Figures 6(b), 6(c) and
6(d) show the corresponding packet loss, CPU utilization,
and one-way packet loss. It is clear from these figures that a
slight degradation is exhibited when DoS attacks are targeting
top rules, whereas significant degradation is exhibited when
DoS attacks target bottom rules such as those positioned at
5,000 and 10,000. More specifically, when targeting bottom
rules, severe and noticeable degradation can be observed with
relatively low-rate DoS attacks of around 1 Kpps and 3
Kpps when targeting rules positioned at 10,000 and 5,000,
respectively. However, when targeting the top rule positioned
at 1000, degradation is exhibited only at high-rate DoS attacks
of around 18 Kpps. Therefore, it can be concluded that
targeting rules at the bottom of the ruleset can be severely
detrimental to the performance of the firewall. The firewall
performance is acceptable when DoS attacks (of up to a rate
of 18 Kpps) targeting rules positioned around 1,000, but not
rules greater than that.

To gain a deeper insight into understanding the firewall’s
behavior and performance, we plot the firewall’s throughput
and CPU utilization in relation to the received DoS attack
flow targeting rule number 5,000. Figure 7 illustrates curves
obtained from analysis for the throughput and CPU utilization
with two flows: (1) the normal ITG flow with a constant rate 10
Kpps, and (2) the DoS attack flow with a rate ranging from 0 to
20 Kpps. The figure shows the throughput and CPU utilization
for individual flows of ITG and DoS as well as the aggregated
flow of the sum of ITG and DoS. We measured the throughput
of these two flows at the firewall, and measurements were
closely matching, as was the case in Figure 6(a). The CPU
utilization for individual flows could not be measured because
sar Linux utility is set up to measure only the overall CPU
utilization of the firewall.

As shown from Figure 7, the firewall reaches a saturation
point at approximately 4 Kpps. At this particular point, it is
observed from Figure 7(a) that the throughput of DoS attack
rate of KUTE start to flatten off, and also the normal ITG
traffic starts to slowly degrade. In addition, at this saturation
point, the corresponding CPU utilization of the aggregated
flow reaches 100%, as shown in Figure 7(b).

The reason for this saturation point when targeting rule
number 5,000 is that the traffic intensity or offered load
ρ = λX̄ reaches 1, that is the capacity of the system reaches
its maximum processing rate of 1/X̄, which is equivalent to
approximately 1/(2.65μs + 5000 × 0.05μs) or 3.958 Kpps.
Similarly, and as shown in Figure 6, the saturation points
when targeting rule numbers 1000 and 10,000 are observed
when approaching their maximum processing rates. The slow
degradation of the normal and constant rate of ITG traffic
beyond the saturation point of 4 Kpps, as observed in Fig-
ure 7(a), is attributed to the fact that the packet loss probability
starts to increase as the incoming DoS attack rate increases,
thereby decreasing the throughput gradually of the constant
rate of ITG traffic. This is also confirmed by Figure 7(b) in
which the corresponding CPU utilization given to processing
ITG traffic also decreases gradually. On the other hand, it is
shown that the CPU utilization resulting from the DoS attack

flow continues to gradually increase beyond the saturation
point. This gradual increase can be attributed to the continued
increase of incoming rate of DoS flow. It is to be noted
that the throughput of DoS flow flattens off and is sustained
approximately at the saturation point, as the system can not
process more than its maximum capacity of 3.958 Kpps,
despite the continued gradual increase of incoming DoS attack
traffic rate.

VI. CONCLUSION

We have presented and validated an analytical model to
study and analyze the performance of rule-based network
firewalls. From the model, we have derived key features and
performance measures of engineering and design significance.
These key features and measures include throughput, packet
loss, packet delay, and CPU utilization. The model can be used
to measure the performance when the firewall is subjected to
normal traffic flows as well as DoS attack flows targeting
different rule positions. It was demonstrated that targeting
rules at the bottom of a relatively large ruleset can be severely
detrimental to the performance of the firewall. As a good
design practice and vital countermeasure against DoS attacks
that target bottom rules, it is recommended to minimize
the size of the firewall ruleset or to rearrange dynamically
rules so that bottom rules can be served at the top of the
ruleset, thereby making it harder to launch such complexity-
algorithmic attacks that target bottom-rules. As a future work,
we plan to model and analyze the performance of different
solutions to mitigate DoS attacks targeting bottom rules.
Specifically, we plan to study and analyze the performance of
firewalls when implementing the mitigation solution of real-
time dynamic re-ordering of the ruleset in which frequently
triggered rules are placed on the top of the ruleset.

REFERENCES

[1] “Cisco PIX firewall release notes,” 2004. Available: http://www.cisco.
com/en/US/docs/security/pix/pix62/release/notes/pixrn624.html

[2] “Linux Netfilter.” Available: http://www.netfilter.org
[3] A. J. Melara, “Performance analysis of the Linux firewall in a host,”

Master’s thesis, California Polytechnic State University, June 2002.
[4] “FreeBSD ipfw.” Available: http://www.freebsd.org/doc/en/books/

handbook/firewalls-ipfw.html
[5] K. Salah, K. Sattar, M. Sqalli, and E. Alshaer, “A potential low-rate

dos attack against network firewalls,” Int’l J. Security and Commun.
Networks, vol. 4, no. 2, pp. 109–238, Feb. 2011.

[6] Arbor Networks Inc., “Worldwide infrastructure security report, volume
vi,” 2010. Available: http://www.arbornetworks.com/report

[7] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greeberg, “Simulation
study of firewalls to aid improved performance,” in Proc. 2006 Simula-
tion Symposium.

[8] K. Salah, “Queueing analysis of network firewalls,” in Proc. 2010 IEEE
Globecom, pp. 1–5.

[9] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li, “Using online traffic
statistical matching for optimizing packet filtering performance,” in
Proc. 2007 IEEE INFOCOM, pp. 866–874.

[10] H. Hamed, A. El-Atawy, and E. Al-Shaer, “Adaptive statistical opti-
mization techniques for firewall packet filtering,” in Proc. 2006 IEEE
INFOCOM.

[11] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-
cation and analysis of distributed firewall policies,” IEEE J. Sel. Areas
Commun., vol. 23, no. 10, pp. 2069–2084, Oct. 2005.

[12] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Network Service Management, vol. 1, no. 1, pp.
2–10, 2004.

[13] A. Mayer, A. Wool, and E. Ziskind, “Fang: a firewall analysis engine,”
in Proc. 2000 IEEE Symposium on Security and Privacy.

SALAH et al.: PERFORMANCE MODELING AND ANALYSIS OF NETWORK FIREWALLS 21

[14] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra, “Fireman:
a toolkit for firewall modeling and analysis,” in Proc. 2006 IEEE
Symposium on Security and Privacy.

[15] E. W. Fulp, “Optimization of network firewalls policies using directed
acyclic graphs,” in Proc. 2005 IEEE Internet Management Conference.

[16] J. Qian, S. Hinrichs, and K. Nahrstedt, “ACLA: a framework for
access control list (ACL) analysis and optimization,” in Commun. and
Multimedia Security, 2001.

[17] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, and H. Chen, “A general
framework for benchmarking firewall optimization techniques,” IEEE
Trans. Network Service Management, vol. 5, no. 4, pp. 227–238, 2008.

[18] A. X. Liu and M. G. Gouda, “Diverse firewall design,” IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 9, pp. 1237–1251, Sep. 2008.

[19] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks: The Int’l J. Computer and Telecommun. Networking, vol. 51,
pp. 1106–1120, Mar. 2007.

[20] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to optimizing tcam-based packet classification systems,”
in Proc. 2009 International Joint Conference on Measurement and
Modeling of Computer Systems, pp. 73–84.

[21] B. Hickman, D. Newman, S. Tadjudin, and T. Martin, “Benchmarking
methodology for firewall performance,” RFC3511, Apr. 2003.

[22] M. Lyu and L. Lau, “Firewall security: policies, testing and performance
evaluation,” in Proc. 2000 IEEE International Computer Software and
Applications Conference, pp. 116–121.

[23] V. Santiraveewan and Y. Permpoontanalarp, “A graph-based methodol-
ogy for analyzing IP spoofing attack,” in Proc. 2004 IEEE International
Conference on Advanced Information Networking and Applications, pp.
227–231.

[24] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of vulnerabilities in Internet firewalls,” Int’l J. Computers and
Security, vol. 22, no. 3, pp. 214–232, 2003.

[25] D. Goldsmith and M. Schiffman, “Firewalking: a traceroute-like
analysis of IP packet responses to determine gateway access con-
trol lists,” Oct. 1998. Available: http://www.packetfactory.net/firewalk/
firewalk-final.html

[26] D. Gross and C. Harris, Fundamentals of Queueing Theory. Wiley, 1998.
[27] H. Takagi, Queueing Analysis, Vol. 1: Finite Systems. North-Holland,

1993.
[28] L. Kleinrock, Queueing Systems, Vol. 1: Theory. John Wiley & Sons,

1975.
[29] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An

Algorithmic Approach. Dover Publications Inc., 1981.
[30] C. Krishna and Y. Lee, “A study of two-stage service,” Operation

Research Lett., vol. 9, pp. 91–97, 1990.
[31] B. Dosh, “Analysis of a two phase queueing system with general service

times,” vol. 10, pp. 265–272, 1991.
[32] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic

complexity attacks,” in Proc. 2003 USENIX Security Symposium, pp.
29–44.

[33] X. Cai, Y. Gui, and R. Johnson, “Exploiting unix file system races
via algorithmic complexity attacks,” in Proc. 2009 IEEE Symposium on
Security and Privacy.

[34] R. Smith, C. Estan, and S. Jha, “Backtracking algorithmic complexity
attacks against a NIDS,” in Proc. 2006 Annual Computer Security
Applications Conference.

[35] J. Botwicz, P. Guciak, and P. Sapiecha, “Building dependable intru-
sion prevention systems,” in Proc. 2006 International Conference on
Dependability of Computer Systems.

[36] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the transients of
adaptation for RoQ attacks on Internet resources,” in Proc. 2004 IEEE
International Conference on Network Protocols, pp. 184–195.

[37] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd edition.
O’Reily, 2005.

[38] M. McKusick, K. Bostic, M. Karels, and J. Quarterman, The Design and
Implementation of the 4.4BSD Unix Operating System. Addison Wesley,
1996.

[39] K. Salah and A. Qahtan, “Implementation and experimental performance
evaluation of a hybrid interrupt-handling scheme,” Int’l J. Computer
Commun., vol. 32, no. 1, pp. 179–188, 2009.

[40] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John
Wiley & Sons, 1991.

[41] M. Karam and F. Tobagi, “Analysis of delay and delay jitter of voice
traffic in the Internet,” Computer Networks Mag., vol. 40, no. 6, pp.
711–726, Dec. 2002.

[42] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of Ethernet traffic,” IEEE/ACM Trans. Networking, vol. 2, no. 1,
pp. 1–15, Feb. 1994.

[43] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson
modeling,” IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226–244,
June 1995.

[44] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity
through high-variability: statistical analysis of Ethernet LAN traffic at
the source level,” in Proc. 1995 ACM SIGCOMM, pp. 100–113.

[45] A. Law and W. Kelton, Simulation Modeling and Analysis, 2nd edition.
McGraw-Hill, 1991.

[46] J. White, “An effective truncation heuristic for bias reduction in simu-
lation output,” Simulation J., vol. 69, no. 6, pp. 323–334, Dec. 1997.

[47] “Distributed Internet traffic generator,” 2008. Available: http://www.grid.
unina.it/software/ITG

[48] S. Zander, D. Kennedy, and G. Armitage, “KUTE: a high performance
kernel-based UDP traffic engine,” CAIA, Tech. Rep., 2005. Available:
http://caia.swin.edu.au/reports/050118A/CAIA-TR-050118A.pdf

Khaled Salah is associate professor in the Depart-
ment of Computer Engineering, Khalifa University
of Science, Technology and Research, UAE. He
received the B.S. degree in Computer Engineering
with a minor in Computer Science from Iowa State
University, USA, in 1990, the M.S. degree in Com-
puter Systems Engineering from Illinois Institute of
Technology, USA, in 1994, and the Ph.D. degree
in Computer Science from the same institution in
2000. His primary research interests are in the
areas of computer and network security, network

design, queueing systems, and performance evaluation and modeling. Dr.
Salah published several research articles on network firewalls, Snort NIDS,
deployment of triple-play network services, and Linux performance. Dr. Salah
is an Editorial Board member of several prestigious international journals
including IET Communications, Elsevier JNCA, Wiley IJNM, Wiley SCN,
and J.UCS. Dr. Salah was the recipient of KFUPM University Excellence
in Research Award of 2008/09 and the recipient of KFUPM Best Research
Project Award of 2009/10.

Khalid Elbadawi is currently a Ph.D. candidate at
the School of Computing, College of Computing
and Digital Media, DePaul University, USA. He
received his BS degree in Mathematics and Com-
puter Science from University of Khartoum, Sudan,
in 1994. From 1994-2000, he worked with NARIS
Inc. in the software development of network and
communication tools. In 2001, he joined King Fahd
University of Petroleum and Minerals and obtained
his MS degree in 2003. Khalid worked at KFUPM
as a lecturer for two years before being admitted

to the Ph.D. program at DePaul University, Chicago. His research interests
are in performance analysis, operating systems, and network security and
management.

Raouf Boutaba received the M.Sc. and Ph.D.
degrees in computer science from the University
Pierre & Marie Curie, Paris, in 1990 and 1994,
respectively. He is currently a professor of com-
puter science at the University of Waterloo and a
distinguished visiting professor at the division of IT
convergence engineering at POSTECH. His research
interests include network, resource and service man-
agement in wired and wireless networks. He is
the founding editor in chief of the IEEE TRANS-
ACTIONS ON NETWORK AND SERVICE MANAGE-

MENT (2007-2010) and on the editorial boards of other journals. He has
received several best paper awards and other recognitions such as the
Premier’s Research Excellence Award, the IEEE Hal Sobol Award in 2007, the
Fred W. Ellersick Prize in 2008, and the Joe LociCero and the Dan Stokesbury
awards in 2009. He is a fellow of the IEEE.

