
Dynamic Heterogeneity-Aware Resource
Provisioning in the Cloud

Qi Zhang, Student Member, IEEE, Mohamed Faten Zhani,Member, IEEE,

Raouf Boutaba, Fellow, IEEE, and Joseph L. Hellerstein, Fellow, IEEE

Abstract—Data centers consume tremendous amounts of energy in terms of power distribution and cooling. Dynamic capacity

provisioning is a promising approach for reducing energy consumption by dynamically adjusting the number of active machines to

match resource demands. However, despite extensive studies of the problem, existing solutions have not fully considered the

heterogeneity of both workload and machine hardware found in production environments. In particular, production data centers often

comprise heterogeneous machines with different capacities and energy consumption characteristics. Meanwhile, the production cloud

workloads typically consist of diverse applications with different priorities, performance and resource requirements. Failure to consider

the heterogeneity of both machines and workloads will lead to both sub-optimal energy-savings and long scheduling delays, due to

incompatibility between workload requirements and the resources offered by the provisioned machines. To address this limitation, we

present Harmony, a Heterogeneity-Aware dynamic capacity provisioning scheme for cloud data centers. Specifically, we first use the

K-means clustering algorithm to divide workload into distinct task classes with similar characteristics in terms of resource and

performance requirements. Then we present a technique that dynamically adjusting the number of machines to minimize total energy

consumption and scheduling delay. Simulations using traces from a Google’s compute cluster demonstrate Harmony can reduce

energy by 28 percent compared to heterogeneity-oblivious solutions.

Index Terms—Cloud computing, workload characterization, energy management

Ç

1 INTRODUCTION

DATA centers have recently gained significant popularity
as a cost-effective platform for hosting large-scale ser-

vice applications. While large data centers enjoy economies
of scale by amortizing long-term capital investments over a
large number of machines, they also incur tremendous
energy costs in terms of power distribution and cooling. For
instance, it has been reported that energy-related costs
account for approximately 12 percent of overall data center
expenditures [5]. For large companies like Google, a 3 per-
cent reduction in energy cost can translate to over a million
dollars in cost savings [22]. At the same time, governmental
agencies continue to implement and regulations to promote
energy-efficient computing [2]. As a result, reducing energy
consumption has become a primary concern for today’s
data center operators.

In recent years, there has been extensive research on
improving data center energy efficiency [24], [29]. One prom-
ising technique that has received significant attention is
dynamic capacity provisioning (DCP). The goal of this tech-
nique is to dynamically adjust the number of activemachines
in a data center in order to reduce energy consumption while
meeting the service level objectives (SLOs) of workloads. In the

context of workload scheduling in data centers, a metric of
particular importance is scheduling delay [20], [23], [25], [27],
which is the time a request waits in the scheduling queue
before it is scheduled on a machine. Task scheduling delay is
a primary concern in data center environments for several
reasons: (1) A user may need to immediately scale up an
application to accommodate a surge in demand and hence
requires the resource request to be satisfied as soon as possi-
ble. (2) Even for lower-priority requests (e.g., background
applications), long scheduling delay can lead to starvation,
which can significantly hurt the performance of these appli-
cations. In practice, however, there is often a tradeoff
between energy savings and scheduling delay. Even though
turning off a large number of machines can achieve high
energy savings, at the same time, it reduces service capacity
and hence leads to high scheduling delay. Finally, the hetero-
geneity-aware DCP scheme should also take into account the
reconfiguration costs associated with switching on and off
individual machines. This is because frequently turning on
and off a machine can cause the “wear-and-tear” effect [12],
[19] that reduces themachine lifetime.

Despite the fact that a large number of DCP schemes
have been proposed in the literature in recent years, a key
challenge that often has been overlooked or considered dif-
ficult to address is heterogeneity, which is prevalent in pro-
duction cloud data centers [23]. We summarize the types of
heterogeneity found in production environments as follows:

Machine heterogeneity. Production data centers often com-
prise several types of machines from multiple generations
[25]. They have heterogeneous processor architectures and
speeds, hardware features, memory and disk capacities.
Consequently, they have different runtime energy con-
sumption rates.

� Q. Zhang, M.F. Zhani, and R. Boutaba are with David. R. Cheriton School
of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada. E-mail: {q8zhang, mfzhani, rboutaba}@uwaterloo.ca.

� J.L. Hellerstein is with Google Inc., 651 34th St., Seatthe, WA 98103.
E-mail: jlh@google.com.

Manuscript received 2 Oct. 2013; revised 7 Jan. 2014; accepted 23 Jan. 2014;
date of publication 14 Apr. 2014; date of current version 30 Apr. 2014.
Recommended for acceptance by A. Wierman.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2306427

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

Workload heterogeneity. Production data centers receive a
vast number of heterogeneous resource requests with
diverse resource demands, durations, priorities and perfor-
mance objectives [20], [25], [27]. In particular, it has been
reported that the differences in resource demand and dura-
tion can span several orders of magnitude [8], [25], [27]. The
heterogeneous nature of both machine and workload in pro-
duction cloud environments has profound implications on
the design of DCP schemes. In particular, given a rise of
workload requests, a heterogeneity-oblivious DCP scheme
can turn on wrong types of machines which are not capable
of handling these requests (e.g., due to insufficient capac-
ity), resulting in both resource wastage and high scheduling
delays. However, designing a heterogeneity-aware DCP
scheme can be difficult, because it requires an accurate char-
acterization of both workload and machine heterogeneities.
At the same time, it also requires a heterogeneity-aware per-
formance model that balances the tradeoff between energy
savings and scheduling delay at runtime.

In this paper, we present Harmony, a Heterogeneity-
Aware Resource MONitoring and management sYstem that
is capable of performing DCP in heterogeneous data cen-
ters. Specifically, we first present a characterization of the
heterogeneity found in one of Google’s production compute
clusters. Using standard K-means clustering, we show that
the heterogeneous workload can be divided into multiple
task classes with similar characteristics in terms of resource
and performance objectives. We then formulate the DCP as
an optimization problem that considers machine and work-
load heterogeneity as well as reconfiguration costs. We then
devise online control algorithms based on the Model Predic-
tive Control framework that solves the optimization problem
at runtime. This paper is an extension of our previous work
[28]. Specifically, we updated our runtime scheduling algo-
rithm, provided a theoretical bound on the size of each task
class to achieve an efficient tradeoff between scheduling
delay and energy consumption, and evaluated the effect of
resource over-provisioning on solution quality. Through
experiments using traces from one of Google’s compute
clusters, we found Harmony achieves lower scheduling
delay and energy consumption compared to heterogeneity-
oblivious DCP solutions.

The rest of the paper is organized as follows. Section 2
surveys related work in the literature. Section 3 provides an
analysis of a publicly available workload traces from Google
to motivate our approach. Section 4 provides an overview of
Harmony. In Section 5, we describe the way Harmony cap-
tures the runtime workload composition. We present the
formulation of the heterogeneity-aware DCP in Section 6,
and provide two technical solutions in Section 7. Section 8
discusses the deployment of Harmony in practice. Finally,
we evaluate our proposed system using Google workload
traces in Section 9, and draw our conclusions in Section 10.

2 RELATED WORK

Characterizing workload in production clouds has received
much attention in recent years, as both scheduler design
and capacity upgrade require a careful understanding of
the workload characteristics in terms of arrival rate, require-
ments, and duration [20]. For example, Mishra et al. have

analyzed the workload of a Google compute cluster, and
proposed an approach to task classification using k-means
clustering [20]. Following the same line of research, Chen
et al. provided a characterization of Google cluster work-
load at job-level applying the k-means algorithm [13].
Sharma et al. [25] and Zhang et al. [27] studied the problem
of finding accurate workload characterizations through
benchmark generation and validation. Recently, Reiss et al.
[23] provided a comprehensive analysis of the heterogeneity
and dynamism found in Google cluster traces, and found
that both machine configurations and workload composi-
tion are highly heterogeneous and dynamic over time. They
also pointed out the importance of considering workload
heterogeneity for designing adaptive schedulers. However,
the goal of these studies was to understand the workload
composition in production clouds, rather than using work-
load characterization for resource allocation and capacity
provisioning.

There is a large body of literature on energy-aware
dynamic capacity provisioning in data centers. For exam-
ple, pMapper [26] is a migration-aware workload place-
ment framework for optimizing application performance
and power consumption in data centers. However, it does
not consider the cost of turning on and off machines when
making provisioning decisions, nor does it consider task
arrival rate and scheduling delay objectives. Similarly,
Mistral [17] is a framework that dynamically adjusts VM
placement to find a tradeoff between power consumption,
application performance, and reconfiguration costs. How-
ever, it does not consider the arrival rate of task requests
in its formulation. More recently, Ren et al. [24] studied
the problem of scheduling heterogenous batch workload
across geographically distributed data centers. Different
from our work, they assume that the workload has already
been divided into distinct types. They further assume that
every task can be scheduled on any machine, which is not
always the case as we shall demonstrate in Section 3. To
the best of our knowledge, no previous work has applied
task classification to dynamic capacity provisioning prob-
lem in heterogenous data centers. Thus, we design Har-
mony as a workload-aware DCP framework that can
achieve both higher application performance and effi-
ciency in terms of energy savings.

3 WORKLOAD ANALYSIS

To understand the heterogeneity in production cloud data
centers, we have conducted an analysis of workload traces
for one of Google’s production compute clusters [4]1 con-
sisting of approximately 12;000 machines. The workload
traces contain scheduling events, resource demand and
usage records for a total of 672;003 jobs and 25;462;157 tasks
over a time span of 29 days. Specifically, a job is an applica-
tion that consists of one or more tasks. Each task is sched-
uled on a single physical machine. When a job is submitted,
the user can specify the maximum allowed resource demand
for each task in terms of required CPU and memory size.

1. It should be mentioned that the same data set has been analyzed
by Reiss et al. [23]. However, our analysis extends, and largely comple-
ments the results in [23].

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 15

The values of the demand for each resource type were nor-
malized between 0 and 1. Even though the data set does not
provide task size for other resource types such as disk, it is
straightforward to extend our approach to consider addi-
tional resource types.

In addition to resource demand, the user can also specify
a scheduling class, a priority and placement constraints for
each task. The scheduling class captures the type of the task.
Its value ranges from 0 to 3, with 0 corresponding to least
latency-sensitive tasks (e.g., batch processing tasks) and 3,
the most latency-sensitive tasks (e.g., web servers). The
scheduling class is used by every machine to determine the
local resource allocation policy that should be applied to
each task. The priority reflects the importance of each task.
There are 12 priorities that are divided into three priority
groups: gratis(0-1), other(2-8), production(9-11) [23]. Generally
speaking, task priorities can be used for specifying the qual-
ity of service (QoS) in terms of desired task scheduling
delay. During busy periods when demand approaches clus-
ter capacity, task priorities can ensure that high priority
tasks are scheduled earlier than low priority tasks, resulting
in lower scheduling delay. In this work, we primarily ana-
lyze task characteristics at the priority group-level, because
priority groups already provide a coarse-grained classifica-
tion of tasks. In addition, they also have strong correlation
with task scheduling classes [4], [23]. Nevertheless, our
technical approach can be extended to handle any combina-
tion of task priority groups and task scheduling classes.

3.1 Machine and Workload Dynamicity

In our analysis, we first plot the total demand for both CPU
and memory over time. The results are shown in Figs. 1

and 2, respectively. The total demand at a given time is
determined by total resource requirement by all tasks in the
system, including the tasks that are waiting to be scheduled.
From both figures, it can be observed that the demand for
each resource type can fluctuate significantly over time.
Fig. 3 shows the number of machines available and used in
the cluster. Specifically, a machine is available if it can be
turned on to execute tasks, and is used if there is at least one
task running on it. Fig. 3 also suggests that the capacity of
the cluster is not adjusted according to resource demand, as
the number of used machines is almost equal to the number
of available machines. This suggests that a large number of
machines can be turned off to save energy.

3.2 Analysis of Task Scheduling Delay

While turning off active machines can reduce total energy
consumption, turning off too many machines can also hurt
task performance in terms of scheduling delay. Fig. 4 shows
the cumulative distribution function (CDF) of the schedul-
ing delay for tasks with respect to their priority groups. It
is apparent that tasks with production priority have
better scheduling delay than the gratis ones. Indeed, more
than 50 and 30 percent of the tasks in production and other
priority groups respectively are scheduled immediately. On
the other hand, some of the tasks were delayed significantly.
During our analysis, we have also noticed that some
tasks even with production priority were delayed for up to
21 days. Since the cluster is not constantly overloaded, the
only possible explanation is that the task is difficult to
schedule due to unrealistic resource requirement or had a
placement constraint that is difficult to satisfy. These results
suggest that more efficient provisioning and scheduling
methods are needed to reduce the scheduling delay for
these difficult-to-schedule tasks.

Fig. 4. CDF of task scheduling delay.

Fig. 1. Total CPU demand.

Fig. 2. Total memory demand.

Fig. 3. Number of machines.

16 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

3.3 Understanding Machine Heterogeneity

The traces also provide information about the types of
machines used in the cluster. A machine is characterized by
its capacity in terms of CPU, memory and disk size as well
as a platform ID, which identifies the micro-architecture
(e.g., vendor name and chipset version) and memory tech-
nology (e.g., DDR or DDR2) of the machine. Similar to tasks,
machine capacities are normalized such that the largest
machine has a capacity equal to 1. Fig. 5 shows the different
types of machines and their characteristics (capacity and
platform ID (PFID)). We found 10 types of machines where
more than 50 and 30 percent of the machines belong to
machine types 1 and 2, respectively. On the other hand,
machine types 3 and 4 have around 1;000 machines each.
The remaining machine types (5 to 10) constitute less than
100 machines. Unfortunately, the traces do not provide
detailed information about hardware specifications, how-
ever, it is likely that this heterogeneity translates into differ-
ent energy consumption models.

3.4 Understanding Task Heterogeneity

In order to analyze the workload heterogeneity, we plot-
ted tasks’ requirements and their durations for the three
priority groups. Fig. 7 shows the CPU and memory size of
tasks belonging to each priority group. The coordinates of
each point in these figures correspond to a combination of
CPU and memory requirements. Radius of each circle is
logarithmic in number of tasks within its proximity. It can
be seen that most of the tasks have low resource require-
ments. In particular, we found that 43 percent of gratis
tasks have the same CPU and memory requirements equal
to 0:0125 and 0:0159, respectively. Furthermore, most of
the large tasks are either CPU-intensive or memory-inten-
sive. There is usually no correlation between CPU and

memory requirements. Another key observation is that
the difference in task size can span several orders of mag-
nitude. For example, Fig. 7a shows that the largest task in
the gratis priority group is almost 1;000� bigger than the
smallest task in the same group for both CPU and mem-
ory. Similar characteristics can also be found in Figs. 7b
and 7c. We note that similar characteristics have been
observed in one of Facebook’s data centers [15], suggest-
ing these characteristics are likely to be common in Cloud
data centers. Finally, from Figs. 5 and 7, it is clear that not
every task (e.g., CPU size � 1) can be scheduled on every
type of machines (e.g., CPU capacity¼ 0:5).

Another important parameter that shows the heterogene-
ity of the tasks is the task duration. Fig. 6 shows the CDF of
task durations for tasks with different priority groups. From
Fig. 6, it can be seen that production tasks (9-11) have long
durations that can reach up to 17 days, whereas 90 percent of
the remaining tasks (i.e., gratis and other) have shorter dura-
tion that ranges between 0 and 10 hours. The same observa-
tion can be made for production-priority tasks when
compared to other priority groups (Fig. 6). Furthermore, it is
worth noting that more than 50 percent of the tasks are short
(less than 100 seconds). This concurs with the previous stud-
ies [27], which showed that tasks are either short or long.

3.5 Summary

The above analysis suggests that while the benefit of
dynamic capacity provisioning is apparent for production
data center environments, designing an effective and
dynamic capacity provisioning scheme is challenging, as it
involves finding a satisfactory compromise between energy
savings and scheduling delay with consideration to the het-
erogeneous characteristics of both machines and workload.
In particular, we have found the heterogeneity in task size
can span several orders of magnitude, and not every type of
machine can schedule every task. Similar characteristics
have also been recently reported in Microsoft and Facebook
data centers [8]. Thus, it is a critical issue to design heteroge-
neity-aware DCP schemes for production data centers, as
failing to consider these heterogeneous characteristics will
result in sub-optimal performance.

4 SYSTEM OVERVIEW

As discussed previously, we design Harmony as a DCP
framework that considers both task and machine hetero-
geneity. This requires (1) an accurate characterization of
both workload and machines, (2) effectively capture
the dynamic workload composition at runtime, and (3)
using the captured information to control the number of
machines in the compute cluster to achieve a balance

Fig. 5. Machine heterogeneity.

Fig. 7. Task size analysis.

Fig. 6. CDF of task duration.

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 17

between energy savings and scheduling delay. In prac-
tice, large cloud infrastructures such as Google compute
clusters execute millions of tasks per day. Capturing het-
erogeneity at fine-grained (i.e., per-task) level is not a via-
ble option due to the high overhead of monitoring and
computation. Thus, a medium-grained characterization of
the workload is necessary. To this end, we present a
workload characterization of Google traces by dividing
tasks into task classes using the K-means algorithm. How-
ever, different from previous work [13], [20] whose main
objective is to understand workload characteristics, our
goal is to find accurate workoad characterization, while
supporting task classification (e.g., labeling) at runtime.
Note that machines are naturally characterized (i.e., there
are 10 types of machines in the cluster). Thus, our solu-
tion will mainly focus on task characterization.

Once the workload characterization has been obtained,
we introduce a monitoring mechanism that allows Har-
mony to capture the runtime workload composition in
terms of arrival rate for each task class. To make provision-
ing decisions, we define a container as a logical reservation
of resources that is meant to host tasks belonging to the
same task class. In our approach, the task containers serve
as reservations for helping the controller to make machine
allocation decisions (described in Section 7.2). It is also pos-
sible to directly use task containers for scheduling
(described in Section 7.3). Finally, a heterogeneity-aware
DCP controller is designed to adjust the number of active
machines, based on the current machine availability and
workload composition.

The architecture of Harmony is shown in Fig. 8. It con-
sists of the following components. The task analysis module
is responsible for monitoring the arrival of every task in
order to identify the type to which it belongs. The scheduler
is responsible for assigning incoming tasks to active
machines in the cluster. The prediction module receives sta-
tistics of the arrival rate for each task class, and forecasts its
future arrival rates. The container manager evaluates the
number of containers required to schedule the current
workload based on two parameters: (1) the predicted
arrival rate, and (2) the required average scheduling delay
for each type of tasks. The container manager periodically
notifies the capacity provisioning module about the num-
ber of required containers for each type of tasks. The capac-
ity provisioning module decides which machine in particular
should be switched on or off. Obviously, the goal is to
select the right combination of machines that can host the

containers and, at the same time, minimizes the energy
consumption. Finally, The monitoring module is responsible
for collecting diverse statistics about tasks and machines,
including CPU and memory usage, free resources and cur-
rent task durations. It also reports any failures and anoma-
lies to the management framework. In the following
sections, we describe the design of Harmony in details.

5 WORKLOAD ANALYSIS AND MODELING

5.1 Task Classification

The goals of task classification is to divide tasks into classes
with similar resource demand and performance characteris-
tics. For the purpose of resource provisioning, it is necessary
to consider task priority group, task size (CPU, memory) as
well as task running time as the features for clustering. Spe-
cifically, the size of a task i can be modeled as a vector
si ¼ ðsi1; . . . ; siF Þ, where F denotes the set of features used
for clustering. Let Nk denote the tasks that belong to cluster
k. Then, the centroid of each cluster can be defined as a vec-
tor mk ¼ ðmk1; . . . ;mkF Þ, where mkr ¼ 1

jNkj
P

si2Nk
sir. The

K-means clustering algorithm essentially tries to minimize
the following similarity score:

score ¼
XK
i¼1

X
i2Nk

ksi � mkk2;

where ka� bk denotes the Euclidian distance between two
points a and b in the feature space. Even though Harmony
does not restrict the type of clustering algorithm used for
clustering, in practice we found K-means is simple and suf-
ficient to serve our purpose.

A key issue associated with the use of K-means clus-
tering is to determine the value of K, which is the num-
ber of clusters to be produced by the algorithm. A small
value of K will lead to low-quality workload character-
izations, which reduces the benefit of heterogeneity-aware
DCP. On the other hand, a large value of K will lead to
high monitoring and management overhead. In our
scheme, we adopt a common approach which is to pick
the value of K such that adding another cluster does not
achieve much better gain in terms of minimizing score.
We shall report the result of running the K-means clus-
tering algorithm in Section 9.1.

Once a characterization of the workload has been made,
the next challenge to be addressed is runtime task classifica-
tion. Specifically, when a task arrives, Harmony needs to
determine which task class (i.e., one of the K clusters) it
belongs to. An easy solution is to compute the euclidean dis-
tance between the task and each of the centroids, and assign
the task to the class that has the shortest euclidean distance.
However, this cannot be done directly at runtime. This is
because even though the resource requirements are known,
the task running time is generally unknown to the system
until the task finishes. In Harmony, this issue is addressed
by leveraging the fact that tasks are either short or long, and
the majority of the tasks are short tasks. Thus, we can ini-
tially label all tasks as short tasks, and gradually update the
labels to the correct ones as time passes. Since only a small
fraction of tasks are long, the error caused by the incorrect
labeling is both small and short-lived.

Fig. 8. System architecture.

18 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

Based on the above observation, we adopt a two-step
approach for workload clustering. In the first step, tasks are
classified based on static characteristics (e.g., CPU and
memory size specified in the job request) using the
K-means algorithm. In the second step, each task class is
further divided into short tasks and long tasks using
K-means algorithm. This two-step approach is reasonable
because task running-time does not simply correlate with
resources allocated on the hosting machine [7]. At runtime,
each task is initially assumed to be short. Later on if the task
running time exceeds the partitioning threshold between
short and long tasks determined by the K-means algorithm,
the task will be relabelled and assigned to the right task
class. This clustering procedure reduces the error intro-
duced by the labeling process.

5.2 Resource Prediction

Once the incoming tasks are classified, the prediction mod-
ule is responsible for forecasting the arrival rate of each task
class. Currently, we have implemented a time series-based
predictor using the ARIMA [9] model, which has been
shown to be effective for predicting workload arrival rate
[29]. However, Harmony can adopt other demand predic-
tion models as well.

Once the predicted task arrival rates have been obtained,
the next step is to determine the combination of machines
that need to be provisioned in next control period. In Har-
mony, the container manager is responsible for computing
the number of containers required to support the workload
of each task class. Specifically, let ci denote the number of
containers for tasks type i such that the average scheduling
delay is equal to di. We can model the queue of tasks of type
i and its corresponding Ni

t containers at time t by M/G/Ni
t

queue since a single container can process one task at a
time. Based on queuing theory, the average waiting time di
for type i tasks is given by [16]:

di �
pNi

t

1� ri
� 1þ CV 2

i

2
� 1

Ni
tmi

; (1)

where mi is the execution rate of task type i, ri ¼ �i
Ni
tmi

is the

traffic intensity of tasks type i, CV 2
i is the squared coefficient

of variation of the average duration, and pNi
t
is the probabil-

ity that a task has to wait in the queue:

pNi
t
¼ ðNi

trÞ
Ni
t

Ni
t !ð1� riÞ

XNi
t�1

k¼0

ðNi
triÞ

k

k!
þ ðNi

triÞ
Ni
t

Ni
t !ð1� riÞ

2
4

3
5
�1

: (2)

Given an average scheduling delay and using Eq. (1), it
is easy to estimate Ni

t to ensure di � di and ri < 1.
In our experiments, we found this queuing model gener-

ally works well for estimating task resource requirements
except for long-running tasks, for which queuing theory
makes inaccurate resource predictions. We found a simple
solution to address this limitation is to estimate the number
of long running tasks using the ARIMAmodel. As each task
runs for a very long time, the number of required containers
is practically the number of long running tasks. As a result,
we use the ARIMA model to predict the number of long
running tasks, which translates into the number of required
containers.

6 THE CAPACITY PROVISIONING PROBLEM

We now provide a formal model for DCP in heterogenous
environments, In our model, time is divided into intervals
of equal duration, and control decision is made at the
beginning of each time interval. The cluster consists of M
types of machines. Let Nm

t denote the set of type m
machines available (either active or not) at time interval t.
Denote by Cmr 2 Rþ the capacity of a single machine of
type m 2 M for resource type r 2 R. Similarly, there are
K types of containers to be scheduled at time t, the num-
ber of containers of type k is Nk

t . Let c
kr 2 Rþ denote the

size of a type k container for resource type r 2 R.
Let yit 2 f0; 1g denote whether machine i is active at

time t. Define yit 2 f�1; 0; 1g as an integer variable that
indicates whether the machine is turned on (ui

t ¼ 1) or off
(ui

t ¼ �1), or unchanged (ui
t ¼ 0). Also, let aikt 2 N [f0g as

an integer variable that indicates the number of type n
containers on machine i at time t, and gik

t as the change in
aikt at time t. We thus have the following state equations:

yitþ1 ¼ yit þ yit; (3)

aiktþ1 ¼ aikt þ gikt : (4)

Here, yit and aikt are variables that capture the state of the
system at time t, whereas yit and gikt are the actual decision
variables that need to controlled by the capacity provision-
ing module. The utilization of type r resource on machine i
at time t can be computed as:

uir
t ¼ 1

Cmr

X
r2R

aikt c
kr: (5)

As total energy usage of a physical machine can be esti-
mated by a linear function of resource utilization [29], the
energy consumption of all the active machines at time t can
be computed as:

Et ¼ pt
X
m2M

X
i2Nm

t

yit Eidle;m þ
X
r2R

amruir
t

 !
; (6)

TABLE 1
Table of Notations

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 19

where Eidle;m 2 Rþ is the energy consumption of a type
m machine when it is idle, and amr 2 Rþ is the slope of
the energy consumption function. We can define
Eidle

t ¼ pt
P

m2M
P

i2Nm
t
yitE

idle;m, Eutil
t ¼ pt

P
m2M

P
i2Nm

tP
r2R amruir

t and rewrite Et as Et ¼ Eidle
t þ Eutil

t .
To model task scheduling delay, since it is not possible

for all containers to be scheduled when demand exceeds
data center capacity, we assume there is a utility function
fkð�Þ that models the monetary gain for scheduling con-
tainers. fkð�Þ is assumed to be a concave function that can
be derived from SLO objectives. For example, fkðakÞ can
be a linear decreasing function of the average scheduling
delay computed by equation (1). The total performance
utility can now be computed as:

Uperf
t ¼

X
k2K

fk
� X

m2M

X
i2Nm

t

aikt

�
: (7)

The machine switching cost can be described by:

Csw
t ðyitÞ ¼

X
m2M

X
i2Nm

t

qon;mðyitÞ
þ þ qoff;mðyitÞ

�; (8)

where qon;m 2 Rþ and qoff;m 2 Rþ denotes the cost for turn-
ing on and off of a single type m machine, respectively.
Finally, Equation (9) ensures that containers scheduled on
the same machine do not exceed the resource capacity of
the machine:X

k2K
aikt c

kr � yitC
mr 8m 2 M; i 2 Nm

t ; t 2 T : (9)

Thus, the overall objective of DCP is to control the num-
ber of active machines and to adjust container placement
in a way that maximizes the total performance gain in
terms of scheduling delay, while minimizes the energy
consumption and machine switching cost over a time
horizon T ¼ f0; 1; . . . ; Tg:

max
aikt ;yit;y

i
t;g

ik
t

RT ¼
XT
t¼0

Upref
t �Et � Csw

t (DCP)

subjects to constraints (3), (4), and (9).
DCP is NP-hard to solve as it generalizes the vector bin-

packing problem [11]. Furthermore, linear programming
based solutions cannot be applied to DCP due to the large
number of variables involved. For example, given 10 task
classes and over 10K machines, DCP contains at least 100K
variables, making it difficult to solve in online settings.
Finally, traditional bin-packing heuristics (e.g., First-Fit
(FF)) do not apply directly to DCP as they do not consider
machine switching costs.

7 SOLUTION TECHNIQUES

Realizing that directly solving DCP is not possible, in this
section we present two fast heuristics for solving DCP. Both
techniques rely on solving the integer-relaxation of DCP
(i.e., relaxing the constraints that variables must take integer
values) called DCP �RELAX, which is much easier to
solve than DCP. Once the solution for DCP �RELAX is
obtained, one of our solution techniques called container-
based provisioning (CBP) directly rounds the numbers of

machines to the nearest integer values and use these values
for capacity provisioning. On the other hand, the container-
based scheduling (CBS) technique attempts to find a feasible
placement of containers in physical machines, and use con-
tainers for run-task scheduling. In both cases, the capacity
provisioning module first adjusts the number of active
machines, and informs the scheduler about how tasks
should be assigned to each type of machines. In this section,
we shall first present the formulation of DCP �RELAX,
followed by a description of CBP and CBS in details. The
benefits and limitations of each approach will be also be dis-
cussed in Section 8.

7.1 The Relaxation of DCP

In DCP �RELAX we relax the integer constraints so that
the number of machines (i.e., yit) and container assignment
(i.e., zikt) can take real values. This relaxation yields a sim-
pler formulation, as we only need to solve the total number
of containers for each type of machines, rather than solving
the number of containers per machine. Specifically, we
denote by zmt 2 Rþ the number of type m machines that are
active at time t, and dmt 2 R the change in the number of
active machines at time t. Similarly, define xmk

t 2 Rþ as the
number of type k containers assigned to machines of typem
that is capable of hosting containers of type k, and smk

t 2 Rþ

the change in xmk
t at time t. We thus have the following state

equations:

zmtþ1 ¼ zmt þ dmt ; (10)

xmk
tþ1 ¼ xmk

t þ smn
t : (11)

As xmk
t can take fractional values, we need to ensure that

containers of each type can only be assigned to machines
that are capable of hosting them. This is achieved by intro-
ducing a predefined boolean variable cmk that indicates
whether a container of type n can be scheduled on a
machine of typem. We thus have the following schedulabil-
ity constraint:

ckrx
mn
t � zmt c

mkCmr 8m 2 M; k 2 K; r 2 R; t 2 T : (12)

DCP �RELAX can now be stated as:

max
dmt ;smk

t

XT
t¼0

X
m2M

�pt zmt E
idle;m þ

X
r2R

X
k2K

amrckr

cmr
� xmk

t

 !

þ
XT
t¼0

X
k2K

fk
� X

m2M
xmk
t

�
�
X
m2M

Csw
t ðdmt Þ;

(DCP-RELAX)

subject to zmt � Nm
t 8m 2 M; t 2 T

xmk
t ; zmt 2 Rþ 8k 2 K;m 2 M; t 2 T ;

(13)

along with constraints (10), (11) and (12). This problem is a
convex optimization problem that can be solved using stan-
dard methods [10].

7.2 Container-Based Provisioning for DCP

Container-based provisioning is a simple heuristic for solv-
ing DCP. After DCP �RELAX is solved, CBP simply
rounds up the fractional values of (xmk

t ; zmt Þ to obtain an

20 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

integer solution for DCP, which gives the number of
machines to be provisioned (i.e., dzmt e) and the number of
type n tasks that should be scheduled on type m machines
(i.e., dxmk

t e). However, at runtime, the scheduler needs to
ensure that the number of type n tasks assigned to type m
machines must respect the provisioned capacity dxmk

t e. A
simple strategy is to ensure the number of type k tasks
assigned to m (denoted by Assignmk

t) is proportional to the
number of containers:

Assignmk
t ¼ xmk

tP
j2M xjk

t

:

This can be achieved easily by using a weighted round-
robin scheduling policy. Furthermore, it can be easily inte-
grated with existing scheduling algorithms. For example,
variants of first-fit and best-fit algorithms (which are used
in production clouds such as Microsoft [18], Google [25]
and Open source platforms such as Eucalyptus [3]) can
adopt this mechanism by changing the scheduling policy to
weight round-robin first fit and weight round-robin best fit,
respectively.

A key drawback of the above rounding scheme is that it
often under-estimates the required capacity. The reason is
that the fractional solution of DCP �RELAX assumes that
each container can be arbitrarily divided and placed on
multiple machines. However, in practice, this is not realiz-
able because each container must be scheduled on a single
machine. Realizing that DCP �RELAX under-estimates
the required machines’ capacities, we define an over-provi-
sioning factor vk 2 Rþ for each container type k, which cap-
tures the extra resource required to fully pack the type n
containers. To account for vk, it suffices to replace equation
(12) by the following equation:X

k2K
vkckrxmk

t � zmt C
mr 8m 2 M; r 2 R; t 2 T : (14)

The value of vk can be obtained through experiments. For
example, we have found that setting vk ¼ 1:2 for all n 2 N
seems to be a reasonable value in practice.

The main benefit of CBP is its simplicity and practicality
for deployment in existing systems. However, the main
drawback of CBP is that it still relies on bin-packing algo-
rithms for scheduling. At runtime, tasks of different classes
can still compete for resources in each type of machine. As a
result, CBP does not provide high performance guarantee
in terms of task scheduling delay.

7.3 Container-Based Scheduling for DCP

In this section, we present an alternative solution to CBP
called container-based scheduling. Unlike CBP that uses bin-
packing algorithms for scheduling, CBS allocates containers
in each physical machine and use them for runtime task
scheduling. Specifically, a type k container represents a
resource reservation for tasks of type k. The number of type
k containers on a machine i indicates the number of type k
tasks that can be scheduled on machine i. At runtime, CBS
adopts the following simple scheduling policy: each task is
scheduled in the first available container such that schedul-
ing the task on the machine does not cause machine

capacity violation. If none of the machines can schedule the
task without violating machine capacity constraint, the task
will be kept in the scheduling queue.

The main benefit of CBS is that it provides low schedul-
ing delay due to resource reservations on each machine.
However, it also introduces several challenges which we
shall discuss in the following sections.

7.3.1 Modeling Container Size

One of the main challenges for container-based scheduling
is to select appropriate container size. Unlike in CBP where
we can simply use the centroid to determine the container
size, in CBS we need to set the container size large enough
to ensure that with high probability, each task can be sched-
uled without exceeding the capacity of the physical
machine. Specifically, setting the container size equal to the
maximum possible container size can cause resource wast-
age due to over-estimation of true task resource demand. In
contrast, setting the container size equal to the average task
size will lead to under-estimation of task resource usage,
resulting in tasks unschedulable in machines with available
containers.

To address this issue, we rely on the statistical multiplex-

ing of task resource demand to ensure the probability of

machine capacity violation is low. Specifically, the result of

the K-means clustering algorithm divides the feature space

into K partitions, where every point in the space belongs to

exactly one partition (i.e., the partition whose centroid has

shortest distance to the point). We assume the tasks in each

partition 1 � k � K are independently distributed accord-

ing to a common distribution Dk (which can be an arbitrary

distribution) with mean mk ¼ ðmk1; . . . ;mkRÞ and standard

deviation sk ¼ ðsk1; . . . ; skRÞ. Our goal is to select the con-

tainer size ck ¼ ðck1; . . . ; ciRÞ for each task class 1 � k � K to

ensure that given a task j of type k to be scheduled, the

probability a task cannot be scheduled on any of the

machines that have available type k containers is less than a

small value � . Mathematically, given Mk machines with

available type k containers, let Nn denote the tasks sched-

uled on each machine n 2 Mk. Given a task i to be sched-

uled, we want to ensure that

Y
m2Mk

Pr

�
9r :

X
j2N

sjr þ sir > Cmr

����X
j2N

cjr þ cir � Cmr

�
� �:

(15)

Theorem 1. Assume each task skr in each class k is independently
and identically distributed with mean mkr and standard devia-
tion skr for each resource type r. Also, let Mk denote the mini-
mum number of machines on which a type k task can be
scheduled. We can set container size of task type k to

ckr ¼ mkr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRj � �

1
Mk

�
1

Mk

vuut
skr

for each r 2 R to ensure equation (15) holds.

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 21

Proof.Define N ¼ N [fsjrg. Since

Pr

�
9r :

X
j2N

sjr þ sir > Cmr

����X
j2N

cjr þ cir � Cmr

�

¼ Pr

�
9r :

X
j2N

sjr > Cmr

����X
j2N

cjr � Cmr

�

� Pr

�
9r :

X
j2N

sjr >
X
j2N

cjr
�
;

given Mk machines that have containers available, if we

can ensure that the probability of violating machine

capacity constraint is less than �
1

Mk (i.e., Prð9r :P
j2N sjr >

P
j2N cjrÞ � �

1
Mk , then the inequality will

hold. Furthermore, since Prð9r :
P

j2N sjr >
P

j2N cjrÞ �P
r2R Prð

P
j2N sjr >

P
j2N cjrÞ, the bound will hold if we

can ensure Prð
P

i2N sir �
P

i2N cirÞ � 1
jRj �

1
Mk for all r 2 R.

Define �r ¼ 1
jRj �

1
Mk . To achieve this objective, we use con-

centration inequalities [14]. Define cir ¼ mir þ bir, where

bir is a variable to be determined for each i 2 N . Our

objective is to ensure

Pr

�X
i2N

ðsir � mirÞ �
X
i2N

bir

�
� �r:

The one-sided Chebyshev’s inequality [14] states that

Pr

�X
i2N

ðsir � mirÞ �
X
i2N

bir

�

�
P

i2NðsirÞ2P
i2NðsirÞ2 þ

�P
i2N bir

�2 :
Thus it suffices to ensure the following inequality holds:P

i2NðsirÞ2P
i2NðsirÞ2 þ

�P
i2N bir

�2 � �r:

Rearranging the equation and using the fact thatP
i2NðsirÞ2 � ð

P
i2N sirÞ2, we obtain

X
i2N

bir �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �r

�r

r X
i2N

sir:

Thus Equation (15) holds by setting bir ¼
ffiffiffiffiffiffiffiffi
1��r

�r

q
sir for

each task i 2 N . The result follows. tu
Theorem 1 provides a bound on selecting container size

for CBS. For instance, if we want to achieve � ¼ 0:01 for
Mk ¼ 100, jRj ¼ 2, then Theorem 1 states that we can set con-
tainer size of task type k to mkr þ 1:1skr, which is typically
much smaller than the maximum possible size for task type
k. In practice, we can use the sample mean and standard
deviation to approximate the values of mkr and skr for each
1 � k � K. This is reasonable because there is usually a large
number of samples per task class. Assume each sample is
drawn independently, the sample mean and sample stan-
dard deviation will be close to the true mean and the true
standard deviation. Finally, if a task still cannot be scheduled
immediately, Harmony will keep the task in the front of the
scheduling queue until it finds a machine with sufficient
resources to schedule the task. This simple policy can
achieves low scheduling delay as we shall demonstrate in
Section 9.2.

7.3.2 Solution Algorithm

In order to leverage containers for task scheduling, we pres-
ent an alternative way to round the fractional solution of
DCP �RELAX. The idea is to leverage the following prop-
erty of the first-fit (FF) algorithm:

Lemma 1. Given a fractional solution of DCP �RELAX with
zm	
t type m machines and xmn	

t type n containers, the first-fit
algorithm can place at least bx

mk
t

2jRjc of each type of container n in
zm	
t þ 1 machines.

Proof. We rely on the property that the FF algorithm produ-
ces a solution in which at most one machine i is less than
“half-full” (i.e., utilization uir

t � 1
28r 2 R). To see this, sup-

pose this statement is false, i.e., there are two non-empty
i; j 2 Nm

t that are less than “half-full” and i is filled before
j. In this case, when FF tries to pack a container that
belongs to j in the solution, it would pack it in i instead.
As a result, machine j should hold no containers, which
contradicts our assumption. Therefore, given a machine i
with utilization uir

t for resource type r 2 R, define the effec-
tive utilization of i as 1

jRj
P

r2R uir
t . Based on this “half-full”

property, FF ensures every machine has effective
utilization at least 1

2jRj except the last non-emptymachine.

Given xmk	
t type n containers for each n 2 N that

can be scheduled on zm	
t type m machines, the sum of

the total effective utilization must be less than zm	
t as

it is the maximum possible utilization for zm	
t

machines. Now, suppose we scale down the number

of type n containers to bx
mk	
t
2jRj c for each n 2 N , the total

utilization of machines is thus at most
zm	
t
2jRj. Suppose

there are still containers waiting to be scheduled after

using zm	
t þ 1 machines. As FF ensures every machine

has effective utilization at least 1
2jRj except the last one,

the total utilization of the zm	
t þ 1 machines is at least

zm
	

t
2jRj, which contradicts that the total utilization is at

most
zm

	
t
2jRj. tu

Lemma 1 essentially states that, given a fractional solu-

tion of DCP �RELAX that uses zm	
t type m machines

and xmk	
t type n containers, FF can ensure that at least

bx
mk
t

2jRjc containers can be placed in zm	
t þ 1 machines. Using

this result, we devise our CBS algorithm (Algorithm 1) as

follows: When the control interval t starts, the controller

uses the predicted values Nk
tþijt8k 2 K; 1 � i � W2 to solve

DCP �RELAX, which gives zm	
tjt , the number of active

type m machines to be made available at time t. Then the

controller computes an integer solution by first reducing

the number of type n containers to at most bx
mk
t

2jRjc and then

adding containers using FF to ensure the number of type

k containers is at least bx
mk	
t
2jRj c for all 1 � k � K. Container

reassignment (i.e., migration) is then performed to ensure

there are at most zm	
tjt þ 1 active machines. In our formula-

tion, container reassignment cost is modeled as part of

the machine switching cost, as it is only used to allow

2. We use ðtþ ijtÞ to denote future value for time tþ i either pre-
dicted or computed at time t.

22 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

machines to be turned off. The average switching cost can

be obtained through experiments. Once the container

reassignment is completed and there is still room for

more containers, the controller is free to schedule addi-

tional containers as long as the total number of type k

containers is at most xmk
t . Finally, the controller will real-

ize the new configuration by actually turning off unused

machines and making container allocations.

Theorem 2. The integer solution produced by Algorithm 1
ensures Upref

t �Et � Csw
t � ð 1

2jRj � �ÞUpref	
t � ð1þ �ÞðE	

t�
Csw	

t Þ when zmt is sufficiently large for allm 2 M, t 2 T .

Proof. Since the number of machines used is determined by

DCP �RELAX, it is clear that the Csw
t ¼ Csw	

t and

Eidle
t ¼ Eidle	

t . As the number of type n containers sched-

uled on type m machines is upper-bounded by xmk	
t , we

have Eutil
t � Eutil	

t . Finally, by Lemma 1, it is easy to show

that bx
mk	
t
2jRj �

zm	
t �1

zm	
t

c containers of each type n 2 N can be

packed in zm	
t machines. As fð�Þ is a convex function, it

must hold that Upref
t � ðmaxmf

zm	
t �1

zm	
t

g � �0Þ � 1
2jRjU

pref	
t �,

where �0 ¼ maxmf
xmk	
t
2jRj �

zmt �1

zmt
� bx

mk	
t
2jRj �

zmt �1

zmt
cg is the round-

ing error. The theorem is proven by defining � ¼
maxmf 1

zmt
g þ �0 and summing the above equations. tu

Theorem 2 provides a bound on the worst case perfor-
mance of CBS. In the experiments, we have observed Algo-
rithm 1 typically performs much better than the worst case
bound. Furthermore, realizing the bin-packing solutions
often cannot fully utilize the machine capacities, similar to
CBP, we can use a provisioning factor vk 2 Rþ to account
for the bin-packing inefficiencies. To account for vk, it suffi-
ces to replace constraint (12) by constraint (14). and run
Algorithm 1 to find a suitable container placement. How-
ever, using vk does not lead to a better performance guaran-
tee. To see this, consider an example where Nm

t of type m
machines that are selected by DCP �RELAX are active.
All other machines are inactive and have Eidle � 1. In this
case, no matter how we adjust the value of vk, the number
of containers scheduled by the algorithm will not improve.

8 DISCUSSION

In this section we discuss considerations related to the
deployment of Harmony in practice.

8.1 Task Classification and Prediction

It should be mentioned that many public cloud providers
today (e.g., Amazon EC2 [1]) already offer VMs in distinct
types. In such a case, our DCP algorithms can be applied
directly to these public clouds. However, we argue that pre-
defined VM sizes may not match the actual need of each
customer in all cases. This is reflected by the fact that work-
load heterogeneity is prevalent in private clouds such as
Google’s compute clusters, where customers are given the
flexibility to choose desired VM size. In these cases, our
approach is more flexible and can provide highly efficient
solution for DCP for arbitrary workload compositions.

Another important issue concerns the accuracy of the
demand prediction. Even though previous work [29] sug-
gests that ARIMA can forecast future demand with high
accuracy when the trend of resource demand is stable. It is
still insufficient when an unexpected demand spike occurs.
In this case, we can minimize the risk of under-provisioning
using the over-provisioning factor vk. The exact value of
over-provisioning factor can be set based on experience. In
Section 9.2 we shall evaluate the impact of the over-provi-
sioning factor on the performance of CBS and CBP using
the Google Traces.

8.2 Comparing CBS and CBP

Although CBS provides a theoretically-sound solution for
DCP, it requires the scheduler to adopt a container-based
scheduling algorithm, which is not always available in prac-
tice. As many production cloud systems (e.g., Google’s com-
pute cluster) have also developed sophisticated scheduling
algorithms, implementing CBS requires major change to the
design of the scheduler. On the other hand, CBP does not
suffer from this limitation. However, due to lack of control
of the scheduler, we have found CBP often produce worse
task scheduling delay compared to CBS in our experiments.
Nevertheless, in the next section we will present our evalua-
tion of both methods and quantitatively analyze the benefits
and limitations of both designs.

9 SIMULATION STUDIES

We have implemented both CBS and CBP in Matlab and
studied their performance. In our implementation, the simu-
lator receives job requests from the Google workload traces.
Each job request includes information about tasks resource
demand, priority, and arrival time. It then performs labeling
and job scheduling according to the algorithms described in
Section 7. The DCP procedure is performed once every
5 minutes, as suggested by the Google workload traces. We
have chosen the time horizon to be T ¼ 1, as one step
prediction already provides decent performance in our
experiments.

In our experiments, we simulate a heterogeneous cluster
composed of a mixture of servers from multiple manufac-
turers and models. Table 2 provides the characteristics of
the simulated servers. We normalized the CPU core count

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 23

and memory capacity to the largest machine size. Hence,
HP DLG585 G7 has a capacity 1 CPU unit and 1 memory
unit, which corresponds to 48 cores and 64 GB, respectively.
The energy consumption of the different machines is mod-
eled according to Equation (6). The parameters Eidle;m and
amr for each type of servers were estimated using energy
measurements available in [2]. Furthermore, we use the
average electricity price in the state of California, which is
12:25 cents per Kilowatthour [6]. The reconfiguration cost
per machine power cycle is set to 0:5 cents [12]. Energy costs
reported hereafter include cooling costs, which are consid-
ered to be proportional to the cost of energy consumed by
the servers (the proportionality factor is set to 0:8) [21].

Fig. 9 shows the energy consumption as function of CPU
usage. Indeed, this figure demonstrates the importance of
considering the machine heterogeneity when scheduling
tasks in order to reduce energy consumption. For instance,
a container requiring 0:2 CPU units should be placed in a
HP DL385 G7 since the PowerEdge R210 does not have

enough CPU capacity, whereas the other types of servers
are able to host it but will consume much more energy.
Selecting the “right” machines to switch on becomes partic-
ularly challenging when millions of heterogeneous tasks
have to be scheduled in the cluster.

9.1 Results of Task Classification

We performed task classification as described in Section 5.1.
For each priority group, we varied the value of k and evalu-
ated the quality of the resulting clusters produced by the
K-means algorithm. The best value of k for each priority
group is selected as the one for which no significant benefit
can be achieved by increasing the value of k. The results
after the first step of our characterization for each priority
group are shown in Figs. 10, 14, and 18, respectively. These
diagrams show the clustering algorithm captures the differ-
ences in task sizes and identifies cpu-intensive tasks and
memory-intensive tasks. Furthermore, the standard devia-
tion is much less than the mean value for both CPU and
memory, which confirms the accuracy of the characteriza-
tion. The number of tasks in each task class is shown in
Figs. 12, 16 and 20, respectively. It is clear that the number
of tasks within each cluster can vary significantly. Most of
the classes have between 104 and 106 tasks except cluster 4
for Gratis priority group, which has only 100 tasks. Lastly,

Fig. 10. Class size (Gratis).

Fig. 9. Machine energy consumption rate.

TABLE 2
Machine Configurations

Fig. 12. Number of tasks (Gratis).

Fig. 11. Task duration (Gratis).

Fig. 13. Container size versus maximum size (Gratis).

Fig. 14. Class size (other).

24 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

we run the k-means algorithm with k ¼ 2 to categorize tasks
of each task class as either short or long. The results are
shown in Figs. 11, 15 and 19, respectively. These diagrams
confirm that long tasks typically run several orders of mag-
nitude longer than short tasks. Finally, we computed the
container size as described in Section 7.3.1, with � ¼ 0:001,
jRj ¼ 2 and Mk ¼ 100. The results are shown in Figs. 13, 17
and 21, respectively. Clearly, the size of containers is typi-
cally smaller than the maximum task size within the cluster.

9.2 Controller Performance

We have evaluated the performance of CBS and CBP
algorithms using Google workload traces. In our experi-
ments, the sum of arrival rate of tasks belonging to each
priority group is shown in Fig. 22. Fig. 23 shows the

sum of the total containers belonging to each priority
group computed by Harmony.

For comparison purpose, we also implemented a base-
line (heterogeneity-oblivious) algorithm that tries to find
a balance between energy savings and scheduling by
maintaining an 80 percent utilization of the bottleneck
resource. Essentially, given the total resource demand,
the algorithm provisions machines in a “greedy” fashion
by turning them on in decreasing order of energy effi-
ciency (e.g., always turning on HP-DL585-G7 machines
first). We picked the value of 80 percent because we
found that a utilization higher than 80 percent can cause
a significant increase in task scheduling delay. As the
Google workload contains many long running tasks that
were scheduled before the start of the traces, in our

Fig. 16. Number of tasks (other).

Fig. 15. Task duration (other).

Fig. 17. Container size versus maximum size (other).

Fig. 18. Class size (production).

Fig. 19. Task duration (production).

Fig. 20. Number of tasks (production).

Fig. 21. Container size versus maximum size (production).

Fig. 22. Aggregated task arrival rates.

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 25

simulation, we mainly focus on simulating the arrival of
new tasks.

In our first experiment, we use an over-provisioning
factor of 1:2 to demonstrate the behavior of our algo-
rithms. The number of active servers provisioned by the
baseline algorithm, CBS and CBP are shown in Figs. 24,
25 respectively. Note that both CBS and CBP provision
the same number of machines as indicated by the MPC
algorithm. It can be seen that the number of machines
provisioned by CBS and CBP is much less than the
number of machines selected by the baseline algorithm.
Furthermore, It can be seen that they are able to make
intelligent decisions regarding what type of machines to
turn on and off. Fig. 29 shows the total energy con-
sumption of all three approaches. It can be seen that

CBS incurs the lowest energy costs, corresponding to a
28 percent reduction in energy cost compared to the
baseline algorithm.

The CDF of task scheduling delays are shown in Figs. 26,
27 and 28, respectively. It can be seen that CBS and CBP can
substantially reduce the scheduling delay compared to the
baseline algorithm. The CPU and memory utilizations of
the baseline, CBS and CBP are compared in Figs. 30 and 31,
respectively. It can be seen from the diagrams that the base-
line achieves low utilization for both CPU and memory.
This is because the baseline only ensures the total provi-
sioned capacity is 1

80 percent times the required capacity, and
does not consider the types of machines provisioned. As
soon as the most energy efficient (i.e., HP DL585 G7)
machines are all turned on, it began to make wrong

Fig. 28. CDF of scheduling delay for CBS.

Fig. 27. CDF of scheduling delay for CBP.

Fig. 26. CDF of scheduling delay for baseline.

Fig. 25. Number of machines used by CBS/CBP.

Fig. 23. Number of required containers.

Fig. 24. Number of machines used by the baseline.

Fig. 29. Comparison of energy consumption.

Fig. 30. CPU utilization in the data center.

26 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

decisions regarding the type of machines to be turned on.
As a result, many tasks cannot be scheduled in the newly
provisioned machines, resulting in low utilization and high
scheduling delay. In contrast, both CBS and CBP can signifi-
cantly outperform the baseline algorithm in terms of both
resource utilization and scheduling delay. Furthermore,
CBS generally outperform CBP in our experiments. This is
because CBS uses dedicated containers for scheduling, thus
ensuring that large tasks can be scheduled quickly. In con-
trast, CBP does not provide guaranteed resources for large
tasks, making themmore difficult to schedule.

To better understand the difference between CBS and
CBP, we varied the values of the over-provisioning factor
vk between 0:6-2:2 to produce different tradeoffs between
operational costs (energy and reconfiguration cost) and
the average scheduling delay. The results are shown in
Figs. 32 and 33, respectively. We found when the cluster
is under-provisioned (vk � 1:1), scheduling delays are
high for both schemes. In this case, CBS performs poorly
because it can only schedule tasks in dedicated contain-
ers. If all dedicated containers reserved for a task class
run out, a task that belongs to the class has to wait even
if there are idle resources in the cluster. In contrast, CBP
does not have this limitation, because a task can be sched-
uled whenever there is sufficient resources available in
the cluster. However, this is no longer true when
vk � 1:1. In this case, CBS outperforms CBP because dedi-
cated containers can guarantee every type of tasks can be
scheduled without much delay, whereas the bin-packing
algorithm used by CBP can have difficulties scheduling
large tasks, especially production tasks. These observa-
tions suggest that CBS can slightly outperform CBP in
terms of solution quality. However, as CBS adopts a strict
(i.e., slot-based) scheduling policy, it is less practical for
real-world deployment. Thus, the cloud provider must
carefully analyze these tradeoffs in order to decide which
scheme should be used in a given scenario.

10 CONCLUSION

Dynamic capacity provisioning has become a promising
solution for reducing energy consumption in data centers in
recent years. However, existing work on this topic has not
addressed a key challenge, which is the heterogeneity of
workloads and physicalmachines. In this paper, we first pro-
vide a characterization of both workload and machine het-
erogeneity found in one of Google’s production compute
clusters. Then we present Harmony, a heterogeneity-aware
framework that dynamically adjusts the number ofmachines
to strike a balance between energy savings and scheduling
delay, while considering the reconfiguration cost. Through
experiments using Google workload traces, we found Har-
mony yields large energy savings while significantly
improving task scheduling delay.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) under the Smart
Applications on Virtual Infrastructure (SAVI) Research Net-
work, and in part by a Google Faculty Research Award.

REFERENCES

[1] Amazon Elastic Computing Cloud, http://aws.amazon.com/
ec2/, 2013.

[2] Energy Star Computer Server Qualified Product List, energystar.
gov/ia/products/prod_lists/enterprise_servers_prod_list.xls,
2014.

[3] Eucalyptus community, http://open.eucalyptus.com/, 2014.
[4] Googleclusterdata - traces of google workloads, http://code.

google.com/p/googleclusterdata/, 2014.
[5] Technology research - Gartner Inc, www.gartner.com, 2014.
[6] U.S. Energy Information Adminstration, http://www.eia.gov/,

2014.
[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica,

“Effective Straggler Mitigation: Attack of the Clones,” Proc. 10th
USENIX Conf. Networked Systems Design and Implementation
(NSDI), 2013.

[8] R. Boutaba, L. Cheng, and Q. Zhang, “On Cloud Computational
Models and the Heterogeneity Challenge,” J. Internet Services and
Applications, vol. 3, pp. 77-86, 2012.

[9] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel, Time Series Analysis,
Forecasting, and Control. Third ed., Prentice-Hall, 1994.

[10] S. Boyd et al., Convex Optimization. Cambridge Univ. Press, 2004.
[11] C. Chekuri and S. Khanna, “On Multi-Dimensional Packing Prob-

lems,” Proc. Symp. Discrete Algorithms, 1999.
[12] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and

N. Gautam, “Managing Server Energy and Operational Costs
in Hosting Centers,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 33, pp. 303-314, 2005.

[13] Y. Chen et al., “Analysis and Lessons from a Publicly Available
Google Cluster Trace,” Technical Report UCB/EECS-2010-95, 2010.

[14] J. Diaz et al., “A Guide to Concentration Bounds,” Handbook on
Randomized Computing. Springer, 2001.

Fig. 33. Energy cost versus scheduling delay for CBS.

Fig. 32. Energy cost versus scheduling delay for CBP.

Fig. 31. Memory utilization in the data center.

ZHANG ET AL.: DYNAMIC HETEROGENEITY-AWARE RESOURCE PROVISIONING IN THE CLOUD 27

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types,” Proc. Eighth USENIX Conf. Networked
Systems Design and Implementation (USENIX NSDI), 2011.

[16] D. Gross and C. Harris, Fundamentals of Queueing Theory, pp. 244-
247, John Wiley & Sons, 1998.

[17] G. Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, and C. Pu,
“Mistral: Dynamically Managing Power, Performance, and Adap-
tation Cost in Cloud Infrastructures,” Proc. IEEE 30th Int’l Conf.
Distributed Computing Systems (ICDCS), 2010.

[18] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubrahmanian,
K. Talwar, L. Uyeda, and U. Wieder, “Validating Heuristics
for Virtual Machines Consolidation,” Microsoft Research,
MSR-TR-2011-9, 2011.

[19] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic
Right-Sizing for Power-Proportional Data Centers,” Proc. IEEE
INFOCOM, 2011.

[20] A.K. Mishra, J.L. Hellerstein, W. Cirne, and C.R. Das, “Towards
Characterizing Cloud Backend Workloads: Insights from Google
Compute Clusters,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 37, pp. 34-41, Mar. 2010.

[21] C.D. Patel and A.J. Shah1, “Cost Model for Planning, Develop-
ment and Operation of a Data Center,” Technical Report HPL-
2005-107(R.1), HP Laboratories Palo Alto, 2005.

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the Electric Bill for Internet-Scale Systems,” Proc. ACM
SIGCOMM, 2009.

[23] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” Proc. ACM Symp. Cloud Computing, 2012.

[24] S. Ren et al., “Provably-Efficient Job Scheduling for Energy and
Fairness in Geographically Distributed Data Centers,” Proc. IEEE
32nd Int’l Conf. Distributed Computing Systems (ICDCS), 2012.

[25] B. Sharma, V. Chudnovsky, J.L. Hellerstein, R. Rifaat, andC.R. Das,
“Modeling and Synthesizing Task Placement Constraints in Goo-
gle Compute Clusters,” Proc. Second ACM Symp. Cloud Computing
(SOCC), 2011.

[26] A. Verma et al., “Pmapper: Power and Migration Cost Aware
Application Placement in Virtualized Systems,” Proc. Ninth ACM/
IFIP/USENIX Int’l Conf. Middleware (Middleware), 2008.

[27] Q. Zhang, J. Hellerstein, and R. Boutaba, “Characterizing Task
usage Shapes Google’s Compute Clusters,” Proc. LADIS Workshop
Held in Conjunction with VLDB, 2011.

[28] Q. Zhang, M.F. Zhani, R. Boutaba, and J.L. Hellerstein,
“HARMONY: Dynamic Heterogeneity-Aware Resource Provi-
sioning in the Cloud,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS), 2013.

[29] Q. Zhang, M.F. Zhani, Q. Zhu, S. Zhang, R. Boutaba, and J.L.
Hellerstein, “Dynamic Energy-Aware Capacity Provisioning
for Cloud Computing Environments,” Proc. ACM Int’l Conf.
Autonomic Computing (ICAC), 2012.

Qi Zhang received the BASc, MSc, and PhD
degrees from the University of Ottawa, Canada,
Queen’s University, Canada, and the University
of Waterloo, Canada, respectively. His current
research focuses on resource management for
cloud computing systems. He is also interested
in related areas including big-data analytics, soft-
ware-defined networking, network virtualization
and management. He is a student member of the
IEEE.

Mohamed Faten Zhani received the engineering
and MS degrees from the National School of
Computer Science, Tunisia in 2003 and 2005,
respectively. He received the PhD degree in
computer science from the University of Quebec
in Montreal, Canada in 2011. Since then, he has
been a postdoctoral research fellow at the Uni-
versity of Waterloo. His research interests
include cloud computing, virtualization, Big data
and software defined networking. He is a mem-
ber of the IEEE.

Raouf Boutaba received the MSc and PhD
degrees in computer science from the University
Pierre and Marie Curie, Paris, France, in 1990
and 1994, respectively. He is currently a profes-
sor of computer science with the University of
Waterloo, Waterloo, ON, Canada. His research
interests include control and management of net-
works and distributed systems. He is a fellow of
the IEEE and the Engineering Institute of
Canada.

Joseph L. Hellerstein received the PhD
degree in computer science from UCLA. He
was a principal architect at Microsoft Corp. in
Redmond (2006-2008), and a researcher and
a senior manager at the IBM Thomas J. Wat-
son Research Center in Hawthorne (1984-
2006). He manages the Computational Discov-
ery Department at Google Inc. in Seattle, WA.
He has published more than 100 peer-
reviewed papers and two books, and has
taught at Columbia University and the Univer-

sity of Washington. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

28 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

