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Online Anomaly Detection in Wireless Body Area
Networks for Reliable Healthcare Monitoring

Osman Salem, Yaning Liu, Ahmed Mehaoua, and Raouf Boutaba, Fellow, IEEE

Abstract—In this paper, we propose a lightweight approach for
online detection of faulty measurements by analyzing the data col-
lected from medical wireless body area networks. The proposed
framework performs sequential data analysis using a smart phone
as a base station, and takes into account the constrained resources
of the smart phone, such as processing power and storage capac-
ity. The main objective is to raise alarms only when patients enter
in an emergency situation, and to discard false alarms triggered
by faulty measurements or ill-behaved sensors. The proposed ap-
proach is based on the Haar wavelet decomposition, nonseasonal
Holt–Winters forecasting, and the Hampel filter for spatial anal-
ysis, and on for temporal analysis. Our objective is to reduce
false alarms resulting from unreliable measurements and to re-
duce unnecessary healthcare intervention. We apply our proposed
approach on real physiological dataset. Our experimental results
prove the effectiveness of our approach in achieving good detec-
tion accuracy with a low false alarm rate. The simplicity and the
processing speed of our proposed framework make it useful and
efficient for real time diagnosis.

Index Terms—Anomaly detection, fault detection, Haar wavelet,
security, wireless sensor networks (WSNs).

I. INTRODUCTION

IN medical applications, implementations of specialized
wireless sensor networks (WSNs), known as wireless body

area networks, are composed of a set of small sensors with
constrained resources, attached or implanted into the body of
the monitored patient. These sensors are used to collect various
vital signs, while offering freedom to move for patients with
long-term diseases [1]. These devices are used to continuously
monitor patients at home or in hospitals, and transmit collected
data to a portable collection point (e.g., smart phone) with more
processing and transmission power.

The collection point is also responsible for raising medical
alarms for caregivers, when detecting an anomaly in the physi-
ological data of monitored patients, to quickly react [2]–[4] by

Manuscript received December 1, 2013; revised February 14, 2014; accepted
March 8, 2014. Date of publication March 17, 2014; date of current version
September 2, 2014.

O. Salem and A. Mehaoua are with LIPADE Laboratory, University of
Paris Descartes, 75270 Paris, France (e-mail: osman.salem@parisdescartes.fr;
ahmed.mehaoua@parisdescartes.fr).

Y. Liu is with JCP-Connect, 35510 Cession Sevigné, France (e-mail:
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taking the appropriate actions. The deployment of WSNs for
monitoring will reduce the healthcare costs (overcapacity, so-
journ time, number of nurses, etc.), and provide freedom and
mobility for monitored patients, by allowing them to fulfill their
daily activities while continuously collecting and relaying crit-
ical physiological data to healthcare professionals.

Medical sensors with wireless transmission capability are
available in the market (MICAz, TelosB, Shimmer, etc.). These
sensors are able to collect many vital signs [5], such as heart
rate, pulse, oxygen saturation (SpO2), respiration rate, body
temperature, electrocardiogram (ECG), electromyogram, and
blood pressure (BP).

The noninvasive device called the pulse oximeter is a small
clamp sensor mounted on the patient’s finger. This device is
used to measure the pulse and blood oxygenation ratio (SpO2),
through the use of infrared light and photosensor. It exploits
the amount of reflected or absorbed infrared light to measure
both parameters. The measured information can be exploited to
detect asphyxia, insufficient oxygen (hypoxia) or pneumonia.
Normal SpO2 ratio is larger than 95%, and when this ratio is
lower than 90%, an emergency alarm must be triggered due to
respiratory complications.

Sensor readings may be unreliable and inaccurate [6], due
to the small size of sensors and their underlying constrained
resources (power, computation, and transmission capabilities),
which make them susceptible to various errors. For example,
an improperly attached device or an additional environmental
light (fluorescent lighting) may affect the functioning of pulse
oximeter, and cause faulty measurements.

Abnormal values may result from many reasons in WSNs
[3], [7], such as hardware faults, corrupted sensors, energy de-
pletion, calibration, electromagnetic interference, signal fading,
disrupted connectivity, patient with sweating, detached sensor,
malfunction, heart attack, health state degradation, compro-
mised sensors, maliciously injected data for wrong diagnosis,
and false treatment, etc. This leads to faulty diagnosis results, a
large false alarm ratio, and unreliable monitoring system.

Therefore, it is of paramount importance to detect abnormal
measurements (outliers) that deviate from other observations,
and to distinguish between sensor faults and emergency situa-
tions to reduce false alarms. Abnormal measurements must be
excluded to reduce false alarms and unnecessary intervention of
healthcare professionals.

With continuous monitoring, the amount of collected phys-
iological data from monitored patients becomes large and in-
tractable. Real-time processing using lightweight algorithms
is required to detect abnormal values and to distinguish be-
tween patient’s health degradation and faulty measurements.
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Therefore, an online anomaly detection mechanism is crucial
for reliable operation of medical WSNs, where the detection
and isolation of data from faulty or misbehaving sensors can be
used to increase the accuracy of medical diagnosis results.

Various anomaly-based detection techniques for sensor fault
identification and isolation have been proposed and applied
[8]–[11]. Distributed detection techniques identify anomalous
values at individual sensors to prevent the transmission of erro-
neous values and reduce energy consumption. These techniques
require resources that are not available in sensors, and their ac-
curacy is lower than centralized approaches, where the central
device has a global view for spatio-temporal analysis.

Physiological parameters are usually correlated in time and
space. The correlation among these parameters can be exploited
to identify and isolate faulty measurements, in order to ensure
reliable operations and accurate diagnosis results. This is based
on the fact that there is no spatial or temporal correlation among
monitored attributes for faulty values.

In this paper, we propose a lightweight fault detection and
isolation approach to reduce false alarms, by removing the un-
derlying outliers from faulty sensor measurements. We consider
a general deployment scenario, where many sensors are attached
to the patient, and are used to monitor different physiological
attributes. The collected data are transmitted to a portable device
(smart phone) for processing and online analysis. This central
device has a global view for spatial and temporal analysis.

The proposed approach is based on the Haar wavelet, non-
seasonal Holt–Winters (NSHW), the Hampel filter, and box-
plot, and is intended to work on smart phones. It provides
online anomaly detection with reduced complexity and mem-
ory consumption. The novelty of the proposed approach is a
spatio-temporal model used to distinguish faulty measurements
from clinical deterioration. The Haar wavelet, Holt–Winters,
and Hampel filter are used for spatial analysis, and the boxplot
is activated for temporal analysis in order to pinpoint deviated
attributes.

The combination of lightweight and robust statistical meth-
ods allows discarding false alarms triggered by uncorrelated
attributes. The proposed model accurately detects deviations
without requiring predefined threshold or labeled training data.
Our experimental results on real medical datasets show that the
proposed approach is accurate in detecting anomalies, and is re-
liable in terms of reduced false alarm rate even with the presence
of inconsistent data in monitored attributes.

The rest of this paper is organized as follows. Section II sur-
veys related work. Section III summarizes the related techniques
and presents our proposed approach for anomaly detection.
Section IV presents our experimental results. Finally, Section V
concludes the paper.

II. RELATED WORK

Various architectures for vital sign monitoring have been pro-
posed, such as CodeBlue [12], LifeGuard [13], AlarmNet [14],
MEDiSN [4], etc. Recent surveys of medical applications using
WSNs are available in [1], [15].

However, collected data by WSNs usually have low quality
and poor reliability [6], [7], [16]. They are affected by interfer-
ence, errors, incorrect readings, environmental noise, missing
values, inconsistent readings, damaged sensors, etc. Different
approaches for anomaly detection have been proposed and ap-
plied in WSNs to detect abnormal deviations. Existing solutions
in the literature stem from different disciplines such as statis-
tical methods, information theory, machine learning, and data
mining.

Statistical methods can be classified into two categories: para-
metric and nonparametric methods. Parametric methods assume
a known underlying distribution of collected measurements. The
parameters of the distribution function are calculated in training
phase, and are used in test phase to determine if the observa-
tion has been emitted by the associated distribution function,
i.e., data follow distribution f(θ1) before the change and an-
other distribution f(θ2) after the change point. Nonparametric
methods do not assume a specific distribution for values, and
use the distance between data points to measure the deviation
between them. Many statistical algorithms have been proposed
and tested, such as CUmulative SUM (CUSUM [17]), general-
ized likelihood ratio ([18]), Holt–Winters (HW [19]), adaptive
threshold [20], exponentially weighted moving average, auto-
regressive integrated moving average (ARIMA), etc.

Information theory focuses on determining the relevance of
a certain dataset using measurements such as the entropy [21],
e.g., if all observations belong to the same class, the entropy is
equal to zero, but once the observations are scattered in differ-
ent classes, the entropy approaches to one. It is based on the
assumption that anomalies induce irregularities in the informa-
tion content of the analyzed data.

Several machine learning (ML [22]) algorithms have been
applied for anomaly detection in WSNs, such as Naı̈ve Bayes,
Bayesian network, decision tree (C4.5), neural networks, and
support vector machine (SVM). The SVM classifier has gained
popularity due to its optimum solution and its simple numerical
comparison for data classification.

Several SVM based approaches have been proposed [23]–[
25] for anomaly detection in WSNs. Moreover, many nonlinear
versions (kernel based) of SVM have been investigated to find
a boundary (or hyperplane) that encompasses the majority of
normal data in training phase. When the decision boundary is
established, any new data outside the boundary is classified as
abnormal.

ML algorithms need a preclassified (or labeled) training
dataset, which is often skewed or unavailable in real world.
Skewed (unbalanced) labeled data occurs when one class is
over-represented (e.g., 99% of data are normal) and anoma-
lies are almost not available in training dataset. Construct-
ing a labeled training set is often a laborious and expensive
task. To resolve these problems of training data in machine
learning methods, data mining (or unsupervised) techniques
group similar data in one cluster, and flag the small-size clus-
ters as abnormal. The widely used clustering algorithms [22]
are k-means, expectation maximization, hierarchical cluster-
ing, fuzzy C-means, and Gaussian mixture models (GMM)
[26]. However, unsupervised methods assume normal data lie
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in higher density area, and anomalies are relatively rare and
have lower density in the neighborhood when compared to the
size of normal data cluster. We refer to [27] for comprehen-
sive classification of various detection techniques, and to [22]
for more details about various classification and clustering
techniques.

One of the most widely used clustering method is k-means
[28]. Zhang et al. in [29] propose a novel outlier detection and
countermeasure scheme based on k-means, K-nearest neighbors
(K-NN), static threshold, and transmission frequency. However,
K-NN is unsuitable for WSNs, since it requires high computa-
tional complexity and large amounts of memory to store training
data, in contrast to classification methods which build a model
and discard training data after the model creation. Xie et al.
in [30] propose a new KNN-based anomaly detection method
based on hyper-grid that has lower computational complexity
than K-NN in WSNs. Siripanadorn et al. in [31] use an unsuper-
vised approach for anomaly detection in WSNs, which is based
on discrete wavelet transform (DWT) and self-organizing map
(SOM). The DWT is used to reduce the size of input data for
SOM clustering.

Zhang et al. in [7] proposed a survey of different techniques
for outliers detection in WSNs, and present a comparative guide-
line to select the suitable technique based on the characteristics
of the used dataset. Liu et al. in [9] propose a distance based
method to identify insider malicious sensors, while assuming
neighbor nodes monitoring the same attributes. Each sensor
monitors its one hop neighbors and uses Mahalanobis distance
(MD) between measured and received multivariate instances to
detect anomaly. However, it is impractical in medical applica-
tions to exploit promiscuous mode and to put redundant sensors
for monitoring the same parameters.

Yim and Choi in [32] propose a voting based system to detect
events. Miao et al. in [8] propose a failure detection approach
for WSNs, which exploits metric correlations to detect abnormal
sensors and to uncover failed nodes. A simple prediction and
fault detection method for WSNs was proposed in [33]. The pro-
posed algorithm is based on the detection of deviation between
reference and the measured time series by using a predefined
threshold, and has been evaluated on three types of faults: short
time, long time, and constant fault.

Sharma et al. in [34] explore four classes of methods for
fault detection: rule-based, estimation-based, time series anal-
ysis, and learning based methods. They investigate fixed and
dynamic threshold, linear least squares estimation, ARIMA,
hidden Markov model, etc. They focus on detecting three fault
categories: short, noise, and constant. The authors found no best
class of detection methods suitable for every type of anomaly.
Rule-based methods require calibrating and tuning threshold
parameter, learning methods require training phase, estimation
methods cannot classify faults, and time series analysis has the
highest rate of false positives.

Chen and Juang in [10] propose a score parameter for anomaly
detection in collected data by sensors. This parameter is based
on the Hampel filter and kernel density estimator. Zhang et al.
in [6] note that only limited researchers use spatial and tem-
poral correlation for outlier detection. The temporal depen-

Fig. 1. WSN for remote monitoring of vital signs.

dence means that the current attribute measurement depends on
readings at the previous time instants, while the spatial depen-
dence means that the observations from different attributes are
correlated.

In our previous paper [35], we analyzed real medical dataset
and we identified the major cause of high false alarms is due
to faulty measurements. In health monitoring, the physiologi-
cal parameters are heavily correlated. To increase the anomaly
detection accuracy, our proposed approach exploits the spatial
and temporal dependences among the monitored physiological
parameters, to distinguish between faulty measurements and
medical emergencies. The objective is to ensure reliable opera-
tions of sensors and accurate medical diagnosis results. Sensor
measurements tend to be correlated in time and space, and errors
are usually uncorrelated from other attributes.

In this paper, we propose a simple and lightweight approach
for online anomaly detection in collected data by medical wire-
less sensors. The proposed framework for reliable vital sign
collection is based on the DWT, NSHW forecasting, and the
Hampel filter for spatial analysis, and on boxplot for temporal
analysis. The objective is to reduce false alarms resulted from
faulty measurements, in order to enhance the reliability and the
accuracy of the monitoring system.

III. PROPOSED APPROACH

We consider a medical deployment scenario for continu-
ous monitoring where N sensors (S1 , . . . , SN ) are attached
or weared by the patient (as shown in Fig. 1). These sensors
are used to gather vital signs, and then transmit collected data
to a portable device for processing. Each sensor monitors one
or many attributes, e.g., pulse oximeter monitors the pulse and
SpO2. We denote the collected measurements at the given time
instant t by Xt = (xt,1 , xt,2 , . . . , xt,p), where p is the total num-
ber of monitored attributes (p ≥ N ). Xt is a line in the data
matrix X given in (1).

X =

X1
X2

...
Xt

⎡
⎢⎢⎣

x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

...
...

. . .
...

xt,1 xt,2 · · · xt,p

⎤
⎥⎥⎦ . (1)

The base station (e.g., smart phone) has more processing power
and storage resources than sensors. Therefore, the real-time
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Fig. 2. Flow diagram of the implementation.

analysis of the gathered data on the smart phone is required
for early detection of clinical deterioration, and to alert health-
care professionals if any abnormal deviation in the physiological
data pattern is detected. The collected measurements are prob-
ably of low quality and reliability, due to constrained resources
of sensors, environmental conditions, and the deployment con-
text (sweat, detached, damaged sensors, interrupted communi-
cations, etc.). The accuracy of this monitoring system relies on
the data, where faulty measurements trigger false alarms for
the caregiver. Therefore, to increase the accuracy of diagnosis
result, faulty values must be detected and isolated in order to
reduce the false alarms and prevent faulty diagnosis. The most
challenging issue is how to make the difference between sick
patient and faulty sensor measurements.

Our proposed approach is based on four algorithms: DWT,
NSHW, the Hampel filter, and boxplot. The DWT, NSHW, and
the Hampel filter are used to detect spatial deviations, and the
boxplot is used for temporal analysis in order to pinpoint sus-
picious underlying attributes, which are responsible for the de-
tected deviation. The objective is to reduce false alarms, that
is to say, to raise alarms only when patient health degrades
(respiratory failure, cardiac arrest, etc.).

The architecture of the proposed sequential approach is shown
in Fig. 2, where the four algorithms (DWT, NSHW, Hampel, and
boxplot) are used to guarantee that alarms will be raised only
when the patient enters in critical phase. The DWT is used to
decompose the signal into two subsignals: the average of the
original signal and the remaining detail after subtracting the
average from the original signal. The Haar wavelet is simple,
reversible, fast, and memory efficient without requiring a tem-
porary array.

To accurately identify spatial deviations between the values of
monitored attributes, we search to identify the deviations in time
series associated with the percentage of energy corresponding
to the detail signal (Ei). To achieve this task, the NSHW is
used to predict the current value (Êi) and the residual time

LPF ILPF

HPF IHPF

ai

di

At

Dt

Input

Xt

Output

At + Dt

Fig. 3. Filters used in the Haar transform.

series resulted from the difference between the forecasted and
measured values (Ri = Êi − Ei). In contrast to Ei , the values
of Ri follow a normal distribution N(μ, σ), where z-score (μ −
k × σ ≤ Ri ≤ μ + k × σ) can be used to detect outliers.

However, to prevent the distortion of the mean and the vari-
ance by outliers, we use the Hampel filter for robust estimation
of the μ and σ. When an outlier is detected in Ri , we activate the
boxplot to pinpoint the deviated attributes. The choice of boxplot
method is due to its small memory requirement, good accuracy
with light complexity for examining dataset. As the physiolog-
ical parameters are heavily correlated, we raise alarms when at
least k attributes change in the same time instant. In the next
subsections, we develop the algorithm used in each block.

A. Discrete Wavelet Transform

The discrete Haar wavelet transform is used to divide the
observations in the vector Xt into two parts: approximation At

and detail Dt signals. Approximation signal (At) is the filtering
result of input signal passing through low pass filter (LPF) and
inverse low pass filter, and detail signal (Dt) is the filtering
result through high pass filter (HPF) and inverse high pass filter
as shown in Fig. 3.

Observations in Xt can be reconstructed as the results of
inversion filters. We use the Haar wavelet as it is the simplest
form of discrete wavelet transform (the smallest computational
cost), with only two coefficients {l0 = l1 = 1/

√
2} for LPF, and

{h0 = −h1 = 1/
√

2} for HPF [36]. The signal can be expressed
using the matrix L & H with dimension p/2 × p:

L =

⎛
⎜⎜⎝

l0 l1 0 0
0 0 l0 l1
...

...
...

...
0 0 0 0

· · · 0 0 0
· · · 0 0 0
. . .

...
...

...
· · · 0 l0 l1

⎞
⎟⎟⎠ .

The matrix H has the same structure by replacing the scale coef-
ficients l0 and l1 by h0 and h1 , respectively. The approximation
and detail coefficients are obtained as

ai = L × XT
t =

xt,2i−1 + xt,2i√
2

i ∈ [1, p/2] (2)

di = H × XT
t =

xt,2i−1 − xt,2i√
2

i ∈ [1, p/2]. (3)

The approximation At (average) and detail Dt (fluctuation) sig-
nals are calculated as follows:

At = at × L =
p/2∑
i=1

lit × ai t ∈ [1, p] (4)
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TimeR1 R2
... Rw Rw+1

Window w 1

Fig. 4. Sliding window used to estimate statistical parameters.

Dt = dt × H =
p/2∑
i=1

hit × di t ∈ [1, p]. (5)

To detect abnormal deviations between monitored attributes, we
monitor the energy of fluctuation signal (Dt) with respect to the
total energy of both signals which has been used in [37]:

Ei =
∑p

t=1(Dt)2
∑p

t=1(At)2 +
∑p

t=1(Dt)2 . (6)

The energy ratio signal (Ei) will increase when one or more
attributes change. To detect deviations in energy time series
(E = {E1 , . . . , En}), we use NSHWs forecasting to predict
the current value of Êi as given in (7):

Êi = Li−1 + Ti−1 (7)

where Li−1 and Ti−1 represent the level (baseline) and the linear
trend, respectively, and they are calculated as follows:

Li−1 = αEi−1 + (1 − α) (Li−2 + Ti−2) (8)

Ti−1 = (1 − β) Ti−2 + β (Li−1 + Li−2) . (9)

With initial values of L1 = E1 , L2 = E2 and T2 = E2 − E1 .
The smoothing constants α and β ∈]0, 1[, and we select α = β =
0.2 to give more weight for past values, which makes the long-
term estimation less sensitive to noise and temporal fluctuations.

The residual time series resulted from the difference between
the current value of Ei and the forecasted value Êi (Ri = Êi −
Ei) is normally distributed. Statistical based parameters, such
as mean (μ) and standard deviation (σ) have been widely used
as dynamic thresholds to detect deviations (z-score or μ ± kσ)
in normally distributed values. At a confidence level of 95%,
the associated value of k is 1.96, and 99% of observations fall
within k = 2.57 from μ, and 99.73% of observations fall within
3 from μ.

To detect deviations in the residual time series (R =
{R1 , . . . , Rn}), we use a sliding window of last w observations
of R (as shown in Fig. 4) to estimate the statistical parameters
(μ and σ) to use in the z-score rule. However, the data in slid-
ing window may contain outliers, which distort and skew the
means and the variance toward them, and affect the detection
performance. Contaminated data have two underlying effects:
masking and swamping problems. Masking occurs when out-
liers are masked and are not detected, and swamping occurs
when normal observation is detected as abnormal (inversion).
To avoid these problems, we use robust Hampel filter instead of
z-score to detect deviations in residual time series (R).

B. Hampel Filter

The Hampel filter is a sliding window implementation of the
Hampel identifier. It was proposed and used as robust alterna-
tive to outlier sensitive z-score. To provide robust method for

Min MaxQ1 Q3Median

Anomaly Anomalies

Fig. 5. Boxplot.

estimating μ and σ in contaminated data, Hampel proposes the
use of median and median absolute deviation (MAD) as outlier
resistant parameters. We use a sliding window containing the
past w values of residual time series Rw

i = {Ri−w , . . . , Ri},
and we compute the median and the scale (MAD) of Rw

i as
follows:

φw = median(Rw
i ) (10)

Stdw = 1.4826 × median{|Rw
i − φw |}. (11)

After replacing the mean μ by the median φw , and the standard
deviation σ by Stdw , the z-score is used to test if the value of
Ri+1 is abnormal:

|Ri+1 − φw | ≥ k × Stdw (12)

where k is a threshold value (k = 1.96 in our experiments).
However, the data in sliding window have zero or near zero
MAD under normal condition [10], and we use Stdw =
max(Stdw , c1) to eliminate false alarms, where c1 is a pre-
defined constant greater than zero.

As physiological parameters are heavily correlated, and faulty
measurements are spatially unrelated with other attributes, the
change point detection in the residual time series R can only
detect spatial deviations, without any information of the under-
lying attributes responsible of the occurred change. To identify
the abnormal attributes, we activate the univariate boxplot only
after the detection of spatial anomaly. The boxplot is used to
check temporal deviation in each attribute with low compu-
tational complexity. If the number of underlying attributes is
smaller than r (r = 2 in Fig. 2), we consider the measurement
of this attribute is faulty and we discard the data. Otherwise, we
raise an alarm for the caregiver to quickly react to the patient
health degradation.

C. Box-and-Whisker Plot

The Box-and-Whisker plot or boxplot is a simple and robust
outlier detection method. Let Xw

i = {xt−w,i , . . . , xt,i} repre-
sents a temporal sliding window of the last w values for the
ith monitored attribute. The lower quartile (Q1 is the 25th
percentile) and the upper quartile (Q3 is the 75th percentile)
of Xw

i are used to obtain robust measurements for the mean
μ̂ = (Q1 + Q3)/2, and the standard deviation is replaced by
the interquartile range σ̂ = IQR = Q3 − Q1 . A measurement
is considered as abnormal (see Fig. 5) if the following condition
is satisfied:

xt,i ≤ Q1 − 1.5.(Q3 − Q1) ∨ xt,i ≥ Q3 + 1.5.(Q3 − Q1).
(13)

The boxplot method is activated only when spatial deviation is
detected. The points outside the whiskers are outliers. Boxplot
handles data with low complexity and little memory space, and
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Algorithm 1 Anomaly Detection Approach

1: Apply Haar DWT to get At & Dt

2: Calculate the current value of Ei+1

3: Predict the current value of Êi+1

4: Calculate the residual Ri+1 = Êi+1 − Ei+1

5: Calculate φw & Stdw for the last w values (Rw
i )

6: if |Ri+1 − median(Rw
i )| ≥ k × Stdw then

7: for i = 1 to p do
8: LBi ← Q1,i − 1.5 × IQRi

9: UBi ← Q1,i + 1.5 × IQRi

10: if ((xt,i ≤ LBi) || (xt,i ≥ UBi)) then
11: Alarm++
12: end if
13: end for
14: if Alarm ≥ r then
15: Raise an alarm for caregivers
16: end if
17: end if

it does not require parameters tuning. The aim of its conditional
activation is to pinpoint deviated attributes which provokes en-
ergy deviation.

The univariate boxplot is applied on every attribute, and an
alarm variable is proposed to count the number of deviated at-
tributes. This variable is incremented while any deviation is
detected. When the value of this variable is greater or equal
to r, we raise an alarm. For clarification, when the heart rate
and respiration rate increase, and the SpO2 decreases, a med-
ical intervention is required. Otherwise, the measurements are
considered faulty and no alarm will be raised.

We use a value of r ≥ 2 in our experiments, as the probability
that many sensors are faulty in the same time instant is low. We
also consider that the physical check for sensors is necessary
when more than r sensors report abnormal values. The proposed
method is presented in algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments of the proposed ap-
proach for anomaly detection in real medical datasets. We fur-
ther compare and evaluate the performance of our proposed
approach with robust MD.

A. Evaluation Setup

To evaluate our proposed model, we use patients’ medical
records from the multiparameter intelligent monitoring in inten-
sive care (MIMIC) database of Physionet [38]. We use records
221 and 442 containing eight parameters (Blood Pressure, C.O.,
Heart rate, Pulmonary Artery Pressure, Pulse, RESP, SpO2,
Body temperature). We apply our approach on these traces be-
fore and after injecting synthetic anomalies at different instants,
in order to evaluate the detection accuracy of our proposed ap-
proach. We use a sliding window of width w = 10 to reduce
memory requirement, and we set k = 1.96 and r = 2.

We begin by showing the variations of physiological attributes
in the used datasets. The variations of the heart rate are shown in
Fig. 6. The heart rate is measured in beats per minute (bpm), and
the normal values for heart rate are inside the interval [60 − 100]
for a healthy adult at rest. We can visually identify three zones
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Fig. 6. Heart rate.
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with anomalies (two zones with five spikes and one zone with
abnormal increase of values) in the variations presented in Fig. 6,
where we can clearly distinguish that three spikes falling down
to zero and two other spikes with values lower than 45 bpm.

The variations of the pulse are shown in Fig. 7. The pulse
exhibits four anomalies at different time instants in the heart
rate. Usually, the heart rate and the pulse must have the same
values and must show the same variations, as they represent
the same attribute monitored through two different devices. The
heart rate and the pulse are measured in bpm. However, they
do not superpose on anomalies when drawing them in the same
figure, and different deviations on different time instants appear
clearly when comparing Figs. 6 and 7.

Fig. 8 shows the variations of the blood pressure (BPmean)
for the monitored patient. The BP is measured in millimeters
of mercury (mmHg). Fig. 9 shows the variations of the SpO2
and the respiration rate. The SpO2 must be within the range
[95% − 100%]. A lower value is synonymous of asphyxia, lack
of oxygen and heart disease. In Fig. 9, we can notice 3three
abnormal readings with zero values for SpO2 followed by nor-
mal values. The respiration rate (shown in Fig. 9) is measured
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Fig. 8 Blood pressure.
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Fig. 9. Respiration & SpO2.

as the number of respiration per minute (r/min), and contains
some abnormal values (falling near zero) before the time instant
5000.

As physiological parameters are not the same for all people
and depend on many parameters (sex, age, weight, activity, etc.),
the use of static interval for anomaly detection heavily depends
on many additional dynamic parameters (environmental, ages,
activities: rest, moving, awake, sleep, etc.), and these parameters
are not easy to set dynamically for anomaly detection.

To prove the correlation between monitored attributes, we
show the variations of the five parameters in Fig. 10, where
we can notice that clinical emergency induces changes in many
parameters at the same time instant. However, there is no spa-
tial correlation among monitored attributes for faulty measure-
ments. It is important to note that some curves in Fig. 10 are
shifted for clarifying the shape of their variations. We can visu-
ally distinguish three zones of clinical change: the first is around
3500, the second is near to 10 500, and the third around 19 500.

Fig. 11 shows the variations of energy ratio [given in (6)]
resulted from DWT. The energy ratio is used to detect spatial
deviations, through the application of Hampel filter on the resid-

0.5 1 1.5 2

x 10
4Time

BP
HR
PULSE
RESP
SpO2

Fig. 10 Variations of five parameters.
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Fig. 11 Energy ratio & raised alarms.

ual time series associated with the difference between forecasted
and calculated values of Et . The raised alarms by Hampel filter
for spatial analysis are shown in the bottom of Fig. 11, where
we get a high number of false alarms. The prior application of
data filtering techniques on each attribute may reduce the noise
level by discarding anomalies and retaining good data, but it
may also change the shape of variations, and discard interesting
events.

We activate boxplot analysis only on the instant with raised
alarm by the Hampel filter to achieve temporal analysis on each
attribute. Only four alarms are raised after the application of
boxplot (with r = 2) as shown in Fig. 12. It is important to
note the difference between the number of raised alarms by the
Hampel filter (see Fig. 11) and those transmitted to caregivers by
our proposed approach (see Fig. 12), where we can notice that
alarms associated with benign deviation or faulty measurements
in one sensor are discarded to reduce false alarms. For example,
the raised alarms on the instants 15 500 and 16 000 are false
alarms, and they are triggered by abnormal measurements in the
heart rate. The same applies for the last two spikes in SpO2.
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Fig. 12. Raised alarms.

In fact, when the change occurs in many sensors, a medical
alarm is triggered by our proposed approach. Otherwise, the
measurement is considered to be faulty and will be discarded
without raising any alarm. A visual inspection in the variation
of monitored attributes in Fig. 10 confirms the accuracy and the
utility of raised alarms. However, increasing the value of corre-
lated parameters (r) reduces false alarms, as well as increasing
the miss detection rate. The value of r is a tradeoff between
detection accuracy and false alarms.

B. Comparison With Robust MD

We compare our proposed scheme with the one proposed
in [9], where the MD is used to detect anomaly in gathered
data by wireless sensors. We use two different records from
the MIMIC database. The reason of using this approach in our
comparison is that MD also calculates the distance between
measurements by taking into account the correlation between
monitored attributes:

MDt =
√

(Xt − μ)T Σ−1 (Xt − μ) (14)

where μ is the mean vector (1 × p) and Σ is the covariance
matrix (p × p) of these p attributes calculated by a robust es-
timation method (Orthogonalized Gnanadesikan–Kettenring—
OGK) which removes outliers during the estimation of covari-
ance matrix Σ by looking for a subset of training data without
anomalies. Many robust estimation methods for covariance ma-
trix of multivariate data have been proposed and used to remove
outliers, e.g., minimum volume ellipsoid [39], minimum co-
variance matrix (MCD [40]), Fast-MCD [40], and deterministic
MCD [41].

However, these robust estimation methods and the MD re-
quire additional complexity (the inversion of Σ) when compar-
ing to the Haar Wavelet and Boxplot. Furthermore, the robust
estimations for μ̂ and Σ̂ require resources not available on the
mobile collection device, nor in the sensor.

MD2
t follows chi-square distribution χ2

p,0.975 with p degrees
of freedom and 97.5% quantile is used as the static threshold
for anomaly detection by MD2

t (0.025 significance level for
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Fig. 13. Robust MD and threshold.
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Fig. 14 Parameters for patient 2.

cut-off value). An alarm is triggered when the value of MD2
t

is greater than the threshold (χ2
p,0.975). The results of applying

robust MD over the physiological data are shown in Fig. 13

with the threshold
√

χ2
5,0.975 = 3.5822 (horizontal line). When

comparing Figs. 12 and 13, we notice that both methods have
good detection accuracy. However, our proposed approach raises
only one false alarm and robust MD triggers three false alarms.

We also use another patient record from MIMIC database
(record 442) in our comparison, where Fig. 14 shows the vari-
ations of the physiological parameters for this patient. Figs. 15
and 16 show the raised alarms by our proposed approach and by
robust MD, respectively. Our proposed approach outperforms
the robust MD for both medical data records (associated with
patient1 and patient2).

C. Performance Analysis

To conduct performance analysis of the proposed approach,
we inject synthetic anomalies at different time instants on differ-
ent attributes, and we use the receiver operating characteristic
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Fig. 16 Robust MD and threshold.

(ROC) curve to show the impact of the threshold (k) on the
true positive rate and the false negative rate. The ROC curve
presented in Fig. 17 shows the relationship between the detec-
tion rate (15) and the false alarm rate (16) for our proposed
approach and for robust MD.

Detection Rate =
TP

TP + FN
(15)

where TP is the number of true Positives, and FP is the number
of false positives. The false positive rate is defined as

False Positive Rate =
FP

FP + TN
. (16)

A good detection mechanism should achieve a high detection
ratio with a low false alarm rate. Fig. 17 shows that our proposed
framework can achieve a DR = 100% with a FAR = 7%. The
performance of robust MD [9] was analyzed over the same
medical data records and the result is presented in Fig. 17,
where MD achieves a DR = 100% with a FAR = 16%. The
performance of our proposed approach outperforms the robust
MD and provides better result.
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Fig. 17 ROC.

Reducing the false alarm rate will decrease the detection
accuracy, and threat to patient safety due to missing alarms.
The early detection dramatically reduces the death rate, but
false alarms in medical application have a very high cost of
needless anxiety. Since no existing approach can achieve 100%
of detection rate with 0% false alarm, a tradeoff between low
false alarm rate and high detection accuracy is required.

For breast cancer detection, one in four women gets at least
one false alarm from a mammogram (FAR=25%). For patients
in cardiac unit, a FAR of 20% for an ECG monitor is re-
ported [42]. Schmid et al. in [43] report 92% of FAR in pediatric
intensive care unit. Therefore, FAR triggered by physiological
changes is better for patients’ safety than missing detection
associated with the monitoring sensitivity which may cause pa-
tient harm or death (better-safe-than-sorry logic). The tradeoff
achieved by our proposed system is convenient in real-life sce-
narios according to [43], where one false alarm is triggered in
5.5 h and one check is required. A patient with less than one
check in 5.5 h is considered to be under monitored.

V. CONCLUSION

In this paper, we proposed a lightweight anomaly detection
approach for medical WSNs, where faulty measurements and
injected malicious data could threat the life of the monitored
patient. The proposed approach is based on wavelet decomposi-
tion, nonseasonal Holt–Winters, the Hampel filter, and boxplot.
It allows achieving spatial and temporal analysis, without prior
knowledge of fault signatures. It is suitable for online detection
and isolation for faulty or maliciously injected measurements
with low computational complexity and storage requirement.

We have tested our proposed approach on real physiological
dataset. The experimental results prove that it can improve the
efficiency and reliability, by identifying faulty measurements
and reducing the number of false alarms. As a future work,
we intend to apply this technique for online anomaly detection
using the Shimmer platinum development kit [44]. We also plan
to implement distributed detection on real sensors to reduce
energy wastage due to the transmission of faulty measurements.
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