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Abstract—Recent studies have shown that the energy consump-
tion of wireless access networks is a threat to the sustainability
of mobile cloud services. Consequently, energy efficient solutions
are becoming crucial for both local and wireless access networks.
In this paper, we propose a flow-based management framework
to achieve energy efficiency in campus networks. We address the
problem from the dynamic perspective, where users come and
leave the system in an unpredictable way. Specifically, we pro-
pose an online flow-based routing approach that allows dynamic
reconfiguration of existing flows as well as dynamic link rate adap-
tation, while taking into account users’ demands and mobility.
Our approach is compliant with the emerging software defined
networking (SDN) paradigm since it can be integrated as an
application on top of an SDN controller. To achieve this, we first
formulate the flow-based routing problem as an integer linear pro-
gram (ILP). As this problem is known to be NP-hard, we then
propose a simple yet efficient ant colony-based approach to solve
the formulated ILP. Through extensive simulations, we show that
our proposed approach is able to achieve significant gains in terms
of energy consumption, compared to heuristic solutions and con-
ventional routing solutions such as the shortest path (SP) routing,
the minimum link residual capacity routing metric (MRC), and
the load balancing (LB) scheme. In particular, we show that the
energy consumption can be reduced by up to 7%, 35%, 44%, and
49% compared to Greedy-OFER, MRC, SP, and LB, respectively,
while ensuring the required quality of service (QoS).

Index Terms—Energy efficiency, campus networks, manage-
ment, SDN, optimization.

I. INTRODUCTION

T HE UNPRECEDENTED expansion of broadband com-
munication networks has led to a significant increase

in energy consumption of communication networks. Indeed,
according to a recent report [1], the Information and
Communication Technologies (ICT) ecosystem is approaching
10% of the world’s electricity usage. This corresponds to the
same amount of power used to light the planet in 1985 and
over 50% of the aviation consumption nowadays. Moreover,
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based on current trends, wireless access technologies such as
WiFi will soon be the dominant methods for accessing emerg-
ing cloud services [2]. In fact, according to a study published
in 2013 [2], wireless cloud services energy consumption, in
which wireless access networks represent 90%, will increase
by 460% in 2015 to reach 43 TWh, up from 9.2 TWh only in
2012. To make things worse, this will result in an increase in
carbon footprint from 6 megatonnes of CO2 in 2012 to up to 30
megatonnes of CO2 in 2015, which represents the equivalent of
adding 4.9 million cars on the roads. Facing the fact that the
cost of energy continues to rise and the increasing environmen-
tal awareness, operators and institutions are urged to reduce the
energy consumption of their campus networks including enter-
prise campuses, school campuses, shopping malls, airports, etc
[3], to reduce operational expenditures (OPEX) and achieve
long term sustainability.

The application of green and energy efficient networking
to campus networks has seldom been reported in the litera-
ture. A topology of a typical campus network is illustrated in
Fig. 1. Typically, it comprises static Access Points (APs), a
set of switches, and gateway routers. Each AP serves multiple
mobile users and connects them directly or through a multi-hop
wireless routing to the wired backbone. The wired backbone
itself is composed of a set of switches that form more or less a
hierarchy and converge towards gateway routers. The gateway
routers ensure the forwarding of the traffic towards the Internet.
It is worth noting that this topology can be used in enterprise
or university campuses to enable cost-effective and scalable
deployment of secure outdoor wireless LANs, as highlighted by
Cisco [4]. For example, Concordia University (Canada) used a
wireless mesh network in its campus [5].

According to recent studies [2], [6], user traffic drained by
campus networks is expected to soar in the next few years,
which will result in high energy consumption [2], [7]. As such,
it is important to design energy efficient planning and manage-
ment strategies for campus networks that take into account the
dynamic and unpredictable users’ mobility.

On the other hand, Software Defined Networking (SDN) [8]
has emerged recently as a solution facilitating network man-
agement. The key idea behind SDN is to move the forwarding
intelligence into a centralized network controller, while keeping
the routers or switches simple. This allows to implement dif-
ferent forwarding approaches flexibly and achieve global opti-
mizations easily. In SDN, the controller dictates the forwarding
rules of flows to the forwarding elements using protocols such
as OpenFlow [9]. SDN presents an opportunity to improve the
performance and reduce the energy consumption of campus
networks [10].
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Fig. 1. Typical campus network topology.

Motivated by the potential of the new SDN paradigm, we
propose in this paper a holistic energy conservation approach
that uses online flow-based routing and link rate adaptation
in campus networks. Our objective is to minimize the energy
consumption of APs and switches, while routing incoming
flows subject to QoS constraints (such as bandwidth and delay)
and taking into account the dynamic and unpredictable arrival,
departure and users’ mobility. More specifically, our approach
determines the AP to which each user will associate, along with
a complete path in the wireless and wired parts of the network,
towards the Internet, while minimizing the whole energy con-
sumption and satisfying the QoS constraints. In this case, our
proposed solution uses dynamic flow consolidation to reduce
the energy consumption in the network. Moreover, it uses link
rate adaptation to further reduce the energy consumption in the
wired part of the network. Our proposed approach can be easily
integrated in an SDN solution since it relies on a central con-
troller that monitors and manages the network and decides on
flow routes and link rates.

To achieve this, we first formulate the problem as an inte-
ger linear program (ILP), whose objective is to reduce the
total energy consumption in the wireless and wired parts of
the network. Moreover, The formulated objective function takes
into account the costs for switching between sleeping and
active modes of nodes (APs, switches and gateway routers),
as well as re-routing or consolidating existing flows. As this
problem is known to be NP-hard [11], [12], we then pro-
pose a simple yet efficient algorithm based on Ant Colony,
called Ant Colony Online Flow-based Energy efficient Routing
(AC-OFER) to solve the formulated ILP problem. In this con-
text, Greedy-OFER, Shortest Path (SP) routing strategy, the
Minimum link Residual Capacity routing metric (MRC) and
the Load Balancing (LB) schemes are used to develop baselines
to which the AC-OFER improvements are compared. Through
extensive simulations, we show that our proposed approach
can achieve significant gains in terms of energy consumption.
Specifically, the gains, can attain 6.5%, 17%, 42% and 45%
compared to Greedy-OFER, MRC, SP and LB, respectively, for
medium-sized networks. These gains become 7%, 35%, 44%
and 49%, respectively, in large-sized networks, while achieving
the same users’ requests acceptance ratio and QoS satisfaction.

In summary, our key contributions are the following:

• We formulate the problem of reducing energy consump-
tion in campus networks as an Integer Linear Program
(ILP), under dynamic arrival and departure of users. The
objective includes the cost of re-routing or consolidat-
ing existing flows as well as the cost of switching nodes
between active and sleep modes.
• We propose a meta-heuristic low time complexity

approach based on Ant Colony to solve the ILP prob-
lem. We show that our approach achieves near optimal
solution for network reconfiguration to reduce the over-
all energy consumption within few milliseconds, which
makes it usable in practice.
• Our approach is online flow-based and defines users

attachment as well as flows routing in both wireless
and wired parts of the network under dynamic arrival
and departure of users, and uses link rate adaptation in
the wired backbone to achieve energy efficient campus
networks.
• We compare our approach with several existing solutions

and discuss the associated gains.
The reminder of this paper is organized as follows. Section II

presents an overview of the related work. In Section III, we
describe the system model used in our analysis. Section IV for-
mulates the problem as an ILP, followed by a presentation of
our proposal in Section V. Simulation results are presented in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Energy management has been an active research area in the
last few years. In the following, we survey relevant research in
both wired and wireless networks.

A. Energy Reduction in Wired Networks

Numerous proposals have been presented to reduce energy
consumption in wired networks [13]–[19]. Authors in [13] pro-
pose to reduce energy consumption in backbone networks by
reducing the number of used nodes. They formulate the prob-
lem as an ILP for multi commodity flow and provide the
optimal routing to reduce the number of used nodes. Authors
in [14] propose to shut down nodes one by one and verify
that the network still route the required traffic (i.e., the con-
straints are not violated). In [15], authors investigated a model
based on gradient optimization to reduce energy consump-
tion in wired networks. They started from routing paths given
by a shortest path routing. Then, they used a routing policy
named Energy-Aware Routing Protocol (EARP) [16] to reduce
energy consumption by up to 10% given that the required QoS
is satisfied. Online flow-based routing has also been used in
[17], where authors presented E2-MCRA, a flow-based routing
approach that reduces the number of used nodes in a Internet
Service Provider (ISP) network, while satisfying the QoS con-
straints. The idea is to route incoming flows by choosing among
the possible paths, the one that achieves the best combina-
tion between the path length and the number of additional
nodes to turn on. Authors in [18] proposed an ILP formula-
tion to reduce the number of used nodes in the network while
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routing per-flow basis. They also derived heuristics for online
routing of flows. They used results from real routers to assess
their proposed approach. Authors in [19] addressed the prob-
lem of energy reduction in ISP networks. Their proposal is
time-driven and relies on the observation that ISP networks
exhibit regular/predictive traffic patterns during specified time
windows. Hence, they first propose a heuristic that shuts down
unnecessary links, and then an algorithm to compute the dura-
tion of the time window. Then, they show that their approach
can achieve up to 18% energy saving (in terms of used links)
without significantly impacting the network performance.

On the other hand, energy efficiency in data center networks
has also been addressed by a few works. The objective is to
reduce the number of used nodes (both servers and switches)
through virtualization and flow consolidation. Specifically,
authors in [20], presented ElasticTree, a network-wide power
manager that relies on OpenFlow to dynamically adjust the set
of active network elements (i.e., links and switches) to satisfy
changing data center traffic loads. They show that ElasticTree
can save up to 50% of network energy, while maintaining
the ability to handle traffic surges. In [21], authors propose
a two step solution to reduce energy consumption in data-
centers. First, they propose to assign virtual machines (VMs)
to servers to reduce the amount of traffic and to generate
favorable conditions for traffic engineering. Then, to achieve
energy conservation, they reduce the number of needed active
switches that balance traffic flows, depending on the relation-
ship between power consumption and routing. In [22], authors
showed the benefit of using link rate adaptation in a datacen-
ter network. The objective is to find the rates of the different
links that minimize the energy consumption of the whole net-
work. They formulate the problem as an ILP and proposed
an approximation method to solve the ILP. However, the pro-
posed energy consumption model assumes proportional switch
energy consumption (i.e., the energy consumption of the switch
is proportional to the link rates), which is not true in practice.

In the specific case of campus networks, authors in [23] pro-
posed an SDN-based approach (i.e., using a central controller)
to reduce the energy consumption by switching off as many
switches/routers as possible. They formulated the problem as a
mixed integer linear programming (MILP) and then proposed a
heuristic solution. However, authors did not address the case of
wireless parts of the network. Moreover, no link rate adaptation
is considered.

B. Energy Reduction in Wireless Networks

An important body of work on energy efficiency of devices
and protocols in cellular, WLANs and Wireless Mesh Networks
(WMNs) has been reported in the literature. A survey on energy
efficient protocols for such networks can be found in [24].
In WLANs, authors in [25], [26] presented strategies based
on the resource on-demand concept. The proposed approaches
derive strategies to reduce the number of used APs in a
WLAN. In [27], authors proposed an analytical model to assess
the effectiveness of this concept and authors in [28] showed
management strategies for energy savings in solar powered
802.11 WMNs. In [29], authors derived mobility and traffic

patterns in the specific case of WLAN university campus net-
works (day/night, week days and weekends) to decide on the
APs to turn on/off in the campus to accommodate the traffic. In
cellular access networks, authors in [30] summarized existing
energy saving approaches, which use carrier aggregation, turn
off transmission components during signal-free symbols, and
turn off cells during low traffic periods.

In the context of WMNs, relevant works on energy-efficiency
are reported in [31]–[36]. These works consider offline rout-
ing in such networks. Specifically, authors in [31] consider
the case of WMNs, where the users can choose the AP they
connect to. To do so, they formulate and solve the problem
as an ILP, where the objective is to minimize the number of
used nodes (i.e., APs and gateways), and always satisfy users’
bandwidth demands. However, they do not take into account
the interference between APs since directional antennas are
assumed. The authors extended this work in [32] to consider
the planning and deployment of APs (i.e., choosing the number
of APs and their location). Another energy management study
in WMNs is provided in [33], where a combination between
different modulation techniques and power adaptation is pre-
sented. In [34], we proposed a framework for energy efficient
management in TDMA-based WMNs. However, all the afore-
mentioned approaches are still limited since they are offline.
Indeed, the traffic patterns are assumed to be known a priori
and fixed at the planning stage, which is not usually the case in
practice, as users can arrive and leave the network in an unpre-
dictable way. This may limit the utilization of such approaches
in real world deployments. Moreover, these approaches do not
account for the wired part of a campus network.

To overcome these limitations, we first proposed in [35] a
flow-based management framework to achieve energy efficient
WMNs, that takes into account the dynamic and unpredictable
traffic patterns. In this paper, we rather focus on campus
networks, which include both wireless and wired networks ele-
ments. It is worth noting that a more detailed survey of energy
efficient approaches in wireless access networks, with a focus
more on cellular and WLAN, is given in [37].

C. SDN-Based Wireless Network Management

In the context of SDN, most of the proposed solutions
to wireless network management focus on mobility manage-
ment. For instance, authors in [38] present an OpenFlow-based
approach for efficient mobility management in WMNs. This
approach implements the mobility management as an applica-
tion on top of the SDN controller. In [39], authors present an
SDN-based framework for network management in WLANs.
The framework relies on a central controller that has a global
view of the network. The mobility management is implemented
as an application on top of the central controller that manages
users’ attachments through light virtual APs and OpenFlow-
enabled switches.

Adopting the same SDN paradigm as in [39] and [38], in
this paper, we propose an online flow-based routing approach
in campus networks. Specifically, we focus on energy efficient
communications by routing the incoming traffic from the users
to the campus gateway routers, while considering the required
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QoS, the energy consumption as well as the costs of flows
reconfiguration and re-routing. To the best of our knowledge,
we are the first to address green routing in SDN-based campus
networks.

III. SYSTEM MODEL

A. Network Model

We represent a campus network by a directed graph G(V ∪
W, Es ∪ Ed), called a connectivity graph, where V is the set of
APs, W is the set of switches, Es and Ed are the set of wireless
and wired links, respectively. We denote also by E = Es ∪ Ed

the set of all links. Each node v ∈ V represents an AP. Note that
some of these APs can be interconnected to form a Wireless
Mesh Network (WMN). A wireless link e ∈ Es between two
APs has a number of channels denoted by nce. The capacity
along each channel is limited and denoted by Cek . Moreover,
each AP i ∈ V has a limited capacity to serve its attached users
denoted by Ci .

Similarly, each wired link e ∈ Ed between an AP and
a switch or between two switches has a limited capacity
denoted by Cek . In this case, nce = 1,∀e ∈ Ed . Moreover,
some switches have ports connected to gateway routers, which
guarantee the connection to the Internet. Let Sd denote this set
of switches. One can think of these switches as the gateways
towards the Internet for the wired backbone part of the network.
Note that each gateway j ∈ Sd router has a limited capacity for
traffic forwarding towards the Internet denoted by G j .

B. AP Energy Consumption Model

First of all, recall that an AP v ∈ V has two physical inter-
faces: one for serving its mesh users (called AP interface) and
one for relaying traffic in the wireless backbone towards the
wireless backbone (called mesh interface). An additional third
wired interface exists for APs that are directly connected to the
switches to forward traffic to/from the wired network.

Given an AP v ∈ V , we distinguish between two operating
modes: low power consumption and high power consumption.
In the first mode, an AP has no users attached to it and no traffic
to forward. In this case, it only uses its AP Interface to detect
user’s presence. In this mode, the energy consumption of the
AP can be reduced by setting up a high sleeping period and
reducing the transmission power as presented in [40], or shut
down the AP by cutting down the power supply such as the
Power over Ethernet (PoE). In the second mode, the AP has
either active users attached to it or traffic to forward. Therefore,
its power consumption is higher. It is worth noting that the con-
trast between low power and high power consumption stems
from the study carried out by Gomez et al. [41]. Through real
power measurements, authors showed that the power consump-
tion of an AP when it does not carry traffic (i.e., active AP with
traffic load equals to 0), represents 75% of its peak power. An
active AP carrying traffic consumes an extra power proportional
to the AP traffic load, and is calibrated as 25% of the power con-
sumption multiplied by the traffic load over total AP capacity,
as shown in the revised paper.

TABLE I
AP POWER CONSUMPTION PROFILES

Hence, six power consumption profiles for an AP v ∈ V can
be defined, and listed in Table I. Note that we denote by mesh
router an AP that has traffic to forward in the wireless backbone
and a mesh gateway if it has traffic to forward from the wireless
backbone towards the wired network.

Consequently, the power consumption of AP can be
expressed as follows:

P =
{

PS If loadAP = 0
Pprof ile∗(0.75+ 0.25× loadAP

total AP capacity ), Otherwise

where loadAP is the current load of the AP, total AP capacity
is the maximum capacity supported by the AP and Pprof ile is
the peak power consumption of the corresponding profile.

It is worth noting that in the case of one-hop wireless net-
works (i.e., all APs are directly connected to switches such as
the topology discussed in [10]), the energy consumption modes
are reduced to PAG and PS .

To reduce the energy consumption of the whole network, one
should put as many nodes as possible into power saving mode
and by switching them off in case where they have no traffic
to carry. In practice, this can be achieved using technologies
such as Wake-on-LAN or Power over Ethernet (PoE) powered
APs as in [3], [7], which are switched off by cutting the power
Ethernet supply.

C. Switch Energy Consumption Model

A switch contains a number of interfaces. Each interface has
its own Network Interface Card (NIC) card (a.k.a. line card).
Each interface can have one or multiple ports. In this work,
we use the energy consumption model proposed by Mahadevan
et al in [42] and reused in other works such as [43]. In this
model, the energy consumption of a switch corresponds to a
fixed amount of power consumed by the chassis, plus a vari-
able amount of power that depends on the number of active
interfaces along with the rate of each interface. It is given by:

Pswi tch = Pchassis + nlinecards × Plinecards +
R∑

k=1

n ports.r × Pr

(1)
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where Pchassis is related to the power consumed by the switch
hardware, Plinecards is the power consumed by an active net-
work line card, and Pr corresponds to the power consumed by
a port (transceiver) running at rate r ∈ {r1, . . . , rm}.

Note that in equation (1), only the last component appears
to be dependent on the link rate, while other components, such
as Pchassis and Plinecards , remain fixed for the whole switch
operation duration.

D. Traffic Model

In this work, we model the traffic as a set of L flows. Each
flow originates from a user, who is located in the coverage area
of one or multiple APs. Users’ location is captured by the cover-
age matrix A. Each flow l ∈ L has a bandwidth demand bl and
a delay constraint dl . Note that these flows are unidirectional.
As such, the downlink and uplink are considered to be two
different flows and are treated differently in terms of allocated
path. Moreover, we assume that the traffic demand of each flow
can be determined by the controller. For instance, this could
be achieved by using the counters per flow in the network for-
warding elements, and use estimation techniques to determine
the traffic rate.

IV. PROBLEM FORMULATION

As already mentioned, our objective is to minimize the
energy consumption of the network nodes (i.e., APs and
switches) over time, while routing dynamically the arriving and
departing flows subject to QoS constraints (i.e., bandwidth and
delay). In other words, our objective is to reduce the energy con-
sumption, while guaranteeing traffic routing and QoS for the
different traffic flows in campus networks. More specifically,
the problem can be formulated as follows:

GIVEN:
• A physical topology represented by the graph G(V ∪

W, Es ∪ Ed), which is described by the connectivity and
interference matrices M and I , respectively.
• A set of gateway routers in the wired backbone network.
• A set L of flows originating from users, each one with its

bandwidth demand bl and delay constraint dl .
• The coverage matrix A of APs.
• The current attachment of users and their flows’ routes.

FIND:
• The optimal attachment of each user to one of the APs

and, optimal routing of its flows that minimizes the net-
work operation and reconfiguration costs, subject to QoS
constraints (i.e., bandwidth and delay), and the link rates
of the wired link in the network.

In the following, we formulate the flow-based routing prob-
lem as an integer linear program (ILP). For ease of understand-
ing, table II summarizes the symbols used in our analysis.

Let t be the epoch starting when one of the following events
occurs: user arrival/departure or user movement between two
APs. We denote by t − 1 the epoch before t . For the sake of
presentation, let us use the notation y and y′ to designate the
state of any variable y at epoch t and t − 1, respectively.

TABLE II
TABLE OF NOTATIONS

We introduce the binary variable wli to indicate whether a
user originating flow l is attached to the AP i ∈ V as follows:

wli =
{

1 If user originating flow l is attached to AP i
0 Otherwise

To represent the link and channel allocation, we define another
binary variable fe,k,l , which takes the value of 1 whenever the
flow l uses the channel k on link e on its route.

fe,k,l =
{

1 If flow l is routed though link e using channel k
0 Otherwise.

Recall that k = 1,∀e ∈ Ed . To define the link rate (i.e., the rate
at which the link is set to operate) of a link e ∈ Ed , we use re.
Recall that re ∈ {r1, . . . , rm}.

To indicate whether an AP i ∈ V is used or not, we introduce
another binary variable yi defined by:

yi =

⎧⎪⎪⎨
⎪⎪⎩

0 If
∑
l∈L

∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l + ∑
l∈L

wli = 0

1 Otherwise.

where E = Es ∪ Ed , s(e) and d(e), respectively, denote the
source and destination of link e ∈ E , and i ∈ {s(e), d(e)}
denotes that AP i ∈ V is the source or destination of the link
e ∈ E .

Let us consider the variable y+i and y−i that represent, respec-
tively, the decision of switching an AP i to active mode or sleep
mode, at network reconfiguration. They are defined as follows:

y+i =
{

1 if y′i = 0 and yi = 1
0 Otherwise.

y−i =
{

1 if y′i = 1 and yi = 0
0 Otherwise.

Note that switching a node from a sleep mode to active mode
and vice versa generates a cost. This cost is denoted by cs+i
and cs−i , respectively, and could be the time needed to turn
on the node or the energy that is consumed to set up the rout-
ing tables (e.g., flow table). In addition, we need to account
for a cost when re-routing a flow over a more favorable route.
Hence, let us consider the variables r+il and r−il representing,
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respectively, whether a flow l is re-routed through node i , after
network reconfiguration, or removed from being routed through
node i . They are defined as follows:

r+il =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 If
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

f ′e,k,l = 0

and
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

0 Otherwise.

r−il =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 If
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

f ′e,k,l ≥ 1

and
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

0 Otherwise.

The re-routing costs will be thus represented by cr+il and cr−il ,
respectively.

The power consumption of an AP i ∈ V is given by Pi as
follows:

Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PR If
∑

e∈Es
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli = 0

and
∑

e∈Ed
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

PAR If
∑

e∈Es
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli ≥ 1

and
∑

e∈Ed
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

PAG If
∑

e∈Es
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0 and
∑
l∈L

wli ≥ 1

and
∑

e∈Ed
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

PRG If
∑

e∈Es
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli = 0

and
∑

e∈Ed
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

PARG If
∑

e∈Es
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli ≥ 1

and
∑

e∈Ed
i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

0 Otherwise.

Recall that the power consumption of a switch i ∈ W is given
by the consumption model given in equation (1).

We now formulate the problem of routing the new incoming
flow and dynamically re-optimizing the existing flows as an ILP
with the following objective function:

Minimize

(
αE

∑
i∈V∪W

Pi + αS

∑
i∈V∪W

(y+i cs+i + y−i cs−i )

+ αR

∑
i∈V∪W

∑
l∈L

(r+il cr+il + r−il cr−il )
)

(2)

Where, αE , αS and αR respectively represent weight factors
to achieve a tradeoff between power consumption, re-routing
flows and switching nodes to different states. For instance, they
might represent the cost in USD (e.g., cost of electricity for αE )
or the cost translated into USD for any service disruption that
might happen in the network if a flow is rerouted through a dif-
ferent path. Note that the first term in the objective function is
related to the energy consumption when using a node i . The
second term corresponds to the cost of switching nodes from
sleeping/active states after reconfiguration, and the third term
captures the cost of re-routing flows. Consequently, if a network
administrator is interested only in the energy consumption and
he is willing to give away possible service disruptions, he could
set αS and αR to 0 and αE to 1 and have an objective function
based only on energy consumption.

The optimization is subject to the following constraints (3)–
(13):
• Not exceeding the capacities of links and channels:∑

l∈L

fe,k,l × bl ≤ Cek, ∀e ∈ Es ∪ Ed ,∀k ∈ {1, .., nce}
(3)

• Not exceeding gateway routers capacities:

∑
l∈L

∑
e∈E

nce∑
k=1

fe,k,l × bl +
∑
l∈L

wli × bl ≤ Gi

∀e ∈ Ed , d(e) = i and i ∈ Sd (4)

• Not exceeding the APs capacities:∑
l∈L

wli × bl ≤ Ci ∀i ∈ V (5)

• A user can attach to, at most, one AP that covers its
location: ∑

i∈V

wli ≤ Ali , ∀l ∈ L (6)

• The delay constraint of a flow l should be satisfied:

∑
e∈E

nce∑
k=1

fe,k,l ≤ dl , ∀l ∈ L (7)

• A flow is not routed when it reaches a gateway unless the
gateway capacity is exceeded, in which case the traffic is
forwarded to another gateway:

∑
l∈L

∑
e∈Ed

d(e)=i

nce∑
k=1

fe,k,l × bl +
∑
l∈L

wli × bl

≤ Gi +
∑
l∈L

∑
e∈Ed
s(e)=i

nce∑
k=1

fe,k,l × bl , ∀i ∈ Sd (8)
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• No loops when routing. This means that a flow comes in
or goes out from a node at most once. Hence, we have:

∑
e∈E

s(e)=i

nce∑
k=1

fe,k,l ≤ 1,
∑
e∈E

d(e)=i

nce∑
k=1

fe,k,l ≤ 1,

∀i ∈ V ∪W,∀l ∈ L (9)

• Flow conservation constraint, which ensures that the net-
work flow that enters a node plus the traffic originating
from this node is equal to the outgoing traffic from this
node. It can be written as follows:

∑
l∈L

∑
e∈E

s(e)=i

nce∑
k=1

fe,k,l × bl =
∑
l∈L

∑
e∈E

d(e)=i

nce∑
k=1

fe,k,l × bl

+
∑
l∈L

wli × bl , ∀i ∈ (V ∪W )\Sd (10)

• In the wireless part, two links that interfere with each
other cannot transmit at the same time. This means that
the sum of their proportion of link usage should not
exceed 1.

∑
l∈L

fe,k,l × bl

Cek
+
∑
l ′∈L

∑
e′∈Es

fe′,l ′,k × bl ′ × I(e,k),(e′,k)

Ce′k
≤ 1

∀e ∈ Es,∀k ∈ {1, .., nce} (11)

• In the wired part, the link rates should be adjusted to
the upper rate ri that satisfies the used bandwidth in the
corresponding links.

re = min
j∈{1..m} r j ≥

∑
l∈L

fe,k,l × bl ,∀e ∈ Ed (12)

• The decision variables are binary

fe,k,l , wli ∈ {0, 1} ,∀i ∈ V,∀e ∈ E, ∀l ∈ L (13)

In a nutshell, constraints (3)–(5) guarantee not violating the
capacity constraints of the network nodes. This means not rout-
ing traffic beyond the capacity of the network nodes and links.
Constraint (6) guarantees that a user can attach to only one
AP at a time if his traffic flow is routed. Constraint (7) guar-
antees that the delay requirement specified by a flow in terms
of number of hops is satisfied. Constraints (8)–(10) guarantee
that traffic flows are always routed to terminate at a gateway
subject to the gateways capacities and that each flow is routed
in a contiguous way through the network. Constraint (11) guar-
antees that the interfering links in the wireless part are not used
at their full capacity since they share the wireless transmission
medium. Constraint (12) defines how the link rates are set in the
wired part of the network. Finally, constraint (13) guarantees
that the decision variable are binary ones.

In the following, we present our meta-heuristic approach,
called AC-OFER, that solves the above ILP problem.

V. AC-OFER PROPOSAL

The formulated ILP problem presented in Section IV is
assumed to be solved by the network controller each epoch t
(i.e., each incoming flow). Indeed, the time scale of t should
be short enough to capture the dynamic of arrival and depar-
ture of clients, as the new flows should be routed at their
arrival. Clearly, such approach is not feasible in practice, since
it generates high overhead due to the frequent updates of the
flow tables. In addition, the above ILP problem is NP-hard
[11], [12].

To overcome these issues, we propose a two step approach.
First, each incoming flow is injected in the network without
incurring any changes on the already established routes of exist-
ing flows by computing an energy efficient path. This step
is referred to as “Network Event Handling”. Then, a simple
yet efficient meta-heuristic algorithm, called AC-OFER, is exe-
cuted at each pre-defined time period T (and not at each flow
arrival or departure). This step is called “Dynamic Network
Reconfiguration”. The benefit of doing so is twofold: (i) to
reduce the overhead due to rerouting existing flows and (ii) to
decide on flow rerouting that optimizes the overall energy con-
sumption of the network by taking into account any rerouting
costs. In the following, we detail these two steps.

A. Network Event Handling

Upon detecting the “user arrival” event, one or multiple
served APs start by sending the corresponding flow QoS
requirements (i.e., bandwidth and delay constraints) to the net-
work controller. Depending on the AP location, we can use
either a virtual interface if it is a mesh node as proposed and
validated in [38], where each physical wireless interface can be
split into two virtual interfaces, or the usual secure channel as
in OpenFlow-enabled switches if it is a switch [9]. Since no
dynamic reconfiguration is performed at this level, the network
controller chooses, among the possible paths, the one with the
minimum score given by the objective function in (2), with-
out incurring any changes to existing flow routes. To do so, we
use a modified version of the Dijkstra’s algorithm presented in
Algorithm 1. The algorithm takes as input the graph of the net-
work (APs and switches) along with the residual capacities of
the APs and links. Going through Algorithm 1, we first modify
the graph G(V ∪W, Es ∪ Ed) by adding a new node vl with an
edge between vl and all the APs that can cover the originating
user’s location, and which has enough residual capacity. Then,
we use the same process as in Dijkstra’s algorithm. Note that
the objective function given in (2) is used as a distance func-
tion. Indeed, di f f _power(u, v) in Algorithm 1 refers to the
additional score of the objective function if the node v is added
to the path that goes through u for flow l. At the end, the algo-
rithm returns the path that terminates at a gateway, satisfies the
delay of flow l and has the shortest distance from the source
vl . It is worth noting that the complexity of Algorithm 1 is in
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Algorithm 1. New Arriving Flow Route Computation

1: IN: Campus Network (G(V ∪W, Es ∪ Ed)) with residual
capacities in the links and APs, a new l flow to route

2: OUT: A route for the new flow without changing existing
flows

3: - Extend G(V ∪W, Es ∪ Ed) by adding a new node vl

4: - Add a virtual edge between vl and the APs that can cover
the location of the user l

5: Initialization:
6: for all v in V ∪W do
7: power [v]←∞
8: visi ted[v]← f alse
9: previous[v]← unde f ined

10: end for
11: dist[l] = 0
12: Q.Enqueue(l)
13: Compute the paths:
14: while not Q.Empty() do
15: u ← Q.get Smallest Dist ()
16: // get the node with the smallest distance in Q
17: remove u from Q
18: u.visi ted = true
19: for all v in neighbors u do
20: if (u, v) satisfies the bandwidth demand of d then
21: temp← power [u]+ di f f _power(u, v)
22: //di f f _power(u, v) gives the additional power

if we add the node v to the path that goes through u for
flow l

23: if temp < power [v] then
24: power [v]← temp
25: previous[v]← u
26: if visi ted[v] = f alse then
27: Q.Enqueue(v)
28: end if
29: end if
30: end if
31: end for
32: end while
33: Adapt the link rates using Algorithm 2
34: Return the path with the smallest score in power and that
satisfies delay constant of l and terminates at a gateway

the order of O((|V | + |W |)2), where |V | and |W | are the total
number of APs and switches in the network, respectively.

Once the path is chosen, the rates at the different links
are adapted. In our study, and as proposed in previous works
such as [44] and [45], we assume that the link rate (i.e.,
switch port) can be adjusted to one of the following predefined
rates: 10 Mbps, 100 Mbps, 1 Gbps and 10 Gbps, denoted by
r10, r100, r1000, r10000, respectively. Each one of these rates ri

represents one power consumption profile of the link (and thus
of the corresponding switch ports) as used in equation (1). To do
so, we propose an intuitive algorithm, presented in Algorithm 2,
to set up link rates according to their utilization. Note that in
case of user’s departure, its corresponding flow will be removed
from the network and the used resources will be released.

Algorithm 2. Discrete Link Rate Adaptation

1: IN: Campus Network (G(V ∪W, Es ∪ Ed))
2: OUT: link rates for the different links
3: for all e in Ed do
4: if utili zation(e) ≤ r10 then
5: rate[e]← r10
6: end if
7: if r10 < utili zation(e) ≤ r100 then
8: rate[e]← r100
9: end if

10: if r100 < utili zation(e) ≤ r1000 then
11: rate[e]← r1000
12: else
13: rate[e]← r10000
14: end if
15: end for

B. Dynamic Network Reconfiguration Using Ant Colony
Online Flow-Based Energy efficient Routing (AC-OFER)

As stated before, in order to optimize the overall energy
consumption and resource utilization, the network controller
needs to reconfigure the flow routes in the network taking into
account the cost of re-routing or consolidating existing flows.
This is performed at each predefined time period T . Note that
T is a parameter that is specified by the network administra-
tor, and can be in the order of minutes or hours. To this end,
we propose to approximate the optimal solution of the above-
mentioned ILP problem presented in Section IV using an Ant
Colony-based approach [46], called AC-OFER.

AC-OFER operates as illustrated in the flowchart given in
Fig. 2. First, a set of solution components (i.e., paths) needs
to be determined for each flow coming from a user. Next,
Amax artificial ants are launched and iteratively explore the
search space until a predetermined number of iterations Nmax

is reached. During each iteration, each ant among Amax incre-
mentally constructs the solution by adding in every step one
solution component (i.e., a path for one user’s flow) to the
partial solution constructed so far. Note that the solution com-
ponent to add among the candidates is chosen using a stochastic
local decision policy. More specifically, the decision is based on
heuristic information, denoted by η, and artificial pheromone
trails, denoted by τ , which respectively quantify the desirabil-
ity of a priori and a posteriori transition. Indeed, the heuristic
represents the attractiveness of the move, indicating the a pri-
ori desirability of that move. On the other hand, the pheromone
trails indicate how proficient it has been in the past (i.e., accord-
ing to other ants experience) to add that solution component.
Once an ant has built a solution, or while the solution is
being built, the ant evaluates the partial solution and deposits
pheromone trails on the components it used. This pheromone
information will direct the search of the future ants.

More formally, our AC-OFER algorithm is described by
the pseudo-code in Algorithm 3. The fundamental steps
of AC-OFER are: 1) Formation of solution components,
2) Probabilistic selection of the candidate, 3) Selection of the
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Fig. 2. AC-OFER flowchart diagram.

best solution and 4) Updating the pheromone trails. In the
following, we detail these stages.

1) Formation of Solution Components: For each user, we
consider K alternative paths towards a gateway (any of the
m available gateways). Each path starts from the user, passes
through an AP that the user attaches to, and then other inter-
mediate APs then switches until reaching a gateway router. A
solution component will be one of the predetermined K paths.
As such, the number of possible solutions for the path formu-
lation is K |L|, where |L| is the total number of lows, which is
equal to the total number of users since each user is assumed
to generate one flow. Hence the proposed meta-heuristic guides
the algorithm to efficiently explore the graph of solutions.

2) Selection Among the Candidates for a Component:
During each iteration, each ant among Amax builds the solution
step by step, by adding in each step another component (i.e., a
path for a flow l). The component to add is chosen according
to the attractiveness of the new constructed solution (i.e., the
current solution augmented by the selected component) which
is called the heuristic, and the amount of pheromone deposits,
which represents how this component is evaluated during the
previous iterations by all ants. The heuristic is given by :

η = 1

Objective Function Value
(14)

Once the objective function score computed, the choice of the
next component to add to the partial solution constructed so far

Algorithm 3. AC-OFER Algorithm

1: IN: Campus Network with routed flows (i.e., previous
routes)

2: OUT: New routes solution (One path for each flow)
3: Set Parameters: q0, αA, βA, Q
4: Initialize pheromone trails and best_solution to the previous

solution
5: for nb = 1→ Number of Iterations do
6: //Construct Ant Solutions
7: for all ant in Amax do
8: current_solution← {}
9: for l = 1→ Number of flows do

10: p← Random(0..1)

11: if p < q0 then
12: Choose path j among the K paths where

13: j = Argmaxk∈Nl

(
τ

αA
lk × η

βA
lk

)
14: else
15: Choose path j according to Pl j given in (15)
16: end if
17: Add the j th path for flow l to current_solution
18: end for
19: if current_solution is better than best_solution then
20: best_solution← current_solution
21: end if
22: end for
23: //Update Pheromones for all flows l
24: τl j ← (1− ρ)τl j //Evaporate all pheromones
25: if current_solution is the best solution for the current

iteration And j th path is selected for flow l then
26: τl j ← τl j +�best

l j
27: end if
28: end for
29: Return best_solution

(i.e., a path j for flow l) is selected according to a given prob-
ability. Note that in Ant Colony System meta-heuristic [46],
two strategies can be used: exploitation and exploration. More
specifically, exploitation is used with a probability q0, whereas
exploration is adopted with a probability (1− q0).

Regarding exploration, the knowledge and experience of
other ants is stochastically taken into account. Indeed, the next
component is selected according to a probability Pl j given by:

Pl j =
τ

αAN T
l j η

βAN T
l j∑

k∈Nl

τ
αAN T
lk η

βAN T
lk

(15)

Where Nl is the set of all possible paths for the solution
component l (i.e., |Nl | = K ), ηl j and τl j denote, respectively,
the heuristic value given in equation (14), and the pheromone
trail of the j th path for the flow originating from user l, and
αAN T and βAN T determine, respectively, the relative impor-
tance of τl j and ηl j . Recall that ηl j represents the desirability
of adding the solution component j (i.e., path j) to route the
flow of user l, whereas τl j represents how proficient it has been
so far to route the flow of user l through path j . As such,
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αAN T and βAN T parameters have the following influence on
the algorithm behavior. If βAN T = 0, the selection probabili-
ties are proportional to the heuristic value ηl j , which means
that the components with high heuristic value are more likely
to be selected. In this case, AC-OFER corresponds to a clas-
sical stochastic greedy algorithm. However, if αAN T = 0, only
pheromone amplification is at work: the components with high
pheromone trail are more likely to be selected, in which case
a rapid convergence to a suboptimal solution may result as all
ants are more likely to build the same solution.

On the other hand, in exploitation, the experience of the other
ants is directly used. Indeed, among the possible components
to add, the one with the highest value of τ

αAN T
l j × η

βAN T
l j is

selected.
3) Selection of the Best Solution: The criterion to choose

the best solution is the objective function given in equation (2),
which takes into account the energy consumption, the on/off
switching and re-routing costs.

4) Pheromone Trail Update: At the end of each iteration,
the pheromones (trail values) for each flow l are updated as
follows:

τl j = (1− ρ)τl j +�best
l j

where ρ ∈ [0, 1] is the decay coefficient of the pheromone,
�best

l j = Q/ηbest if flow l is routed through the j th path in the
best solution of the current iteration, 0 otherwise, and Q is a
constant called the pheromone update constant. Recall that
ηbest = 1/Objective f unction value of the best solution,
as reported in equation (14).

It is worth noting that when the score of the objective func-
tion is computed, we use the link rate adaptation provided in
Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposed
approach. We first present the baselines we used for perfor-
mance comparison as well as and the simulation parameters
and environment. Then, we present detailed analysis of the
simulation results.

A. Baselines

We compare the benefits of our AC-OFER approach with
respect to four baselines: the Shortest Path (SP) routing, the
Minimum link Residual Capacity (MRC) routing metric pro-
posed in [13], the Load Balancing (LB) scheme, and Greedy-
OFER. Note that the latter is similar to AC-OFER in the fact
that it uses the same algorithm for routing new incoming flows.
However, for network reconfiguration, it uses a greedy algo-
rithm to find the solution instead of the Ant Colony algorithm.
In other words, it seeks a feasible and acceptable solution by
exploring the solution space and choosing the next step without
iteration to improve the solution. This results in short computa-
tion times. Regarding the MRC baseline approach, the aim is to
consolidate the traffic through the same paths in order to reduce
the number of used nodes. Finally, LB is used to illustrate the
worst case power consumption scenario.

TABLE III
AC-OFER SIMULATION PARAMETERS

TABLE IV
ENERGY SAVING COMPARISON WITH THE OPTIMAL SOLUTION

B. Simulation Environment

To evaluate our proposal, we developed our own discrete
event simulator in Java. The simulator generates traffic and
performs the routing according to the paths defined by the
corresponding routing algorithms.

C. Simulation Parameters

Our analysis is based on random and tree-like topologies.
However, due to space limitation, we present results only
for tree-like campus network topologies. We considered dif-
ferent campus network sizes: small (≤ 100 APs), medium
(100-200 APs), large (≥ 200 APs) and extra-large (≥ 2000
APs), with 1-8 gateway routers. As depicted in Fig. 1 and
proposed in [10], the switches are divided into two groups:
(i) Edge switches that connect the APs to the second layer com-
posed of (ii) Aggregation/Core switches, which themselves are
connected to the gateways.

In the wireless part, the interference range RI of each AP is
set to 1.5× Rt , where Rt is the transmission range. The wire-
less links capacities are set to 54 Mbps. Note that in practice,
and SDN controller can send frequent monitoring probes to
estimate wireless link capacities using either active or passive
measurement, such as the one proposed in [47]. For the users’
arrival, we have used two scenarios. The first one is exploit-
ing real traces provided by CRAWDAD [48]. Specifically, we
have used a dataset that includes syslog records of user asso-
ciation/disassociation for several thousand users at Dartmouth
College. The syslog record that indicates a user association is
used as a new user arrival and its flow’s lifetime is taken based
on the corresponding syslog disassociation record. The second
scenario models the users’ arrival as a Poisson process with
rate λ and an exponential lifetime of mean 1/μ = 90 minutes.
Each user generates a flow with a uniform throughput demand
between 1 and 10 Mbps in both uplink and downlink directions
and a delay bound of 4 hops. Other simulation parameters are
summarized in Table III and are based on works in [32], [36],
[42] and [43]. It is worth noting that there is no optimal rule for
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TABLE V
COMPUTATION TIME COMPARISON (IN MILLISECONDS)

Fig. 3. Comparison of energy consumption for variable arrival rates (100 APs, 27 switches with 2 gateway routers).

Fig. 4. Comparison of energy consumption for variable reconfiguration inter-
vals (100 APs, 27 switches with 2 gateway routers, λ = 50 requests/hour).

setting the values of parameters βAN T , αAN T , ρ, q0, the num-
ber of ants and the number of iterations, as pointed out in [49],
[50]. Hence, we experimentally tuned these parameters by run-
ning preliminary tests using different values for each of them.
More specifically, we vary βAN T , αAN T , ρ, q0 between 0 and
1, by step of 0.05, and compare the objective function given in
equation (2). We then pick the values that result in the smallest
objective function presented in (2) (see Table III). In addition,
since we focus on energy consumption, we set the parameters
αE to 0.9 and αS , αR to 0.05 each. Note that, for each network
setup, Q is set to 1

|L|×Oinit
, where |L| is the number of flows to

route and Oinit is the objective function score produced by any
solution given by any other heuristic approach, as suggested by
Dorigo et al. in [50].

The results are obtained over many simulation runs for each
scenario, with a margin error less than 5%, then we calcu-
late the average value of each performance metric. For sake of
presentation, we do not plot confidence intervals.

In what follows, we first present the convergence of AC-
OFER compared to the optimal solution and its computational

complexity of AC-OFER. Then, we present the impact of the
arrival rate λ and the reconfiguration interval T for the case of
small, medium and large-sized campus networks. Finally, we
present results on the scalability of our approach in large-sized
networks.

D. Convergence to the Optimal Solution and Computation
Time

First, we show the convergence of our proposed approach
towards the optimal solution given by the ILP presented in
section IV. To do so, we develop a brute force algorithm that
uses exhaustive search to find the optimal solution. As this
problem is NP−Hard, we run these tests only for small campus
network topologies of 16 APs, and using real traces provided by
CRAWDAD [48], for 48 hours. We measured the energy con-
sumption of the different approaches compared to the optimal
solution. The results are reported in Table IV. We can notice
that AC-OFER achieves near-optimal solution, with only 3.5%
decrease in energy saving on average compared to the optimal
solution, but with much shorter runtime. On the other hand,
compared to the greedy algorithm, AC-OFER achieves nearly
7% increase in the energy saving on average, but with higher
computation time.

Table V further investigates the computation time required
to find a new route for a new incoming flow as well as the
reconfiguration time for all approaches in small, medium, large
and extra-large-sized networks. We can notice that the time
required to route a new incoming flow is almost the same for all
approaches (around 24− 25 ms in the small-size case) since
all approaches make use of the Dijkstra algorithm. However,
the reconfiguration time of both Greedy- and AC-OFER are
very short compared to the optimal solution. Indeed, more than
8 minutes are required for the optimal algorithm, while only
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Fig. 5. Comparison of power consumption and acceptance ratio over time for λ = 80 requests/hour (100 APs, 27 switches with 2 gateway routers).

381 ms and 178 ms are required for AC-OFER and Greedy-
OFER, respectively. Note also that the computation time is
always stable and AC-OFER stays tractable as the reconfigu-
ration time is slightly over one second in the worst case (i.e.
extra-large-sized networks). It is worth noting that, for these
two latter schemes (i.e., Greedy- and AC-OFER), the computa-
tion time for each reconfiguration remains low compared to the
reconfiguration period T , which is in the order of minutes (8
minutes and higher in our simulations). However, the optimal
algorithm is clearly not suitable as the reconfiguration time is
almost equal to the reconfiguration interval T .

E. Impact of Arrival Rate λ

Second, we study the impact of traffic load on our proposed
approach. To do so, we vary the users arrival rate and measure
the power consumption in the network for a simulation duration
of 48 hours. Fig. 3(a), 3(b), 3(c) and 3(d) show, respectively, the
total energy consumption for different arrival rates, the energy
consumed by the APs and switches and the flow acceptance
ratio in the case of medium-sized networks. From these figures,
we can notice that:
• AC-OFER reduces the power consumption compared to

the other schemes. Indeed, from Fig. 3(a), when λ ∈
[10, 120], the power saving culminates at 10.5, 37, 100
and 120 kWh compared to Greedy-OFER, MRC, SP and
LB, respectively. This corresponds to a power consump-
tion decrease of approximately 6.5%, 17%, 42% and
45%, compared to Greedy-OFER, MRC, SP and LB,
respectively. These gains are achieved in both the wire-
less part (i.e., APs) and the wired campus backbone, as
shown in Figs. 3(b) and 3(c). Note that the energy con-
sumption is reduced while the same acceptance ratio is
realized for all schemes [see Fig. 3(d)].
• For low arrival rates (i.e., λ < 10), the power saving is

negligible because of the light traffic load in the campus
backbone. In fact, as there is few traffic in the network
and spread around the whole network, flow consolidation
is not always possible as the users are located in different
areas and require turning on different APs and switches.
• For high arrival rates (i.e., λ ≥ 125), the energy saving

is stable. The reason behind this is that for high arrival
rates, more capacity is needed mainly in the wireless part
and flows can not be consolidated through the same paths
due to APs capacity constraints.

F. Impact of the Reconfiguration Time T

Second, we study the impact of the reconfiguration interval
T on the performance of AC-OFER. To do so, we fixed λ to 50
requests/hour and varied the reconfiguration interval T between
8 minutes and 1 hour. The total energy consumption and the
acceptance ratio for the small-sized network case scenario are
shown in Fig. 4.

We can observe from this figure that our approach out-
performs the remaining solutions (i.e., Greedy algorithm, SP,
MRC, and LB), especially in low values of T since frequent
reconfiguration improves the flow re-routing and consolidation
to achieve optimal energy consumption [see Fig. 4(a)]. Note
that in these simulations, the same acceptance ratio is achieved
in all approaches, as shown in Fig. 4(b).

G. Power Consumption Over Time

To further show the behavior of our approach over time, we
plot in Fig. 5 the power consumption over time as well as the
network utilization of all schemes for medium network loads
(i.e., λ = 80 requests/hour). It is clear from this figure that the
trend for AC-OFER is maintained over time. In fact, the total
energy consumption as well as the energy consumption in the
wireless and wired parts are maintained over time, as illus-
trated in Fig. 5(a), 5(b) and 5(c), respectively. Note that at the
same time, the acceptance ratio is similar to all approaches, as
shown in Fig. 5(d). More specifically, AC-OFER maintains the
energy saving stable around 7%, 17%, 42% and 48% compared
to Greedy-OFER, MRC, SP and LB, respectively.

To have a complete picture of the network performance, we
plotted in Fig. 6 the normalized values of several performance
metrics including acceptance ratio, total consumed energy,
consumed energy by APs, consumed energy by switches, pro-
portion of used APs, proportion of used switches, proportion
of used links and average link utilization for used links. From
this figure, we can observe that, AC-OFER accepts as many
flows as SP, MRC and LB. However, it reduces at the same
time the energy consumption in both APs and switches. This
energy saving is achieved by reducing the number of used APs
and switches. For instance, compared to LB, the gains are 48%
for the total energy consumption, using 52% less APs and 31%
less switches, respectively.

In addition, we can observe that our approach uses a reduced
number of links compared to other schemes. In fact, AC-OFER
reduces the proportion of used links by 4%, 15%, 43% and 52%
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Fig. 6. Comparison of the average values of the different metrics (100 APs, 27
switches with 2 gateway routers, λ = 80 requests/hour).

Fig. 7. Comparison of the average values of the different metrics (250 APs, 40
switches with 4 Gateways, λ = 90 requests/hour).

compared to Greedy-OFER, MRC, SP and LB, respectively.
However, it results in high average link utilization of the used
links due to flow consolidation. Indeed AC-OFER uses exist-
ing paths to route incoming flows, and performs the dynamic
reconfiguration only at each time period T .

It is worth noting that MRC performs better than the LB and
SP since, in this case, flows are consolidated according to the
residual capacity. However, this scheme is clearly outperformed
by AC-OFER thanks to the dynamic reconfiguration.

H. Scalability of AC-OFER

To study the scalability of our approach, we run additional
simulations in the case of large-sized networks (i.e., 250 APs,
40 switches, 4 gateway routers) and extra large scale networks
(i.e. 2000 APs, 280 switches and 8 gateways). Fig. 7 presents
the final values (over 48 hours) of different metrics for the
case of large networks. Similar performance results compared
to small and medium networks are observed here. Indeed, the
energy consumption is reduced by 7%, 35%, 44% and 49%
compared to Greedy-OFER, MRC, SP and LB, respectively,
while using a reduced number of APs and switches. In addition,
the number of used links is reduced for AC-OFER compared to
the other approaches. However, these links present higher link
utilization.

Fig. 8. Comparison of the average values of the different metrics (2000 APs,
280 switches with 8 Gateways, λ = 350 requests/hour).

Fig. 8 shows the final results in the case of extra large cam-
pus networks. The same observation is made here too with
AC-OFER achieving energy savings of 6.5%, 28%, 38% and
41% compared to Greedy-OFER, MRC, SP and LB, respec-
tively. Similar remarks are also made as AC-OFER uses less
APs, switches and links while presenting higher link utilization
for the used links.

VII. CONCLUSION

In this paper, we investigated the energy efficiency prob-
lem in campus networks. We proposed an online flow-based
approach that takes into account the dynamic arrival and depar-
ture of users by formulating the problem as an ILP and present-
ing an ant colony-based approach, called AC-OFER, to approx-
imate the ILP optimal solution. Our objective is to minimize
the energy consumption of the network, while routing dynami-
cally the arriving and departing flows subject to QoS constraints
(i.e., bandwidth and delay). Moreover, our approach uses link
rate adaptation to further reduce energy consumption. Through
extensive simulations, we showed that AC-OFER achieves sig-
nificant reductions in terms of energy consumption, compared
to the Greedy algorithm, the Shortest Path (SP) routing, the
Minimum link Residual Capacity (MRC) routing metric and
the Load Balancing (LB) scheme, while ensuring the required
QoS. More specifically, we showed that AC-OFER can reduce
the energy consumption by up to 7%, 35%, 44% and 49% com-
pared to Greedy-OFER, MRC, SP and LB, respectively, for
different network sizes and traffic loads. At the same time,
AC-OFER guarantees a low time complexity for both route
discovery and network reconfiguration. This approach repre-
sents therefore a promising solution for energy management in
campus networks.
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