
IEEE Communications Magazine • July 2014116 0163-6804/14/$25.00 © 2014 IEEE

The authors are with the
University of Waterloo.

1 http://www.internet-
worldstats.com/emarket-
ing.htm

INTRODUCTION

Managing the Internet’s core has become very
complex, tedious, and error-prone due to a num-
ber of reasons. The first reason is the tremen-
dous growth in the Internet user population and
the voluminous network traffic they generate.
From December 1995 to March 2013 the global
population of Internet users rose from 16 million
to 2.7 billion.1 In order to cope with this rapid
growth, network operators have to relentlessly
deploy and manage a wide variety of switches,
routers, and middle-boxes (e.g. firewalls, net-
work address translators, and load balancers).
Second, these networking devices are manufac-
tured by different vendors and have diverse con-
figuration protocols. This heterogeneity
contributes an additional level to the network
management complexity.

Traditional switches/routers have two respon-
sibilities:
• Decide the next hop for each packet.
• Forward the packet accordingly.

In contrast, Software Defined Networking
(SDN) decouples decision making from packet
forwarding. In the SDN paradigm routing deci-
sions are taken by a logically centralized entity
called the controller. The controller updates the

routing table entries in switches/routers using a
standard communication protocol like Open-
Flow [1], while the switches blindly follow their
routing table entries for forwarding packets.

SDN has emerged as a promising solution to
simplify network configuration and management
complexities [2, 3]. The SDN technology has
been adopted in many datacenter networks.
These deployments rely on a single controller for
internal traffic management and tenant isolation.
However, in a WAN the controller can be many
hops away from the switches, and the communi-
cation latency can be much higher than that in a
datacenter network. Hence, a single controller
may not be efficient in a WAN [4]. This fact has
been identified by a number of research works
including [5–7], which propose multi-controller
SDN solutions. Google’s B4 network [8], the
largest SDN deployment, uses multiple con-
trollers as well. These solutions either propose a
two-level controller hierarchy or a distributed
controller network. In a two-level hierarchy the
upper level controller becomes a performance
bottleneck. On the other hand, in a purely dis-
tributed solution inter-controller synchronization
overhead becomes a major concern.

In this article we first present an overview of
the SDN technology along with its promised
benefits. We then highlight the shortcomings of
a single-controller architecture in a WA-SDN
deployment, followed by the design considera-
tions for a multi-controller SDN architecture.
We build-upon the concepts established by the
network management community over two
decades ago, such as management by delegation
and hierarchical management [9], and derive a
two-level management architecture for a single
administrative domain WA-SDN, where the
high-level management tasks are performed
through delegation of executable control tasks to
lower-level managers. We discuss how these con-
cepts can benefit future SDN deployments in
WANs. Finally we present a qualitative compari-
son of the existing WA-SDN architectures with
the presented architecture.

SDN OVERVIEW

SDN ARCHITECTURE
Figure 1 presents the components of a basic
SDN solution, where OpenFlow has been used as
the communication protocol between data and
control planes. Here, switches and routers com-

ABSTRACT

SDN has the potential to simplify network
configuration and reduce management complexi-
ty. In today’s networks control and forwarding
functions are tightly coupled and embedded
within each switch/router. SDN, in contrast,
accumulates the control functionality in one or
more dedicated network entities called con-
trollers, which provide a unified interface to con-
figure and control the network. Packet forwarding,
on the other hand, remains the responsibility of
the switches/routers. Many datacenter networks
have benefited from the abstraction provided by
SDN. However, in a Wide Area Network (WAN)
a single controller becomes a performance bot-
tleneck. Multiple controller solutions are pro-
posed as a natural consequence. In this article
we present the requirements, design alternatives,
and a possible management architecture for a
single administrative domain WA-SDN. We also
discuss the functional components that should
be present in a multi-controller architecture for
managing WA-SDN deployments.

NETWORK AND SERVICE MANAGEMENT

Reaz Ahmed and Raouf Boutaba

Design Considerations for Managing
Wide Area Software Defined Networks

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 116

IEEE Communications Magazine • July 2014 117

prise the data plane, while the control plane con-
sists of a logically centralized controller. Data
plane devices maintain a secure TCP connection
to the controller, and communicate using the
OpenFlow protocol. An OpenFlow-enabled
switch maintains a list of packet forwarding rules
in a flow table. A flow table entry is of the form
“if condition then action-list.” A condition con-
tains packet header fields like MAC addresses,
IP addresses, and port numbers for source and
destination. An action-list contains actions like
modify packet header, forward to switch-port, send
to controller, drop packet, and so on. A switch
matches the values in an incoming packet header
against the condition in each flow table entry. If
a condition matches, the corresponding action-
list is executed. Otherwise, a Packet_In message
(along with the packet header) is sent to the con-
troller. Upon receiving a new packet, the con-
troller decides a suitable path for the packet and
installs forwarding rules in each switch along the
path. Subsequent packets with the same source
and destination signature will follow the same
path without the controller’s intervention. The
controller runs in a general purpose compute
hardware, and acts as a middleware for the net-
work applications (e.g. firewall, intrusion detec-
tion, and deep packet inspection) that need to
perform intelligent packet processing.

BENEFITS OF SDN
SDN has gained much attention from both the
industry and academia in recent years. This
surge of attention can be attributed to the
promising benefits of SDN. Here we highlight
some of these benefits:
• SDN switches are simpler and cheaper as

they have to implement fewer protocols,
and do not need to make complex decisions.

• SDN allows independent evolution of the
data and control plane elements as long as
they adhere to a standard interface (e.g.
OpenFlow). This loose coupling will allow
different parties to independently develop
interoperable control logic and manage-
ment applications.

• Network applications can be easily devel-
oped and deployed on top of the logically
centralized controller. On the contrary, a
traditional network application may need to
change the control logic in a switch
firmware.

• SDN offers vendor neutrality by hiding the
vendor specific implementation details
behind a standard interface between switch-
es and the controller.

• Network management should be simpler
and less error-prone in SDN. In contrast to
controlling and configuring each switch
independently, a network administrator can
program the controller, which in turn can
configure the switches as needed.

SHORTCOMINGS OF SDN
Despite numerous benefits, the networking

industry has not yet seen widespread adoption of
the SDN technology in WANs. Though it is diffi-
cult to identify the exact reasons behind this
restraint, we highlight some of the technical
challenges here:

• SDN proposes a logically centralized con-
troller solution, without providing any detail
on decentralizing controller functionality.

• Compared to the online processing speed in
a traditional router, the flow setup delay
introduced by switch to controller commu-
nication can be significantly high in WANs.

• SDN has successfully defined the interface
for switch to controller communication, but
there is no standard interface for controller
to application communication. As a result,
a number of incompatible controllers (e.g.
NOX [10] and Floodlight [11]) have been
implemented. This is strangling SDN’s goal
for neutrality and independent innovation.

• It is hard to achieve data plane security in
SDN. Once a flow is established, each pack-
et with the same flow signature is treated as
authentic and no inspection is done to identi-
fy packet injection attacks. These shortcom-
ings have to be addressed to ensure a
widespread acceptance of the SDN technology.

DESIGN CONSIDERATIONS
There exist a number of alternatives for design-
ing a single administrative domain (e.g. an ISP
or an enterprise network) WA-SDN architecture.
Here we discuss some of these alternatives along
with their relative advantages and disadvantages.

SINGLE VS. MULTIPLE CONTROLLERS
The controller is the most important artifact in
an SDN architecture. A single controller solution
may result in a single point of failure and perfor-
mance bottleneck problems in a WA-SDN. The
entire network will collapse if the controller
fails. On the other hand, no matter where we
place the controller it will be farther away from
some switches. These switches will experience
higher flow setup latency. Clearly a single con-
troller solution is not suitable for WA-SDN.

For a multi-controller WA-SDN solution two

Figure 1. SDN architecture.

Controller

Open flow

C
on

tr
ol

pl
an

e
D

at
a

pl
an

e

Network
applications

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 117

IEEE Communications Magazine • July 2014118

alternatives are possible: replicated and dis-
tributed. Multiple replicated controllers can
improve fault resilience. A naive approach is to
maintain an online shadow controller that will
takeover only if the primary controller fails [12].
Each switch is configured to simultaneously
communicate with both controllers. This may
generate significant communication overhead in
a WAN, where the controller and switches may
be many hops apart. For short flows this may
generate more flow setup traffic than the flow
itself. On the other hand in a distributed con-
troller architecture [5–7] each controller is
responsible for a portion of the network. In gen-
eral, a distributed controller solution should
yield better performance and robustness than a
replicated one.

MULTI-CONTROLLER ARCHITECTURES:
HORIZONTAL VS. VERTICAL

In a multi-controller setup controllers can be
arranged in two ways: horizontal or vertical. In a
horizontal setup each controller has the same

responsibilities but a partial view of the network.
This architecture is proposed in Hyper Flow [7]
and Onix [6]. HyperFlow handles state distribu-
tion of the distributed controllers through a pub-
lish/subscribe system based on the WheelFS
distributed file system. Controller state distribu-
tion in Onix is managed through a distributed
hash table.

On the other hand, in a vertical setup con-
trollers are hierarchically arranged, and they
have different responsibilities. For example,
Kandoo [5] places the controllers in a two-level
hierarchy comprising a master controller and
multiple local controllers. Local controllers
respond to the events that do not depend on
global network state (e.g. elephant flow detec-
tion), while the root controller handles the
events that require global network view (e.g. re-
routing elephant flows).

These alternatives have relative advantages
and disadvantages. Both of these alternatives can
improve switch to controller latency over a single
controller solution. Horizontal arrangement can
provide better resilience to failure but managing

Figure 2. Proposed system architecture.

Firewall
IPS/IDS

Policy
admin.

Load
balancer

Monitoring
& reconfig.

Cache/
CDN

Access
control

Network manager (NM)

Connectivity
tracker

Configurator

Policy manager

Controller
(NOX, floodlight, etc.)

Zone manager (ZM)

Flow
tracker

Topology
manager

Flow
manager

Stats
collector

Config.
manager

Credential
manager

Switch APISwitch API

Zone Zone

Fo
rw

ar
di

ng
la

ye
r

A
da

pt
at

io
n

la
ye

r
Se

rv
ic

es
A

pp
lic

at
io

ns

M
an

ag
em

en
t

la
ye

r

Control API

Connectivity
tracker

Configurator

Controller
(NOX, floodlight, etc.)

Zone manager (ZM)

Flow
tracker

Management API

Network manage-

ment should be sim-

pler and less

error-prone in SDN.

In contrast to con-

trolling and configur-

ing each switch

independently, a net-

work administrator

can program the

controller, which in

turn can configure

the switches as

needed.

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 118

IEEE Communications Magazine • July 2014 119

the controllers becomes harder. On the contrary,
a vertical arrangement offers simpler network
management through the upper level controller,
which remains a single point of failure.

INTER-CONTROLLER COMMUNICATION:
IN-BAND VS. OUT-OF-BAND

In a multi-controller SDN deployment the mode
of inter-controller communication can greatly
affect the overall system performance. There are
two possibilities to choose from: in-band or out-
of-band signaling. With in-band signaling, con-
trollers use the data plane for connecting to each
other. This incurs no additional cost for inter-
controller communication. Usually controllers
have to synchronize in real-time for quick flow
setup and response to network dynamics. In-band
signaling may fail to deliver performance guaran-
tee. On the contrary, out-of-band signaling
requires a dedicated network between the con-
trollers, which incurs additional cost, but it can
provide much better response time and does not
suffer from potential congestions. Out-of-band
communication should be the preferred choice
for a high performance WAN deployment.

FLOW SETUP MODEL
Different flow setup models are possible in a
multi-controller architecture. Here we discuss
three possibilities.

1) Master controller: In a vertical setup a
local controller can propagate a Packet_In mes-
sage to the master controller, which can com-
pute the flow-path and can instruct appropriate
local controllers to install required flow table
entries. This approach can generate optimized
flow paths, but the master controller will become
a performance bottleneck.

2) Ingress controller: In a horizontal setup
the first controller intercepting a Packet_In mes-
sage can request other controllers along a
desired path to install flow table entries in the
switches under their control. This approach does
not have a performance hot spot, but controllers
have to know about each other and the network
topology. Master controller and ingress con-
troller approaches are more appropriate for out-
of-band signaling.

3) On-Route: In a horizontal setup a con-
troller can independently schedule a segment of
an end-to-end flow in the switches under its con-
trol based on its local knowledge. This approach
is suitable for in-band signaling. It can offer bet-
ter performance over the previous two, but the
quality of flow paths depends on the level of
local knowledge at each controller. The On-
Route approach can offer a balance between
performance and path quality (see the Flow
Setup section for details).

AN ARCHITECTURE FOR WA-SDN
In light of the above discussion, a multi-con-
troller architecture in a vertical setup should be
the most suitable solution for WA-SDN. The
architecture should be independent of the inter-
controller communication models. This would
allow a service provider to choose between cost
and performance. The resulting architecture is

presented in Fig. 2. It has two major compo-
nents: a network manager (NM) and a zone
manager (ZM). There are three logical layers:
the forwarding layer, the adaptation layer, and
the management layer. This section describes the
architectural components, while the next section
presents a functional overview.

FORWARDING LAYER AND ZONES
From a functional point of view, this layer is
similar to the data plane in Fig. 1. Contrary to
the single-controller scenario, the switching net-
work is logically partitioned into zones based on
network proximity (for performance reasons)
and/or the switch-to-controller communication
protocol (for deployment flexibility). Each zone
is controlled by a native controller (e.g. NOX,
FloodLight etc.). However, end-to-end network
operations are transparent to the zones. Two
benefits can be harnessed by this partitioning:

Scalability: First, the load on each controller
will be reduced, compared to a single controller
scenario. This will allow the controllers to main-
tain fine-grain contact with the switches and per-
form more accurate monitoring. Second, in a
dispersed WAN, a controller can be placed in
each geographic location, which will reduce flow
setup delay.

Extendibility: The controller-to-switch com-
munication is abstracted by the switch API. This
will allow different controller implementations and
switch APIs to coexist in the same network. It will
facilitate gradual deployment of new or upgrad-
ed controller implementations and switch APIs.

ADAPTATION LAYER AND SWITCH API
The purpose of this layer is to leverage the per-
formance and extendibility offered by zone level
partitioning. There exist many controller imple-
mentations, each having its own advantages and
drawbacks, and each offering a different inter-
face (aka North Bound API) to the management
applications. Moreover, OpenFlow is not the
only switch API (aka South Bound API) avail-
able. Vendors have their proprietary extensions
over the OpenFlow protocol.

ZMs can make the architecture independent of
the switch API and controller implementation. A
ZM is installed as a plug-in to each controller, which
communicates with the switches in its zone using
native switch API (e.g. OpenFlow). The ZM, on the
other hand, gets commands from the NM using a
standard Control API, and translates and feeds those
commands to the controller. The connectivity tracker
and flow tracker components in the ZM collect topol-
ogy and flow information from the controller, respec-
tively, and forward this information to the NM
periodically. This setup should not incur significant
overhead because the switch to controller traffic is
restricted within a zone, and all components within a
zone reside in close network proximity. The Configu-
rator module receives switch configurations from the
NM and translates them into appropriate operations
performed on the controller.

MANAGEMENT SERVICES AND CONTROL API
The NM should provide the essential manage-
ment services and a global (abstract) view of the
network for management applications. The NM
should have the following components:

The controller-to-

switch communica-

tion is abstracted by

the switch API. This

will allow different

controller implemen-

tations and switch

APIs to coexist in the

same network. It will

facilitate gradual

deployment of new

or upgraded con-

troller implementa-

tions and switch

APIs.

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 119

IEEE Communications Magazine • July 2014120

Topology Manager is responsible for inter-
cepting topology related updates from the con-
trollers. This module will combine local topology
information to form a global topology. This
module also creates aggregate topology informa-
tion and pushes it down to the ZMs to facilitate
inter-zone flow setup (further detail follows).

Credential Manager maintains the public
keys for the controllers and network applica-
tions. As a result, only authenticated controllers
can provide information in the system and trust-
ed applications can use this information. The
switch API (e.g. OpenFlow) should ensure secu-
rity between a controller and its switches.

Flow Manager installs and maintains prede-
fined and long lived flows according to the appli-
cations and management requirements. This
module focuses on ensuring globally optimal
flow paths. This module can also be used to
shape flow paths and flow volume for adapting
to network dynamics.

Stats Collector keeps track of the detail and
aggregate flow and topology information to aid
monitoring applications. Other modules within
the NM can also communicate with the stats col-
lector to obtain network statistics. A hybrid com-
bination of the poll and push strategies for stats
collection can produce highly accurate stats with
minimal monitoring overhead (explained in the
next section).

Configuration Manager maintains up-to-date
information about the switches, controllers, and
ZMs in each zone. It provides this configuration
information to management applications and
implements configuration change requests
through the configurator modules in the ZMs.

Policy Manager interprets the management
API messages. It has the necessary intelligence

to interpret global policies and to translate
applications’ requests to appropriate function
calls to the other modules in NM. Existing solu-
tions for policy definition, conflict resolution,
and policy based management can be adapted
for extending the functionality of this module.

Control API provides the standard communi-
cation interface between ZMs and the NM. This
allows different controller implementations to
coexist. For each controller implementation a
different ZM has to be implemented for trans-
lating Control API messages to the native con-
troller messages.

MANAGEMENT APPLICATIONS AND
MANAGEMENT API

A wide variety of management applications, like
firewall, intrusion prevention/detection systems
(IPS/IDS), policy administration tools, in-net-
work cache, CDN, user access control, load bal-
ancing, monitoring, and reconfiguration, can
thrive in this architecture. There are two ways to
deploy these applications: as a plugin within the
NM or as a standalone component. The second
option is more attractive because it provides
loose coupling and provision for a wider range
of applications. For the second option a REST-
ful Management API is more desirable, since
REST offers benefits like efficiency, scalability,
simplicity, and extendibility. This API should
expose the functions offered by the management
services, like access to up-to-date topology infor-
mation, manipulate data flows, network statistics
at different granularities, configuring network
elements, and so on.

FUNCTIONAL OVERVIEW
In this section we highlight three important
functionalities and how they can be implemented
in a WA-SDN architecture.

DISTRIBUTING TOPOLOGY INFORMATION
Gathering real-time topology information is a
difficult task in a WAN. If a central entity (e.g. a
single controller) is assigned the task of tracking
all the devices and links, it will be hard to gather
accurate network topology in a timely manner.
One ZM is assigned the responsibility of track-
ing the devices and links in a specific zone. Since
the number of switches and links in a zone can
be kept small, a ZM can poll them (via con-
troller) more frequently and can provide timely
and accurate topology information.

Each ZM has a detailed topology of its own
zone. However, a ZM requires some knowledge
about the overall network topology for flow
scheduling, load-balancing, and traffic shaping.
The NM can collect detailed topology informa-
tion from each ZM and compute aggregate net-
work topologies (ANT). An ANT is a graph
where nodes represent zones and edges repre-
sent inter-zone links. The NM can compute and
send an ANT for each ZM.

Now we provide a simple method for con-
structing the ANT graph. First consider a simple
case where any pair of zones is connected with
at most one link. In this case the ANT graph for
any ZM will be the minimum spanning tree root-

Figure 3. ANT graph example.

Inter-zone topology

E

G

F

H

A B

Zone manager (ZM)

Controller

b)a)

1

2

1

2

A

E

F

G

H

A B

E

F

G

H

B1

B2

1

2

3 5

6

7
8

4

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 120

IEEE Communications Magazine • July 2014 121

ed at that ZM. However, it is more likely that
multiple links will exist between a pair of zones,
since zones are logical groupings of switches
within a single administrative domain. If we
allow multiple edges between a pair of nodes, we
cannot ensure an optimal routing path based on
an ANT graph. We can explain this situation
using the example in Fig. 3. Consider the inter-
zone topology in this figure. We want to compute
the ANT graph for zone A’s ZM. There are two
links between zones A and B. From zone A’s
perspective, nodes 3 and 4 are ingress and nodes
5 to 8 are egress. Assume that a packet can
reach egress nodes 5 and 6 in shortest paths if it
enters zone B through node 3, while the shortest
paths to egress nodes 7 and 8 are through ingress
node 4. Now if we allow multiple edges between
zones A and B we will obtain the ANT graph (a)
in Fig. 3. Consider that zone A wants to set up a
flow to zone G via B. Based on this graph, zone
A will not be able to pick between links 1 and 2.
Now consider the ANT graph (b) in Fig. 3. In
this graph zone B is split into B1 and B2, corre-
sponding to ingress nodes 3 and 4. Based on this
graph, zone A can readily pick link 2 when it
wants to set up a flow to zone G.

FLOW SETUP
Flow setup is the most frequently executed task
by a controller. It will not be scalable if ZMs
need to contact the NM to set up every flow. On
the other hand, maintaining detailed network
topology at every ZM is not scalable due to syn-
chronization overhead. To balance between flow
setup delay and synchronization overhead, we
chose the On-Route flow setup model. The NM
can compute and store the ANT graphs in each
ZM. This will enable a ZM to install flow table
entries within its own zone without contacting
NM and yet can ensure near-optimal inter-zone
routing paths.

Figure 4 presents the sequence of operations
that takes place to set up a flow within a zone.
When a new flow request arrives at a zone’s
ingress switch (setp 1), the switch contacts its
controller for flow setup (setp 2). The controller
in turn queries the ZM, which resides in the
same machine (step 3). Now the ZM consults its
ANT graph (step 4) to find the egress switch
(node d in this example) along the global opti-
mal path to the target zone. Then the ZM
instructs the controller (step 5) to initiate a flow
from the ingress switch (here a) to the egress
switch (here d) (steps 6 and 7). Finally, the flow
traverses the zone (step 8).

By repeating this process at each intermedi-
ate zone, an end-to-end flow can be established.
A ZM can ensure shortest path routing in the
ANT graph and within its own zone. Hence,
according to the optimality principle the path
from source node to the ingress switch of the
destination zone will be the shortest. However,
the last portion of the path at the target zone
may not be the shortest for a specific case. Sup-
pose the target zone is Z and the flow enters
zone Z from zone Y. If there are multiple links
between zones Y and Z, and the flow terminates
at an internal switch (i.e. other than the border
switches) in zone Z, then the ZM in zone Y will
have no way from the ANT graph about which

link to choose. This is because the ANT graph
does not have information about the internal
switches in a zone and zone Y cannot determine
which ingress switch in zone Z has a shorter
path to the target switch. However, this special
case will introduce only a minor deviation from
the optimal routing path.

MONITORING
Monitoring is essential to track and ensure prop-
er functioning of a network. As discussed earlier,
there are two modes of monitoring: push and
poll. Push is more bandwidth efficient, as in this
case the monitored entity updates the monitor-
ing entity when some event occurs. Implement-
ing a push service within a switch is against SDN
principle because it will increase a switch’s com-
plexity. The other alternative is to poll the moni-
tored device periodically. Polling frequency
determines the accuracy of collected data. But
increasing polling frequency incurs additional
network overhead. For this reaso- most of the
switch APIs support poll based monitoring.

Considering these trade-offs, we can adopt a
hybrid strategy. As depicted in Fig. 5 a monitor-
ing application registers itself with NM using the
management API. The application provides its
requirements and desired update frequency to
the NM. The stats collector module in NM con-
tacts and registers with appropriate ZMs
depending on the application’s requirements.
Accordingly, the ZMs start polling the con-
trollers, which in turn collect the desired statis-
tics from the switching fabric and updates the
ZMs. The ZMs accumulate and aggregate raw
data from the switches and send them to the
NM, which in turn updates the application. A
similar approach for monitoring in single-con-
troller SDN can be found in [13].

This hybrid strategy can achieve a higher
polling frequency than a central controller sce-
nario, because there are multiple ZMs/controllers
in the system, each polling a small number of
switches. Moreover, the traffic between ZMs and
the NM will be low as the ZMs push aggregated

Figure 4. Intra-zone routing.

c

A

b

2

1

7
6 6

6

8

a

d

5
3

Zone manager (ZM)

Controller

4

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 121

IEEE Communications Magazine • July 2014122

information to the NM on demand only. This
will result in a lower load at the NM as well.
Hence, better accuracy can be achieved at the
expense of a lower monitoring traffic.

RELATED ARCHITECTURES
In this section we compare the discussed archi-
tecture with existing multi-controller SDN archi-
tectures that target enterprise networks. In
particular we focus on four prominent multi-con-
troller SDN architectures: Google’s B4 network
[8], Kandoo [5], HyperFlow [7], and Onix [6].

Google’s inter-datacenter network B4 is the
largest SDN deployment in the industry. B4 net-
work provides the backbone connectivity
between 12 sites (datacenters) from Google that
span the Globe. Each site is controlled by a set
of OpenFlow controllers, which directly connect
to the switches in datacenters. The controller
from each site communicates with a central com-
ponent called the SDN gateway, which is analo-
gous to the NM. The SDN gateway is mainly
used for global traffic engineering and better
fault resilience. The controllers communicate
with each other (i.e. horizontal setup) to
exchange topology and flow information, which
adds a lot of complexity and overhead in the B4
architecture.

Kandoo [5] proposes a two-level controller
network (i.e. vertical setup) consisting of a root
controller (analogous to NM) and multiple local
controllers. The root controller has a global
knowledge of the network, while the local con-
trollers know only about their own zone. Local
controllers report to the root controller. Local
controllers try to handle OpenFlow events using
their local knowledge. A local controller con-
tacts the root controller if it finds its local
knowledge inadequate to handle a packet. As a
result, the root controller has to process a sig-
nificant number of events. On the contrary,
ZMs can handle flow setup requests indepen-
dently using detailed local topology and the

ANT graph. NM is contacted only to update the
network topology and flow statistics. This should
provide a better separation of concerns, allow
lower flow setup delay, and lesser load at the
NM. Results from our work on controller place-
ment in multi-controller SDN can well support
this conjecture (Fig. 4 in [14]).

Both Onix [6] and HyperFlow [7] propose a
fully distributed controller network without any
central component (i.e. horizontal setup). Onix
maintains a distributed data structure called
Network Information Base (NIB) for synchroniz-
ing controllers’ states and for accessing devices.
NIB is a graph representing the network topolo-
gy. Each device has a set of key-value pairs in
NIB. Topology information (mostly static) is
fully replicated across all controllers, whereas
dynamic state information (e.g. link utilization)
is indexed in a Distributed Hash Table. Each
controller can aggregate the network topology it
controls and expose it as a single node to other
controllers. HyperFlow, on the other hand, relies
on the publish/subscribe mechanism of the
WeelFS [15] file system for synchronizing con-
troller states. Both of these approaches provide
a logically centralized view of the network to a
network application. However, in both of these
architectures, applications are responsible for
handling stale data and inconsistent network
views. This increases the complexity of a net-
work application.

CONCLUSION
A complete management framework is essential
to realize SDN’s promise for a simple, manage-
able, and cost effective networking solution. In
this work we discussed the design rationales and
the architectural alternatives for WA-SDN solu-
tions. We have provided an overview of a desir-
able architecture to fulfill these requirements
and have explained the major functionalities in
this architecture. We are gradually elaborating
and implementing the components and mecha-
nisms in this architecture. We are maintaining
our related research outcome (in terms of publi-
cations and downloadable software components)
in our project page at www.waterloosdn.org. We
believe that the design rationales and architec-
tural alternative presented in this article will
serve as a cornerstone for future WA-SDN man-
agement architectures.

REFERENCES
[1] N. McKeown et al., “Openflow: Enabling Innovation in

Campus Networks,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, 2008, pp. 69–74.

[2] M. Casado et al., “Ethane: Taking Control of the Enter-
prise,” Proc. 2007 Conference On Applications, Tech-
nologies, Architectures, and Protocols For Computer
Commun., 2007, pp. 1–12.

[3] H. Kim and N. Feamster, “Improving Network Manage-
ment with Software Defined Networking,” IEEE Com-
mun. Mag., vol. 51, no. 2, 2013, pp. 114–19.

[4] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
scalability of software-defined networking,” IEEE Com-
mun. Mag., vol. 51, no. 2, 2013, pp. 136–41.

[5] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Frame-
work for Efficient and Scalable Offloading of Control
Applications,” Proc. HotSDN 2012, pp. 19–24.

[6] T. Koponen et al., “Onix: A Distributed Control Platform
for Large-Scale Production Networks,” Proc. OSDI 2010,
pp. 1–6.

Figure 5. Monitoring process.

Register
Register

Push

Push

Poll
Poll

Result
Result

Periodic on-demand

Switches
Network

manager (NM)

Zone manager
(ZM) ControllerApp

Within a
controller

Within a
domain

(frequent)

Accumulate and
aggregate

Stats
collector

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 122

IEEE Communications Magazine • July 2014 123

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Dis-
tributed Control Plane for Openflow,” Proc. 2010 Inter-
net Network Management Conf. Research on Enterprise
Networking, ser. INM/WREN’10, Berkeley, CA, USA:
USENIX Association, 2010, pp. 3-3.

[8] S. Jain et al., “B4: Experience with a Globally-Deployed
Software Defined WAN,” Proc. ACM SIGCOMM 2013
Conf., SIGCOMM, ACM, 2013, pp. 3–14.

[9] J.-P. Martin-Flatin, S. Znaty, and J.-P. Hubaux, “A Survey
of Distributed Enterprise Network and Systems Man-
agement Paradigms,” vol. 7, no. 1, March 1999, pp.
9–26.

[10] “Nox,” http://www.noxrepo.org/nox/about-nox/.
[11] “Project Floodlight,” http://www.projectfloodlight.org/

projects/.
[12] H. Kim et al., “Coronet: Fault Tolerance for Software

Defined Networks,” Proc. IEEE Int’l Conf. Network Pro-
tocols (ICNP), 2012.

[13] S. R. Chowdhury et al., “PayLess: A Low Cost Network
Monitoring Framework for Software Defined Net-
works,” Proc. IEEE/IFIP Network Operations and Man-
agement Symp. (NOMS), Krakow (Poland), May 2014.

[14] M. F. Bari et al., “Dynamic Controller Provisioning in
Software Defined Networks,” Proc. IEEE/ACM/IFIP Int’l
Conf. Network and Service Management (CNSM),
Zurich, Switzerland, October 2013.

[15] J. Stribling et al., “Flexible, Wide-Area Storage for Dis-
tributed Systems with Wheelfs,” Proc. 6th USENIX Sym-
posium on Networked Systems Design and
Implementation (NSDI ‘09), Boston, MA, April 2009.

BIOGRAPHIES
REAZ AHMED is working as Associate Professor in the depart-
ment of Computer Science and Engineering, Bangladesh
University of Engineering and Technology (BUET), Dhaka,
Bangladesh. He received the Ph.D. Degree in Computer Sci-
ence from the University of Waterloo in 2007. He received
the MSc. and BSc. degrees in Computer Science from BUET
in 2002 and 2000, respectively. He received the IEEE Fred
W. Ellersick award 2008. His research interests include
future Internet architectures, wide area service discovery
and content sharing peer-to-peer networks with a focus on
search flexibility, efficiency, and robustness.

RAOUF BOUTABA [F] received the M.Sc. and Ph.D. degrees in
computer science from the University Pierre & Marie Curie,
Paris, in 1990 and 1994, respectively. He is currently a pro-
fessor of computer science at the University of Waterloo
and a distinguished visiting professor at the division of IT
convergence engineering at POSTECH. His research inter-
ests include network, resource and service management in
wired and wireless networks. He is the founding editor in
chief of the IEEE Transactions on Network and Service
Management (2007-2010) and on the editorial boards of
other journals. He has received several best paper awards
and other recognitions such as the Premier’s Research
Excellence Award, the IEEE Hal Sobol Award in 2007, the
Fred W. Ellersick Prize in 2008, the Joe LociCero and the
Dan Stokesbury awards in 2009, and the Salah Aidarous
Award in 2012.

AHMED_LAYOUT.qxp_Layout 7/2/14 3:34 PM Page 123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

