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The efficiency of a wireless sensor network (WSN) is dependent on the level of event detection reliability it
achieves, and the associated consumed amount of energy. In this work, the potential performance improve-
ment gained by using a routing metric that reflects the quality of links in terms of detection reliability is
investigated. As a first main contribution, we derive the expression of such detection reliability-aware link
metric considering a realistic multi-dimensional Gaussian autoregressive (AR) model to describe information
correlation within the supervised field. Such routing metric quantifies indeed the participation of each link
on a path in reducing the probability of error when making final decision at the fusion center (i.e., the sink
node). As a second main contribution, we propose that only the new information among the sensed informa-
tion by the sensor nodes be propagated to the fusion center instead of the whole raw data. As such, the num-
ber of packets traversing the network is considerably reduced, which leads to significant energy
conservation. To achieve this in a relatively easy way, we use fast filtering to aggregate data information
at intermediate nodes along the path to the fusion center. Finally and as a third main contribution, we balance
detection reliability and energy-efficiency by including a weighted value of the energy consumption in the
expression of the detection reliability-aware link metric. This cooperative routing approach is shown to yield
significant benefits to the network, by either increasing the provided QoS (i.e., the offered level of detection
reliability) or allowing the network to decrease its energy consumption compared to classical noncoopera-
tive routing schemes and the cooperative routing scheme with one-dimensional correlated field.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Energy-efficiency and reliable detection are major challenges in
energy-constrained wireless sensor networks (WSNs). WSN proto-
cols must make judicious use of the limited energy resources in or-
der to maximize the network lifetime while respecting the specific
QoS requirements of sensor applications such as the required infor-
mation reliability of the detected events.

Due to the typical high density of WSNs, the sensors’ measure-
ments are often spatially correlated, so delivering all the raw data
to the fusion center (i.e., sink node) may not add to the detection
reliability and instead results in energy wastage. Exploiting the
spatial correlation among the densely deployed sensor nodes can
reduce significantly the energy consumption while ensuring the
required level of detection reliability. One way to achieve this is
by aggregating data at intermediate nodes. Each sensor node com-
bines the locally sensed information with the received information
from the upstream nodes, and forwards the aggregate information
towards the fusion center. Based on the received aggregate infor-
mation resulting from the cooperative effort of the sensor nodes
along the path, the fusion center makes the decision whether or
not an event has occurred.

To illustrate the tradeoff between energy-efficiency and detec-
tion reliability, let us consider the sensor network example of
Fig. 1. Suppose that sensor N0 is the detection originator, which
has to initiate the data reporting to the fusion center. Assume that
N0 can choose between two possible routes, R1 and R2. Obviously,
route R2 enables gathering more measurements from the super-
vised area than R1 since R2 involves more sensor nodes. This, how-
ever, does not necessarily mean that R2 is more reliable than R1.
Indeed, data from spatially spaced sensor nodes (i.e., along R1)
may be more useful for the detection reliability than the highly
correlated data from nearly located sensor nodes (i.e., along R2).

Even more significantly, routing through R2 instead of R1 re-
quires additional energy. Improving the detection reliability comes
probably at the cost of increasing energy consumption.

http://dx.doi.org/10.1016/j.comcom.2012.11.012
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http://dx.doi.org/10.1016/j.comcom.2012.11.012
http://www.sciencedirect.com/science/journal/01403664
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Fig. 1. Sensor network example.
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Designing energy-efficient routing protocols has been ad-
dressed in several works [4–6]. However, only a few works have fo-
cused on routing for event detection. Recently, the study in [11]
has shown that cooperative routing can achieve significant energy
conservation compared to noncooperative routing for the same
detection performance (i.e., reliability). By considering a new link
metric that characterizes the detection error within one-dimen-
sional Gauss-Markov fields, detection reliability-aware routing
was introduced in [11].

In this work, deriving a routing metric, that captures the detec-
tion error induced by each link, in a realistic scenario is considered.
Specifically, instead of considering a one-dimensional Gauss-
Markov field, an m-order Gaussian autoregressive (AR) model is
used to specify the signal correlation among the sensor nodes. In
doing so, the signal sensed by a sensor node is correlated with
the m upstream nodes’ signals on the path and not only with the
previous node. As a result, each link is not characterized by its
own constant routing metric that depends only on the link length
as in the one-dimensional model [11]; instead, the link metric de-
pends on the used path for detection (i.e., which that link belongs
to). In other words, the same link may have different routing met-
ric values according to the path used for detection.

To reduce the transmission of redundant information and thus
the energy consumption, we propose to aggregate data at interme-
diate nodes along the path to the fusion center. To achieve such
cooperative routing, we use fast filtering data aggregation [16].
Moreover, to strike a balance between the energy consumption
and detection performance, a weighted value of the energy con-
sumption is added to the detection reliability-aware link metric.

The remainder of this article is organized as follows. The next
section presents the state of the art as it relates to the focus of this
article. Following this, Section 3 formulates the general problem
and presents the system model to be studied. Section 4 derives
the detection reliability-aware link metric using the generic mul-
ti-dimensional Gaussian autoregressive model. Then, the coopera-
tive transmission through fast filtering data aggregation is
presented. Section 5 extends the link metric to take into account
energy consumption and Section 6 summarizes the operations of
the routing algorithm. Results are provided in Section 7, where
our proposal is compared to the Minimum-Energy routing as well
as to conventional noncooperative routing. The article concludes
with a summary of our contributions.
2. Related work

In order to minimize the energy consumption in WSNs, several
energy-efficient MAC protocols [1–3] and energy-efficient routing
protocols [4,5] have been proposed in the literature. These proto-
cols aim at decreasing the energy consumption by using sleep
schedules.

Significant energy saving is achieved by such schemes, however
the WSN keeps always sending redundant data. Typically, WSNs
rely on the cooperative effort of the densely deployed sensor nodes
to report detected events. As a result, multiple sensor nodes may
report the same event. To further decrease energy consumption,
several works are now focusing on the elimination of redundant
information [8–10]. The reduction of the number of redundant
packets can be achieved either at the data originator level (i.e., sen-
sor nodes that detect the event) [8,9] by limiting the reporting task
to a small subset of sensor nodes, or at the intermediate sensor
nodes routing the information to the sink by means of aggregation
mechanisms [10–12]. Data aggregation has been put forward as an
essential paradigm for wireless routing in sensor networks. The
idea is to combine the data coming from different sources en route.
In doing so, the number of packets traversing the network is con-
siderably reduced, which leads to significant energy conservation.

This work addresses the problem of reliable and energy-effi-
cient detection in a spatially correlated field. Specifically, we as-
sume that each sensor node aggregates the locally collected data
and deliver it to the fusion center for optimal detection.

Energy-efficient detection in WSNs has been already studied in
previous works [17–20]. However, most of these works assume
conditionally independent observations. Considering correlation
when gathering data results indeed in different detection perfor-
mance as shown in [11].
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Our work is motivated by the results presented in [11] where
the authors investigated the problem of cooperative routing under
the constraint of reliable detection performance. Note that the idea
of cooperation on the network layer in energy-constrained wireless
networks has gained much research intereset over the past few
years. It has been proved that conceiving a cooperative routing
protocol can lead to significant energy savings [11,13–15].
Particularly, the authors in [11] adopted a cross-layer strategy that
translates signal processing performance into a routing link metric.
Specifically, considering a one-dimensional Gauss-Markov corre-
lated field, a new detection reliability-aware routing metric was
proposed.

This work extends the calculation of the detection reliability-
aware routing metric by considering a generic multi-dimensional
Gaussian autoregressive model to describe the correlated field.
Such ARðmÞ model evaluates the cross-correlation properties of
m consecutive values of a signal. Moreover, considering the
ARðmÞ correlation model, we derive the associated aggregation
strategy using the fast filtering method presented in [16].

It is worth noting that the benefits of our proposal are fulfilled
especially for high reliability sensor applications. Examples of such
applications include especially but not exclusively military and
health applications. Indeed, sensor networks were initially de-
ployed for military applications such as battlefield surveillance
and enemy tracking. In this kind of applications, high reliability
is required since the undertaken actions (embattle the army) are
extremely costly. Health applications as well need great reliability.
For instance, glucose level monitoring, organ monitoring and
cancer detection need primarily great reliability although many
additional specific challenges exist such as safety and minimal
maintenance.
3. Model and problem definition

This section describes the detection process under the Bayesian
framework. In our study, the sensor nodes are randomly distrib-
uted over a target field and aim at detecting the presence of spe-
cific events. Multi-hop wireless routing is used to forward data
to the fusion center. The main task of the fusion center is to specify
the location to be probed (for event presence) as well as the sen-
sors that will be involved in the detection and routing processes.

The following notations are used in our analysis. E(�) denotes
the expectation operator and Ejð�Þ is the expectation conditioned
on the event Hj; X � Nðl; r2Þ means that X is a Gaussian random
variable with mean l and variance r2; finally, VT denotes the
transpose of matrix V.
3.1. Measurement model

Assume that N0 is the source of the detection process and that
N0; N1; � � � ;Nn�1 are the nodes involved successively in detection
and routing. RðN0; � � � ;Nn�1Þ represents therefore the fusion route
where Nn�1 is the fusion center. We denote by Dij the Euclidean dis-
tance between sensors Ni and Nj. Let hypothesis H1 denote the
presence of the event within the sensor network and H0 its ab-
sence. The observations along the route RðN0; � � � ;Nn�1Þ under each
hypothesis can be expressed as follows:

H0 : Yi ¼Wi; 8 i ¼ 0;1; � � � ;n� 1;
H1 : Yi ¼ Si þWi; 8 i ¼ 0;1; � � � ; n� 1; ð1Þ

where Yi is the observation at sensor i, and where the Si’s are corre-
lated Gaussian samples of the signal with Si � Nð0; r2

S Þ. The noise
samples Wi are i.i.d. Gaussian with Wi � Nð0; r2

WÞ.
3.2. Detection at the fusion center

The fusion center’s task is to decide whether or not the event of
interest has occurred in the WSN based on the observations
fYi ¼ yi; i ¼ 0; . . . ;n� 1g collected from the sensor nodes along
the fusion route. The optimal fusion rule which minimizes the
probability of detection error for (1) is given by the likelihood ratio
detector [23]:

Kðy0; � � � ; yn�1Þ ¼
H1 if ; ln p1ðy0 ;���;yn�1Þ

p0ðy0 ;���;yn�1Þ
P s¼4 ln p0

p1

H0 otherwise;

(
ð2Þ

where pjðy0; � � � ; yn�1Þ with j 2 f0; 1g, is the probability density
function of the jointly Gaussian random variables under Hj, and pj

is the prior probability of Hj. It is worth noting that computing this
fusion rule is an intensive and energy-consuming task [17]. In view
of this, the next section expresses Kðy0; � � � ; yn�1Þ in a simpler way,
by underlying the contribution of each link along the route in the
detection performance.

3.3. Recap of Chernoff-based link metric derivation

This section recapitulates the use of Chernoff information to de-
rive the detection reliability-aware link metric [11], and presents
some of the equations from the model in [11] with brief explana-
tions here for this paper to be self-contained. Specifically, we exhi-
bit the use of the Chernoff information to specify the detection
reliability-aware link metric that reflects the probability of detec-
tion error over a given route. Then, we show how useful is the
Schweppe’s recursive representation of the likelihood function in
expressing the Chernoff information in an additive practical form.
Using this representation, a link metric, which quantifies the par-
ticipation of a given link in improving the detection performance,
can be derived.

3.3.1. Chernoff information and Schweppe’s recursion
In the binary hypothesis testing problem, two types of error can

occur in decision making. The first type of error, known as false
alarms, occurs when H0 is true and instead H1 is declared. The
associated conditional probability of false alarms is PF . The second
type of error, a miss, occurs when H0 is declared true although H1 is
present. The associated probability of error is known as the proba-
bility of miss PM . Then, we have:

PF ¼ P decide H1jH0 presentf g ð3Þ
PM ¼ P decide H0jH1 presentf g: ð4Þ

Thus the average probability of detection error is:

PE ¼ p0PF þ p1PM ð5Þ

The Chernoff’s asymptotic bound on the best achievable Bayes
probability of error PE is given by [21]:

PE 6 p1�s
0 ps

1elðsÞ ð6Þ

where lðsÞ is the cumulant generating function of the loglikelihood
ratio under H0, i.e.,

lðsÞ ¼ ln E0 es ln
p1 ðY0 ;���;Yn�1Þ
p0ðY0 ;���;Yn�1 Þ

� �
; 0 6 s 6 1: ð7Þ

Chernoff’s asymptotic bound gives exponentially decreasing bound
on the probability of error of the optimal Bayesian decision rule.
Then, the Chernoff information [22] is defined as follows:

C p0;p1ð Þ¼4 sup
06s61

�lðsÞf g ð8Þ

Chernoff information thus provides the best Bayesian exponent er-
ror. For more details, readers are referred to [11,21].
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The Chernoff information can be calculated using the
Schweppe’s recursive representation of the likelihood function
[26]. The major advantage of this approach compared with the
conventional procedure [21] [pp. 89–90] for the calculation of
Chernoff information is its simplicity and usefulness. Indeed,
Schweppe’s approach quantifies the contribution of each link in
the PE of a route.

Accordingly, the loglikelihood up to the ith observation along a
route can be expressed as follows:

ln p1ðy0; � � � ; yiÞ ¼ ln p1ðy0; � � � ; yi�1Þ �
1
2

ln 2pr2
innov i

� �
� 1

2

�
~y2

i

r2
innov i

ð9Þ

where ~yi ¼
4 yi � y

^

iji�1
; y
^

iji�1
¼ E1 Yijy0; � � � ; yi�1f g is the minimum mean

square error (MMSE) prediction of Yi conditioned on the event
Y0; � � � ;Yi�1f g and r2

innov i ¼ E1 ~y2
i

� �
is the MMSE of the predictor.

Thus, the loglikelihood of the observations under H1 can be de-
duced by recursively evaluating (9). Hence, we get

ln p1ðy0; � � � ; yn�1Þ ¼ �
1
2

Xn�1

i¼0

ln 2pr2
innov i

� �
� 1

2

Xn�1

i¼0

~y2
i

r2
innov i

ð10Þ

Now, in order to get lðsÞ, we need to evaluate p0ðy0; � � � ; yn�1Þ, which
can be seen as the standard product form of the independent Gauss-
ian variables wiði ¼ 0; . . . ; n� 1Þ, thereby

ln p0ðy0; � � � ; yn�1Þ ¼ ln
Yn�1

i¼0

p0ðyiÞ ¼ ln
Yn�1

i¼0

pðwiÞ

¼ � n
2

ln 2pr2
w

� �
� 1

2

Xn�1

i¼0

y2
i

r2
w

ð11Þ

Finally, using (10) and (11), we get Eq. (12).

lðsÞ ¼ ln E0 exp s �1
2

Xn�1

i¼0

ln 2pr2
innov i

� �
� 1

2

Xn�1

i¼0

~y2
i

r2
innov i

 "(

þn
2

ln 2pr2
W

� �
þ 1

2

Xn�1

i¼0

Y2
i

r2
W

!#)
: ð12Þ
3.3.2. The link metric
In [11], the authors derived the expression of detection reliabil-

ity-aware link metric, which characterizes the contribution of each
link to the overall PE of a route. To do so, the authors considered
three approximations, which can be easily justified for large n
and at high SNR [11]. Accordingly, p0ðy0; � � � ; yn�1Þ can be expressed
as follows:

ln p0ðy0; � � � ; yn�1Þ ¼ �
n
2

ln 2pr2
w

� �
þ 1

� �
ð13Þ

and thus the cumulant generating function is approximately equal
to:

lðsÞ � s �
Xn�1

i¼0

1
2

ln r2
innov i

� �
þ n

2
ln r2

W þ 1
� �

þ n
2

( )
: ð14Þ

Hence, combining (6) and (14), we get:

PE 6 Bc ¼ p1�s
0 ps

1e
�s

Xn�1

i¼0

1
2 ln

r2
innov i
r2

W

�1
2

� 	( )
ð15Þ

where 0 6 s 6 1.
Finally, since at high SNR, r2

innov i=r2
W � 1, the Chernoff infor-

mation is obtained by putting s ¼ 1 in (8), and is approximately gi-
ven by:
C p0; p1ð Þ �
Xn�1

i¼0

1
2

ln
r2

innov i

r2
W

� 1
2

� 	
�
Xn�1

i¼0

1
2

ln
r2

innov i

r2
W

ð16Þ

Now, focusing on the new additive form of the Chernoff informa-
tion, we can identify the role of each link in improving the detection
performance. In fact, (16) and (6) point out that the term:

�Ci ¼
1
2

ln
r2

innov i

r2
W

ð17Þ

quantifies the participation of the ith link in the PE of a route. In
other words, �Ci quantifies the reduction in PE achieved by involving
Ni in the detection process. �Ci is the proposed link metric which can
be interpreted as the amount of useful information acquired by col-
lecting a sample from node Ni. Therefore, the optimal route is the
one that provides the maximum amount of useful information lead-
ing to the maximum reduction in the probability of error during
decision making at the fusion center.

In view of this and as a first main contribution of this work, we
derive the expression of the detection reliability-aware link metric
considering a more realistic m-order Gaussian autoregressive cor-
related field instead of the one-dimensional Gauss-Markov field.
In doing so, the signal sensed by a sensor node is correlated with
the m upstream nodes’ signals on the path and not only with the
previous node. Moreover, �Ci suggests that only the relevant infor-
mation should be propagated to the fusion center instead of the en-
tire raw data. Based on this observation and as a second main
contribution, we use fast filtering to achieve aggregation. Accord-
ingly, only innovations regarding the sensed information are trans-
mitted between successive nodes on the fusion route.

4. Cooperative routing for the detection of a Gaussian
autoregressive correlated field

In the remainder of this paper we assume that the correlation is
described by the general class of Gaussian autoregressive model.

4.1. Autoregressive correlation model

Autoregressive is a term derived from time series analysis
which assumes that observations are related to their own past val-
ues through one, two, or a higher order autoregressive process. Fre-
quently, we find that the value of a sensed signal at particular point
in time is highly correlated with the values which precede it. An
autoregressive correlation structure indicates that two observa-
tions taken close in time and/or space tend to be more highly cor-
related than two observations taken far apart in time and/or space.
An m-order autoregressive model considers the relationship be-
tween m consecutive values of a signal by evaluating the cross-
correlation properties between them.

We would like to emphasize that the inner nature of the multi-
dimension Gaussian autoregressive model make it realistic
especially for event driven sensor applications. In event-driven
reporting, the sensor network is tailored to detect the occurrence
of a pre-specified abnormal event within the sensor field. Such
abnormal events are non local in the temporal and spatial dimen-
sions. Indeed, in the temporal dimension, abnormal events are usu-
ally causal meaning that future information is inevitably correlated
to past ones. Moreover, abnormal events can easily be detected by
multiple sensors which justifies the spatial correlation.

The multi-dimension autoregressive model assumes that obser-
vations are related to their own past values. Frequently, two obser-
vations of the same sensed phenomena taken at two different
points in time and/or space are correlated. The correlation level de-
pends mainly on how closer (in time and/or space) the observa-
tions are. Indeed, the closer the observations (in time and/or
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space) the higher the correlation. For instance, let’s consider the
trigger of a fire event in a farm where enough sensors are scattered.
Future observations of the same sensor are inevitably correlated to
past ones. Moreover, two observations of two distinct sensors
equally spaced from the source event are surely correlated.

Under the Gaussian autoregressive model, the dynamics of sig-
nal sample Si at node Ni is described by the following state-space
model:

Si þ aiði�1ÞSi�1 þ . . .aiði�mÞSi�m ¼ ei; i ¼ 0; 1; . . . ; n� 1
aij ¼ �e�ADij ; j ¼ 1; . . . ;m

�
ð18Þ

where m denotes the correlation order, A is the correlation param-
eter and ei � Nð0; r2

e Þ is the driving process. The
eif g; i ¼ 0; . . . ;n� 1 are i.i.d. Gaussian random variables with zero

means and variances r2
e : ei is uncorrelated with Wi.

Recall that under the event H1, we have:

Yi ¼ Si þWi; ð19Þ

Equations in (18) and (19) can be also expressed in the polynomial
form as follows:

Aiðz�1ÞYi ¼ ei þ Aiðz�1ÞWi ð20Þ

where

Aiðz�1Þ ¼ 1þ ai1z�1 þ . . .þ aimz�m ð21Þ

with z�1 is the unit delay operator.

4.2. Link metric evaluation

In order to evaluate the link metric (17) under the Gaussian
autoregressive model (18), we have to express the variance
r2

innov i of the innovation process ~yi. Inspired from [16], the innova-
tion process ~yi can be obtained recursively by using the triangular
decomposition of symmetric matrices as described in [25].

Define, for this purpose, the stochastic process:

cðiÞ ¼ Aiðz�1ÞYi ¼ ei þ Aiðz�1ÞWi ð22Þ

The autocorrelations of cðiÞ are given by:

rcðiÞ jð Þ ¼ E cðiÞcði� jÞ½ � ¼ rcði�jÞð�jÞ ð23Þ

which yields:

rcðiÞðjÞ ¼

r2
W

Xminðði�1Þ;mÞ

k¼0

a2
iði�kÞ þ r2

e ; if j ¼ 0

r2
W

Xn

k¼0

aiðji�jj�kÞaji�jjðji�jj�kÞ; if j ¼ 1; . . . ;m

0; if j > m

8>>>>>>><
>>>>>>>:

ð24Þ

where n ¼minððm� jÞ; ði� j� 1ÞÞ. According to [16], it has been
shown that cðiÞ can be considered as a time-varying moving average
process driven by the innovation ~yi.

Let us now define the vector:

CðiÞ ¼ ½cð0Þcð1Þ . . . cðiÞ�T ð25Þ

whose covariance matrix is RcðiÞ.
Based on (24), RcðiÞexhibits a symmetric structure, i.e.,

RcðiÞ ¼ E CðiÞCTðiÞ
h i

¼ Rpq

 �

ð26Þ

where

Rpq ¼
rc pð Þ p� qð Þ; if p > q

rc qð Þ q� pð Þ; if q > p

(

Using (24), Rpq ¼ 0 for q > pþm or p > qþm. Since RcðiÞ is sym-
metric, RcðiÞadmits the following unique decomposition:
RcðiÞ ¼ LcðiÞDcðiÞLcðiÞT ð27Þ

where LcðiÞ is lower triangular matrix:

LcðiÞ ¼

1 0 . . . 0 0 . . . 0
l1ð1Þ 1 . . . 0 0 . . . 0

..

. . .
.

. . . ..
. ..

.
. . . ..

.

lmðmÞ . . . l1ðmÞ 1 0 . . . 0
0 lmðmþ 1Þ . . . l1ðmþ 1Þ 1 . . . 0

..

. ..
.

. . . ..
. ..

.
. . . ..

.

0 0 . . . lmðiÞ . . . l1ðiÞ 1

2
66666666666664

3
77777777777775
ð28Þ

and

DcðiÞ ¼ diag d0d1 . . . di½ � ð29Þ

Using the triangular decomposition of symmetric matrices
described in [25], LcðiÞ and DcðiÞ can be recursively computed.
According to [16,24], the process cðiÞ can thus be described by
the time-varying moving-average model

cðiÞ ¼ ~yi þ l1ðiÞ ¼ ~yi�1 þ . . .þ lmðiÞ~yi�m ð30Þ

driven by the innovation ~yi whose variance is

E ~y2
i


 �
¼ r2

innov i ¼ di ð31Þ

It is worth noting that RcðiÞ elements (see Eq. 24) only depends
on aij where aij ¼ �e�ADij . Note also that Dij is the Euclidean dis-
tance between sensors Ni and Nj. Thereby, RcðiÞ entries as well as
di are expressed only as a function of the Euclidean distance sepa-
rating sensor nodes. Thus, there is no need of sensors’ observations
in order to evaluate each link metric. In other words, the cost asso-
ciated with each link ðNiNjÞ only depends on the euclidean dis-
tances separating Nj from the m previous nodes in the detection
path, where m is the correlation order.

Note that, authors in [11] were able to derive the reliability-
aware link metric as a function of the link length considering a
one-dimensional correlation model. Our work extends the
one-dimension Gauss-Markov model by considering a generic
multi-dimensional Gaussian Autoregressive model to describe
the correlated field. As a result, each link is not characterized by
its own constant routing metric that depends only on the link
length as in the one-dimensional model [11]; instead, the link met-
ric depends on the m upstream links’ lengths. Consequently, work
in [11] can be seen as a special case where m equals 1.

4.3. Fast aggregation algorithm

Data aggregation is an efficient technique to reduce energy con-
sumption in WSNs by avoiding redundant transmissions. This can
be done of course by means of standard Kalman filtering or
through fast filtering. Fast filtering ensures the same numerical
robustness as Kalman filtering but with higher computational effi-
ciency [16]. In fact, the computational complexity of fast filtering
increases only linearly with the order of the AR process. A sche-
matic of the fast-filtering based aggregation is shown in Fig. 2.

According to Schweppe’s recursion (9), the loglikelihood up to
the ith sensor can be calculated recursively based on its own mea-
surement and on the information gathered by sensor Ni�1. There-
fore, in order to compute its own likelihood function, node Ni

needs the following three cumulative quantities:

1. The accumulated likelihood function
lli�1 ¼ ln p1ðy0; � � � ; yi�1Þ.

2. The mean-square error of the prediction r2
innov i.

3. The measurement innovation ~yi.



Fig. 2. An illustrative schematic of the proposed data aggregation.
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Thus, the aggregation algorithm performed by each node on the fu-
sion route can be described as follows:

1. Initialization at N0:

(a) ll�1 ¼ 0,
(b) ~y0 ¼ y 0ð Þ,
(c) d0 ¼ r2

W þ r2
e ,

(d) 8i ¼ �1; . . . ;�m )y
^

0ji
¼ 0 and ~yi ¼ 0

2. Compute cðiÞ:
cðiÞ ¼ yðiÞ þ a1y i� 1ð Þ þ . . .þ amy i�mð Þ

y i� jð Þ ¼ ~yi�j þ y
^

i�jji�j�1
forj ¼ 1; . . . ;m; ð32Þ
3. Compute the coefficients l1ðiÞ; . . . ; lmðiÞ using [25]
4. Compute the innovation ~yi:
~yi ¼ cðiÞ � l1ðiÞ~yi�1 � . . .� lmðiÞ~yi�m ð33Þ
5. Compute the mean-square error of the prediction r2
innov iby

means of [25]
r2
innov i ¼ di ð34Þ
6. Compute lli based on (9)
7. Send to Niþ1:
(a) lli

(b) ~yj; y
^

jjj�1
; 8j ¼ i; . . . ; i�m
Finally, we can conclude that owing to our aggregation strategy
only the innovations and the predicted measurements of the m-pre-
vious sensors are propagated between successive nodes in the fu-
sion route until reaching the sink node where the fusion rule is
computed according to (2).

4.4. Fusion rule computing

Under the binary hypothesis testing problem, the most common
approach to decide whether an event is present or not, is the like-
lihood ratio test (2). It is for the recursive calculation of this quan-
tity (Kðy0; � � � ; yn�1Þ) that the Schweppe’s recursion along with the
fast aggregation come to their own. In fact, once the detection pro-
cess is accomplished, the fusion center can easily make the right
decision by combining the results of our cooperative routing (9)
(see Step 6 in 4.3) and (13).
5. Energy consumption analysis

This section evaluates the amount of energy consumed follow-
ing the detection process, i.e., the energy needed to report the
sensed information through the selected fusion route.

In this work, the detection process is initiated at a specific sen-
sor node following an explicit demand from the sink node. In this
case, each intermediate sensor on the selected fusion route cannot
send its own information unless it receives the data information
from its predecessor. As such, competitive access to the common
channel happens only when multiple detection queries are
initiated simultaneously by the sink node. In such a case, we as-
sume that the access to the medium among competing nodes is
arbitrated by the well known CSMA/CA technique.

We use the following energy consumption model to describe
energy consumed at node Ni�1 when transmitting/receiving a
packet of S bits to/from node Ni:

Etrans
i�1 ðSÞ ¼ S� Pt þ Pb

0Dði�1Þi

� 
ErecðSÞ ¼ S� Pr ð35Þ

where Pt and Pr correspond to transmit and receive circuitry power
consumption, and P0 is the reference transmit amplifier power con-
sumption per unit of distance.

Consequently, the energy consumed by the network in forward-
ing a packet through the link (Ni�1; Ni) is given by:

Eði�1Þi ¼ NcðNi�1; NiÞ � Etrans
i�1 ðDATAÞ þ Etrans

i ðACKÞ � 1jNi–Sink

þ H Ni�1ð Þj j � ErecðDATAÞ � NcðNi�1; NiÞ þ H Nið Þj j
� ErecðACKÞ ð36Þ

where H Nið Þj j is the number of nodes that overhears the transmis-
sion of Ni and NcðNi�1; NiÞ denotes the average number of transmis-
sion attempts experienced by a packet sent from Ni�1 to be
successfully received by Ni. NcðNi�1; NiÞ can be calculated as fol-
lows. Let NcðNi�1; NiÞ be a random variable representing the num-
ber of unsuccessful transmissions experienced by a packet before
being successfully transmitted from Ni�1 to Ni. We denote by
bðNi�1; NiÞ the probability that a transmission attempt from Ni�1

to Ni be unsuccessful. NcðNi�1; NiÞ is a geometric random variable
and thus we have:

E½NcðNi�1; NiÞ� ¼ NcðNi�1; NiÞ ¼
bðNi�1; NiÞ

1� bðNi�1; NiÞ
ð37Þ

Note that bðNi�1; NiÞ can be determined according to [7].
It is important to point out that in a conventional noncoopera-

tive routing, all the sensor nodes involved in the detection process
should send their measurements individually to the fusion center
through the multi-hop path, requiring thus a total energy con-
sumption of:

Enc
R ¼

Xn�1

i¼1

Xn�1

j¼i

Eðj�1Þj ð38Þ

which grows in the order of Oðn2Þ. Enabling our fast aggregation
strategy reduces considerably the energy consumption. According
to our cooperative routing, the energy consumption is:

Ec
R ¼

Xn�1

i¼1

maxðm; iÞ � Eði�1Þi ð39Þ

where m is the correlation order. We can see that enabling our
cooperative routing scheme, the energy consumption Ec

R grows in
the order of OðnÞ instead of Oðn2Þ.
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It is worth noting that using our data aggregation mechanism,
each node has to send at most m packets to its successor on the fu-
sion route. However, under the noncooperative strategy, the en-
ergy consumption of each node depends mainly on its position
on the fusion route. Typically, the closer a node to the fusion center
is, the more energy it consumes to forward the measurements of
all the previous nodes on the route. Thus, considering noncooper-
ative routing, the average energy consumed per sensor node fol-
lowing a detection process query increases with the increase of
the network size. Using cooperative routing, the energy consump-
tion per node remains instead practically constant regardless of the
network size. This reveals indeed another major strength of our
cooperative routing.
6. Cooperative routing operations

This section describes how the fusion route between the detec-
tion originator node (i.e., designated by the sink node) and the fu-
sion center is calculated.

The problem of finding the best path is a critical issue in the de-
sign and analysis of networks. Most routing problems can be
solved as shortest path problems once an appropriate additive cost
is assigned to each link. The chosen link metric may reflect the sys-
tem resources that are consumed when this link is used such as the
delay, energy consumption or detection performance.

Our cooperative routing relies indeed on the shortest path rout-
ing to determine the path enabling the lowest detection error. Typ-
ically, the Fast-Dijkstra algorithm is applied using the detection
reliability-aware cost metric (17). Specifically, the cost Miðiþ1Þ asso-
ciated to the link Ni; Niþ1ð Þ is given by:

Miðiþ1Þ ¼ Ci ð40Þ

where Ci is given by (17).
As a distinguishing feature from classic shortest path routing,

multiple costs can be associated to each link. Each link is no more
characterized by its own routing cost metric that depends only on
the specific link properties such as the current load; instead, the
link cost depends on the path used for detection. In other words,
the same link may have different costs according to the fusion
route used for detection which is a computational and time con-
suming task. Such constraints, can be easily justified in high reli-
ability sensor applications. For instance, the primary requirement
of military and health applications is reliability. In these applica-
tions solar energy harnessing and body heat energy harnessing
can respectively resolve the extra energy consumption problem.
Our proposal is especially designed for high reliability sensor appli-
cations which tolerate extra delay and energy consumption.

In our work, different reliability-aware link metrics are needed
for different event initiators (sources) and for different paths. To
meet this requirement, we propose the modified Fast-Dijkstra
algorithm depicted in Fig. 3. In this case, the link costs are not cal-
culated in advance. Instead, the costs of links are computed during
the discovery of the best path since the link costs depend on the
selected path.

It is worth noting that the first main contribution of our work is
to derive the expression of the detection reliability-aware link
metric considering a more realistic m-order Gaussian autoregres-
sive correlated field instead of the one-dimensional Gauss-Markov
field. Once we defined the appropriate cost for each link, we sup-
pose that the routing problem can be solved using any shortest
path routing algorithm. However, since in our analysis multiple
costs can be associated with each link, we proposed Fast-Dijkastra
algorithm as an example showing how to deal with such con-
straint. This work demonstrates the potential of these concepts,
and provides a baseline for measuring the performance of other
more sophisticated routing protocols.

To balance between the detection reliability and the energy
consumption, we can include the energy consumption in the link
cost as follows:

Miðiþ1Þ ¼ ð1�xÞEc
iðiþ1Þ þxCi ð41Þ

with

Ec
iðiþ1Þ ¼maxðm; ðiþ 1ÞÞEiðiþ1Þ ð42Þ

where Ec
iðiþ1Þ is the energy consumed over the link ðNi; Niþ1Þ of the

fusion route and 0 6 x 6 1 is a weighting factor that enables to
strike a balance between the detection performance and energy
constraint. Note that setting x ¼ 1, we get the pure detection reli-
ability-aware metric as in (40).

In the next section, our cooperative routing scheme will be
compared to the noncooperative routing as well as to the Mini-
mum-Energy routing. In the latter case, the cost of each link repre-
sents the amount of energy consumed when using such link, i.e.,

Miðiþ1Þ ¼ Eiðiþ1Þ ð43Þ

where Eiðiþ1Þ is given by (36). The resulting path enables the lowest
energy consumption between the detection originator and the fu-
sion center.

7. Performance evaluation

In this section, we study the efficiency of our cooperative rout-
ing strategy. Specifically, we compare our detection reliability-
aware routing scheme to the conventional Minimum-Energy rout-
ing and the noncooperative routing schemes in terms of detection
reliability and energy consumption.

In our analysis, the sensor nodes are randomly deployed in a
square field 2� 2. The sink node is located at the center. Sensors
within a distance of 0.3 are assumed to be capable of direct com-
munications. The originator node N0 is chosen randomly. It is
worth noting that the Fast-Dijkstra algorithm used to evaluate
the performance of our proposal mainly needs the topology of
our sensor network. In other words, finding the shortest path be-
tween the originator node N0 and the SINK relies on the network

topology (sensor nodes’ placement) and the SNR ¼ r2
e

r2
W

. The param-

eters setting used in our analysis are listed in Table 1.

7.1. Optimal Path Selection: detection reliability-aware routing vs.
Minimum-Energy routing

Fig. 4 shows the selected route between the originator node N0

and the fusion center S according to the detection reliability-aware
routing and Minimum-Energy routing strategies for a network con-
sisting of N ¼ 200 sensor nodes and with m ¼ 3. This is a represen-
tative example to illustrate the difference between the two routing
strategies. Accordingly two main findings can be stated:

	 The Minimum-Energy routing uses a direct path consisting of
short multi-hop links to connect the originator node to the
fusion center (see Fig. 4a). Using such path minimizes indeed
the energy consumption, but probably at the cost of reduced
detection reliability.
	 To increase the detection reliability, our cooperative routing

scheme selects longer paths than the Minimum-Energy routing.
Indeed, as more sensor nodes participate in the detection pro-
cess, the reliability of the received information at the sink node
increases. The maximum detection reliability is obtained when
the fusion route depicted in Fig. 4c is used. To achieve this, x is



Fig. 3. Fast-Dijkastra algorithm.

Table 1
Parameters setting

Transmit power 24.75 mW
Receive power 13.5 mW
Reference amplifier power 1 W

SNR ¼ r2
e

r2
W

15 dB

p0 0:75
A 0:1
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set equal to 1 in (41). Visiting additional nodes in the fusion
route does not improve the reliability detection while it
increases probably the energy consumption. To balance
between detection reliability and energy consumption, xcan
be varied between ½0; 1�. For instance, Fig. 4b shows the fusion
route for x ¼ 0:5.

7.2. Detection reliability-aware routing evaluation

The performance of our cooperative routing scheme varies with
the weighting factor x, the correlation order m and the network
size N. Hereafter, we analyze the impact of these parameters on
the efficiency of our proposal. To achieve this, we consider the fol-
lowing performance metrics:

	 Number of hops: is the average length of a fusion route.
	 Energy consumption (J): is the average energy consumed to per-

form detection through a fusion route.
	 Chernoff information: is the average amount of useful informa-

tion acquired at the sink node by collecting observations along a
fusion route (given by (8)).
	 Chernoff efficiency: is the average Chernoff information divided

by the energy consumption. This metric reflects the efficiency of
the routing scheme in terms of both detection reliability and
energy consumption.
	 Detection error probability: measures the accuracy of the fusion

center decision based on the gathered measurements from each
node in the fusion route (given by (15)).
	 Cooperative ratio: is the relative increase in energy consump-

tion of the noncooperative routing scheme compared to the
cooperative routing scheme (Enc

R =Ec
R).
The results provided hereafter are averaged over 100 random net-
work topologies for each network size N.
7.2.1. Impact of the weight x
Let us first focus on the impact of xon the performance of our

cooperative routing scheme considering the case where N ¼ 150
and m ¼ 3.

Fig. 5 shows the average number of hops and the energy con-
sumption as function of x. We can see that the fusion route length
increases with x from n ¼ 7:8 when x ¼ 0 to n ¼ 41 when x ¼ 1.
This is because, increasing x increases the impact of the detection
reliability over the energy consumption in the link cost. Typically,
setting x ¼ 1 returns the path with the highest detection reliabil-
ity, whereas x ¼ 0 leads to the path with minimum energy con-
sumption. As stated before, increasing the detection reliability
implies the reception of additional information at the sink node.
This means that additional nodes have to participate in the detec-
tion process, which results in an increase of the fusion route length.
In this regard, the increase of the detection reliability is achieved at
the cost of longer paths and thus additional energy consumption.
Note that the energy consumption increased fivefold between
x ¼ 0 and x ¼ 1. Indeed, when x ¼ 0, the energy consumption
equals 3 J and reaches 15 J when x ¼ 1.

The increase of the detection reliability with x is illustrated in
Figs. 6 and 7 where the Chernoff information increases and the
detection error PE decreases, respectively with x. Indeed, as more
nodes are involved in the detection process, the additive Chernoff
information grows leading thus to more accurate decision at the
fusion center. Note that the probability of detection error decreases
by 85% between x ¼ 0 and x ¼ 1.

Fig. 6 shows the Chernoff efficiency curve, which exhibits a con-
vex pace due to the different growth speed of the energy consump-
tion and the Chernoff information with x. Specifically, up to
x ¼ 0:3, the Chernoff information growth dominates the one of
the energy consumption. Whereas, when x > 0:3, the roles are re-
versed. The maximum Chernoff efficiency is reached when x ¼ 0:3
and equals almost 3.

Finally, Fig. 7 shows the relative improvement in terms of energy-
efficiency of our cooperative routing scheme compared to the non-
cooperative one, which increases with x. As expected, the longer a
fusion route (see Fig. 5) the more important the cooperative ratio
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Fig. 4. The shortest path route from node N0 to the fusion center S.
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(see Fig. 7). Adding nodes to the fusion route increases indeed the
relative inefficiency of the noncooperative routing. Recall that, the
energy consumption with the noncooperative routing increases in
the order Oðn2Þ, whereas it is only OðnÞwith our cooperative routing.
Note that, the energy consumption of the noncooperative routing
scheme is almost eightfold the energy consumption of the coopera-
tive routing scheme when x is set equal to 1.
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Table 2
Comparison between our cooperative routing and the min-energy routing.

Chernoff efficiency Prob. detection error

Min-energy routing 1.27 1:98 exp�4
Cooperative routing Min value = 4.88 Max value = 1:68 exp�11
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7.2.2. Impact of the correlation order m
The next set of experiments explores the impact of the correla-

tion order m on the network performance when N ¼ 150 and
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x ¼ 0:6. It is worth noting that putting m ¼ 1, we simply get all
the results relative to the one-dimension Gaussian model. Conse-
quently, the comparison between both models is implicit since
we only need to investigate the curves when m equals 1.

Fig. 8.a plots the average number of hops and the energy con-
sumption as function of m. We can see that the average length of
a fusion path decreases as m increases from n ¼ 38 when m ¼ 1
and drops to 33.5 for m P 2. The rationale behind this can be ex-
plained as follows. Reducing m reduces the amount of information
that each node receives from its predecessors. To compensate such
drop in the gathered information, additional nodes have to partic-
ipate in the detection process, which results in an increase of the
fusion route length. From an energy consumption point of view,
raising m reduces the average length of fusion routes which mini-
mizes the total energy consumption. Note that the energy
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Fig. 9. Evaluation of the network size impact.
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consumption decreases by 15% between m ¼ 1 and m ¼ 16. Indeed,
when m ¼ 1, the energy consumption equals 4.8 J and drops to 4.2 J
when m P 2.

Fig. 8b shows that the cumulated Chernoff information as well
as the Chernoff efficiency increases with m. Increasing m increases
indeed the amount of useful information received at the sink node
since each node forwards more information to its successor
through the fusion route. Consequently, the probability of detec-
tion error will decrease as depicted in Fig. 8c. Note that a 82% de-
crease in the probability of detection error is achieved between
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m ¼ 1 and m ¼ 16. Moreover, according to Figs. 8a and b, increas-
ing m reduces the total energy consumption and enhances the
Chernoff information which justifies the growth in the Chernoff
efficiency. The maximum Chernoff efficiency equals 6 when
m ¼ 16.

Fig. 8c shows the relative improvement in terms of energy-
efficiency of our cooperative routing scheme compared to the non-
cooperative one, which decreases with m. Recall that decreasing
the fusion route length decreases the relative improvement. This
explains the decrease of the relative improvement with m since
the average fusion route length decreases with m as shown in
Fig. 8a.

We would like to emphasize that, according to our study (see
Fig. 8), m ¼ 1 is the worst case scenario when dealing with our
cooperative routing. In fact, we point out that the energy consump-
tion as well as the probability of detection error decrease when m
increases. Moreover, the Chernoff information and the Chernoff
efficiency increase with m.

Finally, we focus on the comparison between our cooperative
routing scheme and the Minimum-Energy scheme. To do so, we
consider the worst case scenario m ¼ 1ð Þ when dealing with our
cooperative routing. Table 2 shows that our proposal provides a
Chernoff efficiency improvement by a factor of more than three
compared to the Minimum-Energy routing. Moreover, Table 2
shows that our cooperative routing reduces significantly the detec-
tion error probability.

7.2.3. Impact of the network size N
We now study the impact of the network size variation on the

performance of our cooperative routing scheme considering the
cases where m ¼ 3 and m ¼ 3 while x ¼ 0:8. Note that, for each
network size, the results are averaged over 100 arbitrary generated
topologies. Accordingly the following main observations can be
made:

	 First of all, it is worth noting that Fig. 9 provides a new compar-
ison between the one-dimension Gauss-Markov model ðm ¼ 1Þ
and our multi-dimension Gaussian Autoregressive model
ðm ¼ 3Þ under different network size. We would like to empha-
size that, Fig. 9 confirms the correlation order study (see Fig. 8).
In fact, we point out that, even under various network size, a 3-
order Gaussian autoregressive correlation model achieves
higher Chernoff efficiency and less detection error probability
compared to the one-dimension Gauss-Markov model. The
Chernoff efficiency of our 3-order correlation model is
almost 33% greater than the efficiency of the one-order cor-
relation model. In the following, we focus on the comparison
between our cooperative routing scheme ðm ¼ 3Þ and the Min-
imum-Energy scheme.
	 Fig. 9.a shows that increasing N increases the average length of

a fusion route when our cooperative routing is used. Increasing
N enables indeed our cooperative routing to find better routes
in terms of detection reliability involving obviously much more
nodes.
	 The improvement in the detection reliability is depicted in

Fig. 9.c where the Chernoff information improves with N, which
results in a reduction of detection error probability as shown in
Fig. 9.e. Using our cooperative routing scheme (m ¼ 3) allows a
significant decrease in the probability of detection error. For
example, an almost 80% decrease is achieved with our coopera-
tive routing scheme when N ¼ 200.
	 The above increase in network detection reliability is achieved

again at the cost of additional energy consumption as shown
in Fig. 9b, where the energy consumption increases with N in
the cooperative routing case. The energy consumption varies
between 6 and 22 J.
	 In contrast, the energy consumption decreases with N consider-
ing the Minimum-Energy routing case. This is because the
cumulative distance of the hops on a fusion route decreases
with N and thus the energy consumption decreases. The energy
consumption varies between 7 and 5 J.
	 Fig. 9d shows that our proposal provides always better Chernoff

efficiency than Minimum-Energy routing. This indicates that
the relative increase of the energy consumption with our
scheme is reasonable since it improves significantly the net-
work detection reliability. Recall that, the chernoff efficiency
mesures the amount of usefull information by one unit of con-
sumed energy (Chernoff Efficiency ¼ Chernoff Information

Energy ). Fig. 9d
shows that The Chernoff efficiency of our cooperative routing
is almost 70% greater than the efficiency of the minimum-
Energy routing. In otherwords, for the same amount of
consumed energy, we get more useful information with the
Chernoff routing protocol. Putting it differently, for the same
level of detection reliability, Chernoff routing achieves better
energy conservation compared to Minimum-Energy routing.
	 Finally, Fig. 9f shows that the relative improvement in terms of

energy-efficiency of our cooperative routing scheme compared
to the noncooperative one increases with N. This is again due
to the increase of the average length of fusion routes with N.
Note that, the energy consumption of the noncooperative
routing scheme is almost 18 times the energy consumption
of the cooperative routing scheme (m ¼ 3) when N is set
equal to 300.

8. Conclusion

In this paper, we studied the use of a detection reliability-aware
link metric for routing in wireless sensor networks. Using a generic
and realistic multi-dimensional Gaussian autoregressive model to
describe the correlation within the supervised field, we derived
the expression of a link metric that quantifies the participation of
each link on a path in reducing the probability of error when mak-
ing final decision at the fusion center. Moreover, we used fast filter-
ing to aggregate data information at intermediate nodes along the
path to the fusion center. We demonstrated that our cooperative
routing scheme enables significant energy conservation compared
to conventional Minimum-Energy routing and noncooperative
routing schemes for a given detection reliability level. Moreover,
we showed that our cooperative routing outperforms the one-
dimension Gauss-Markov model in terms of energy-efficiency and
the detection reliability. By including a weighted value of the
energy consumption in the link cost, we also showed how our
cooperative routing can achieve a balance between the detection
reliability and energy consumption.
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