
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015 87

Joint Optimization for the Delivery of Multiple
Video Channels in Telco-CDNs

Fen Zhou, Jiayi Liu, Gwendal Simon, and Raouf Boutaba

Abstract—The delivery of live video channels for services such
as twitch.tv leverages the so-called Telco-CDN—Content Delivery
Network (CDN) deployed within the Internet Service Provider
(ISP) domain. A Telco-CDN can be regarded as an intra-domain
overlay network with tight resources and critical deployment
constraints. This paper addresses two problems in this context: (1)
the construction of the overlays used to deliver the video channels
from the entrypoints of the Telco-CDN to the appropriate edge
servers; and (2) the allocation of the required resources to these
overlays. Since bandwidth is critical for entrypoints and edge
servers, our ultimate goal is to deliver as many video channels
as possible while minimizing the total bandwidth consumption.
To achieve this goal, we propose two approaches: a two-step opti-
mization where the optimal overlays are firstly computed, then an
optimal resource allocation based on these pre-computed overlays
is performed; and a joint optimization where both optimization
problems are simultaneously solved. We also devise fast heuristic
algorithms for each of these approaches. The conducted evalua-
tions of these two approaches and algorithms provide useful in-
sights into the management of critical Telco-CDN infrastructures.

Index Terms—Content Delivery Networks (CDNs), video de-
livery, joint optimization, Mixed Integer Linear Programming
(MILP), heuristic algorithms.

I. INTRODUCTION

I T has become clear over the past couple of years that
Internet Service Providers (ISP) have to deploy a Content

Delivery Network (CDN) within their network infrastructure
to cope with the sharp increase of video traffic. The recent
OpenConnect [2] proposal from Netflix illustrates this major
shift: content providers now develop peering agreements with
ISPs, and rely on co-controlled delivery platforms to serve end-
users. As a matter of fact, the management of video streams
in Telco-CDNs has become a critical topic for both network
operators and content providers.

Telco-CDNs differ from traditional CDNs on several aspects.
First, Telco-CDNs can be fully controlled, since ISPs own the

Manuscript received January 30, 2014; revised November 3, 2014 and
January 22, 2015; accepted February 1, 2015. Date of publication February 9,
2015; date of current version March 17, 2015. The preliminary version of this
paper [1] has been presented at the 9th International Conference on Network
and Service Management (CNSM) as a short paper. The associate editor
coordinating the review of this paper and approving it for publication was
X. Fu.

F. Zhou is with CERI-LIA (Computer Science Laboratory) at the University
of Avignon, France (e-mail: fen.zhou@univ-avignon.fr).

J. Liu is with the Xidian University, China (e-mail: jyliu@xidian.edu.cn).
G. Simon is with the Network Department of Telecom Bretagne, Institut

Mines-Telecom, France (e-mail: gwendal.simon@telecom-bretagne.eu).
R. Boutaba is with D. Cheriton School of Computer Science at the University

of Waterloo, Canada (e-mail: rboutaba@uwaterloo.ca).
Digital Object Identifier 10.1109/TNSM.2015.2400915

Fig. 1. Topology of a French Telco-CDN [4].

network and the entire “last mile” from edge servers to end
users. This enables to engineer Telco-CDNs through centralized
optimization techniques so that the Quality of Service (QoS)
can be guaranteed. Second, a Telco-CDN matches the topol-
ogy of an underlying network. Consider the case of a French
network operator (see Fig. 1). The “entrypoints” for the content
providers are the Internet Exchange Points (IXP) where peering
occurs (here the rectangular nodes). Edge servers in Telco-CDN
are typically deployed near the routers that connect the ISP
backbone core network to the metropolitan access networks of
the different regions (the circular nodes). Thus each edge server
is in charge of a regional area. However, the congestion of the
core network is a serious concern for network operators, so
content delivery within the Telco-CDN—between entrypoints
and edge servers—is an essential operational and management
concern.

A key challenge for Telco-CDNs is the management of the
traffic generated by live video channels from Over-The-Top
(OTT) video services. OTT content providers include user-
generated video platforms like twitch.tv or ustream, and also
second-screen video services affiliated with traditional TV
broadcasters. Traffic generated by these services is exploding.
Moreover, the adoption of rate-adaptive streaming technologies
(e.g., DASH) negatively affects the CDN infrastructure because
the bit-rate of a video channel corresponds to the accumulated
rate of all the video representations, which is frequently greater
than 20 Mbps [3].

1932-4537 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

88 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

As it has been shown in many previous works [5]–[7], the
delivery of a live channel stream over a CDN can benefit
from constructing an overlay. Edge servers contribute to the
delivery of flows within the CDN using spare upload capacities.
Several techniques have been developed for the construction
of an overlay for one live channel over CDNs. In particular,
multi-tree overlays that leverage rateless codes (e.g., Raptor
codes [8]) enable video stream delivery with optimal bandwidth
utilization [7], [9], [10]. This solution however performs well
for one channel while the traffic that a CDN should carry for
a platform like twitch.tv consists of a large number of simul-
taneous channels. Typically, agreements between twitch.tv and
CDN stipulate the delivery of around fifty channels—the so-
called “featured” channels.

In this paper, we study the problem of delivering multiple
channels over a Telco-CDN. Due to the bandwidth constraint
on edge servers in a Telco-CDN, not all video channels can
be delivered at the same time. Given an importance value for
each video channel, our goal is to maximize the sum of the
importance of all delivered video channels while minimizing
the total bandwidth consumption. This optimization problem
involves two distinct subproblems: the construction of one
overlay per channel, and the allocation of resources among the
competing overlays. To tackle this problem, we explore two
approaches:

• Two-Step optimization—First, we construct all overlays,
then we allocate the bandwidth among the different over-
lays so that the most important channels are delivered,
until resource exhaustion.

• Joint optimization—We jointly construct the overlays
and reserve the required resources on the fly. This ap-
proach leads to optimal solutions.

From a theoretical stand point, the joint optimization ap-
proach is better than the two-step one. Here, we want to
measure the actual performance gain that can be ultimately
achieved. Therefore, we formulate the optimization problem in
both approaches using Mixed Integer Linear Programs (MILP).
As can be expected, the joint optimization MILP approach
outperforms the two-step MILP. However, both approaches
introduce so much complexity that they can only be performed
on small networks.

From a practical stand point, we are interested in studying
both approaches as well. We propose fast heuristic algorithms
for delivering multiple channels in large-scale Telco-CDN and
highlight their main advantages and drawbacks. In particular,
the drawback of the joint-based heuristic algorithm is that it
requires a complete re-computation of the overlays after any
event (e.g., the termination of a video channel delivery). In our
simulations, however the joint-based heuristic algorithm out-
performs the two-step-based heuristic algorithms by a margin
of overall profit ratio that justifies such drawback.

The contribution of this paper is two-fold. First, it provides a
significant step into the study of joint optimization problems
for the provisioning of multiple overlays. Joint optimization
approaches achieve better performance at the cost of more
intensive computations. Our study provides a comprehensive
evaluation of this trade-off. Second, this paper highlights some

of the critical problems underlying the management of Telco-
CDN. In particular, scarce Telco-CDN resources need to be
well administered. We show in this paper how optimization
techniques can help.

The reminder of this paper is organized as follows. We
review related work in Section II and present the system
model in Section III. Then, we propose the two-step MILP
formulation and the joint MILP formulation in Section IV
and Section V respectively. Heuristic algorithms for two-step
inspired optimization and joint optimization are introduced in
Section VI. Simulation results are presented in Section VII.
Finally, Section VIII concludes this paper.

II. RELATED WORK

Overlay construction for live video delivery has been exten-
sively studied in the context of peer-to-peer (P2P) streaming.
Two classes of approaches are proposed: mesh-based overlay
approaches and tree-based ones. The mesh-based approaches
are tailored to solve the inherent peer churn problem in P2P
systems, however, in relatively static system environment, such
as CDN, they bring more operating overhead than the tree-
based ones [11]. The tree based approaches multicast content by
organizing peers into multiple delivery trees, thus they are also
referred to as the Application Layer Multicast (ALP) scheme
[12]. Numerous works have studied multi-tree packing for P2P
ALP protocols (see [13], [14] for surveys). In [15], the authors
proposed a mechanism to build multiple node-disjoint multicast
trees to disseminate Multiple Description Coding (MDC) based
content. The streaming capacity of a delivery forest (a bundle
of trees) under node degree bound is studied in [16]. The
authors devised tree construction algorithms to achieve the
near maximum streaming rate for all receivers of a streaming
session. But, they cannot guarantee that each peer receive all
descriptions of a video. In [17], the authors rely on multiple
trees structure to maximally utilize the clients uplink resource
to achieve the desirable stream quality. However, none of the
aforementioned previous work solved the inherent resource
allocation problem among multiple overlays together with the
end-to-end delay constraint for each overlay.

The use of rateless coding in content delivery overlays was
introduced in [9]. Rateless codes are a class of erasure codes,
using which limitless sequence of encoding symbols can be
generated for a given set of source symbols. They have the
property that the original source symbols can be recovered
from any subset of the encoding symbols of size only slightly
larger than the number of source symbols [7], [8]. The Raptor
implementation of Rateless codes reaches speeds of several
gigabits per second [7], [8].

Its key advantages include: (i) rateless codes have very low
computational cost; (ii) they minimize delivery redundancy
when a server receives data concurrently from multiple other
servers; and (iii) they are adaptive to varying channel conditions
since the encoder can generate on the fly as many encoded
symbols as needed. Following this seminal work, several per-
formance improvements were proposed in the literature. End-
to-end delivery delay is reduced by the method described in
[18]. Shorter start-up delay and more stable service are among

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 89

the objectives addressed in [19]. Previous works consider the
delivery in only one overlay. The objective of this paper is dif-
ferent since it aims at constructing several rateless coding based
overlays while addressing the critical problem of bandwidth
reservation for these overlays.

Optimization problems related to the construction of tree
overlays have been widely studied in the context of IP multicast
[20]–[25]. Researchers have identified two main approaches for
building a multicast tree. The first approach consists in building
a Steiner tree using the heuristic algorithms given in [20],
[21]. The second approach tries to construct a height-bounded
cost-optimal tree. For example, the authors of [25] studied the
problem of finding a cost-optimal tree for multimedia commu-
nications under the constraint of bounded end-to-end delay. A
genetic algorithm is proposed to find a tree with near-optimal
cost. Optimization of multiple multicast sessions has been more
rarely addressed in the literature. In the optimization problem
formulated in [22], the objective is to minimize the total cost of
all multicast sessions and the maximum delay. Each multicast
group is served by only one delivery tree and the bandwidth
is constrained on the links between routers rather than on the
router itself. A decomposition technique and a branch-and-
bound algorithm are also presented. Multicast tree construction
problems are also studied in [23], where the objective is to
minimize the maximum traffic congestion over all links while
affording all multicast sessions. Heuristic algorithms have been
proposed for this NP-hard problem [23], [24].

In our Telco-CDN system, we use a more contemporary
video delivery technique based on rateless codes [7], [8], where
each video channel is encoded into a number of sub-streams
greater than a pre-defined parameter (say K). Each sub-stream
is delivered on a different tree. Any K sub-streams are enough
to decode the video. Our multi-tree based video delivery system
is different from previous works in several aspects. To ensure
guarantee of QoS, the end-to-end delay should be bounded for
each subscribing edge server. Second, as bandwidth is critical
for both entrypoints and edge servers, the sum of nodal degree
in all delivery trees should be limited due to the limitation
of available bandwidth. Our goal is to deliver as many video
channels as possible while minimizing the total bandwidth
consumption. Third, rateless coding is used to ensure a robust
and reliable video transmission. However, the use of rateless
codes makes the tree construction more complicated, since
each subscribing edge server should be spanned in at least
K different trees (i.e., receive K different sub-streams) to re-
construct a video channel. Finally, bandwidth is limited on edge
servers rather than in the communication links between edge
servers. The combination of these features makes our problem
quite different from those solved in the literature. Our model is
hence more in line with the latest works related to CDNs (see
[10] for example).

III. SYSTEM MODEL

The Telco-CDN network is modeled as a connected sym-
metric digraph G(V,E). See an example in Fig. 1. The set
V (|V | = n) contains the edge servers (here the access points
to the regional areas) and a set of entrypointsS ⊆ V , which are

located near the peering points (the three main French peering
IXPs in Fig. 1). A content provider usually delivers its most
popular channels to a given ISP through only one peering point.
But a Telco-CDN serves several content providers, so the set of
channels I comes from several entrypoints. Each entrypoint s
is associated with the set of channels I(s) ⊆ I that it actually
receives. The sets I(s) for all s ∈ S form a partition of I. Each
edge server v uses its upload capacitycv to assist the entrypoints
for video delivery. Each channel i ∈ I is associated with two
key parameters. First, the targets are edge servers that must
receive the channel i. This subset of edge servers is denoted
Vi ⊆ V \ S. Second, the importance of channel i, denoted by
πi, sets the priority for the delivery of channels. The channel
importance is generally related to the popularity of the content
in the area. We assume all channels have the same bitrate,
and do not consider rate-adaptive video streaming systems like
[26] where video bitrates are heterogeneous. But the stream of
each channel can be extended to “a bundle of streams”, which
contains all the “representations” of the same video channel. All
representations are sent to the edge servers, and the adaptation
mechanism happens between the edge servers and the end-
users. The monitoring of the CDN and the algorithms used to
set the above parameters are out of the scope of this paper. For
major services, such as Netflix, the content provider provides
these parameters to the CDN provider.

We leverage previous works on multi-tree (forest) overlay
networks based on rateless codes [7], [10]. Given a video chunk
with a size of K streams of symbols, infinitive sequences of
rateless code symbols can be generated by applying rateless
coding. The reception of slightly more than K streams (say
�(1 + ε)K�, where ε is very small) of rateless code symbols
enables to recover the original video chunk with high proba-
bility [7], [8], which provides the required resilience for video
transmissions in Telco-CDNs. The Raptor implementation of
rateless code can be used in our system, which achieves speeds
of gigabits per second and linear-time decoding [8]. In trans-
missions, a video clip in a playback time may be segmented
into many streams (e.g., a stream may contain several UDP
packets). To simplify, we express the upload capacity as the
number of streams that the server can transmit over a period
of time. In each delivery tree, an entrypoint encodes video
clips into rateless code symbols and sends them along the tree.
Subscribing edge servers perform rateless decoding to obtain
the original video clips. The system introduced in [10] suggests
to build, for each channel i, a forest overlay Fi where each
overlay tree supports one encoded video stream. An edge server
can re-build the stream if it is spanned in at least �(1 + ε)K�
trees. To both maximize the amount of distinct video streams
and minimize the entrypoint throughput, the entrypoint s has
one and only one direct child in each tree in Fi when i ∈ I(s).
That is, the delivery of channel i requires the entrypoint to
build a number of trees ranging from �(1 + ε)K� (if each
tree can relay a different video stream to all edge servers) to
�(1 + ε)K� × |Vi| (if one tree is needed for delivering a video
stream to each edge server).

Multi-Channel Video Delivery Problem: The objective is
twofold: to deliver the maximum number of channels (with
regard to their importance) and to reduce the traffic load on

90 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

the CDN infrastructure, i.e., to reduce the number of edge
servers involved in the delivery of a channel if they are not a
target for this channel. The former objective prevails over the
latter one. Therefore we formulate the optimization problem
as first to deliver the maximum number of channels, then to
find the delivery scheme that imposes the least traffic load on
the network. Let Ri be a binary variable, which equals one
if the channel i is delivered to all edge servers in Vi, and
zero otherwise. Our first objective is to maximize the overall
importance of the delivered video channels, i.e.,

∑
i∈I Ri × πi.

Our second objective is to minimize the traffic load on the
CDN, which corresponds to the number of overlay links used
to deliver the channels to the edge servers. In our rateless code
based multiple-channel video streaming system, three main
constraints are considered:

• Edge server capacity constraint. The contribution of
edge servers to stream delivery should not surpass their
capacities. Let deg+T (v) be the out degree of edge server v
in a tree T . This out degree corresponds to the reserved
upload capacity of edge server v (i.e., the number of
streams that v can forward at a time) for the delivery
tree T . We denote the multi-tree overlay constructed for
channel i by Fi. Clearly, the sum of v’s out-degree in the
trees of all the overlays it is involved in cannot be greater
than its upload capacity:

∑
i∈I

∑
T∈Fi

deg+T (v) ≤ cv, ∀v ∈ V (1)

• Video content constraint related to rateless codes. Each
edge server subscribing to channel i should be spanned
in at least �(1 + ε)K� trees in the forest Fi dedicated to
channel i, so that the edge server is able to receive �(1 +
ε)K� different streams and decode the video. Let Fi(v) be
the set of trees in which the edge server v is included in
Fi, and K̂ = �(1 + ε)K� We have

∀i ∈ I, ∀v ∈ Vi, |Fi(v)| ≥ K̂ (2)

• Delay constraint. This constraint is used to bound the
delay from the entrypoint to each subscribing edge server
for the guarantee of Quality of Service (QoS). For each
tree T ∈ Fi, total transmission delay from the entrypoint
si to any node of T should be smaller than a given
threshold H . Let SPT (v) be the path (list of arcs) from
si to v in tree T , and de be the delay of an arc e in this
path, we have

∀i ∈ I, ∀T ∈ Fi, ∀v ∈ T,
∑

e∈SPT (v)

de ≤ H (3)

To illustrate a forest overlay, we give in Fig. 2 an example of
video delivery in the French Telco-CDN (Fig. 1). We suppose
that all edge servers have an upload capacity of 2 while an en-
trypoint has a capacity of 5. All links have an identical delay of
one, and the end-to-end delay should be bounded by H = 2 to
guarantee the QoS. For instance, a video channel generated by
the entrypoint s1 should be delivered to edge servers 10 and 12.
Let us suppose that K̂ = 2 streams of symbols are required for

Fig. 2. Forest overlay for video delivery: source s1 and subscribing edge
servers 10 and 12, delay constraint H = 2, and rateless coding parameter
K̂ = 2.

TABLE I
NOTATIONS

decoding the video clip, then three trees with a depth of two
can be used, which are illustrated in Fig. 2. We can see that the
entrypoint has only one direct child in each tree, and both the
delay constraint and the capacity constraint are satisfied.

To solve this optimization problem, we propose and compare
in the following two different MILP models: a two-step opti-
mization MILP and a joint optimization MILP.

IV. TWO-STEP OPTIMIZATION MILP

We first describe a two-step approach for solving the multi-
channel video delivery problem. In this case, the original prob-
lem is divided into two subproblems: first we construct a forest
overlay for each channel under both the delay and the capacity
constraints, then assign the resources of CDN nodes to the
different overlays. System notations are given in Table I and
MILP variables are defined in Table II. We name this two-step
optimization MILP as SOP-ILP.

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 91

TABLE II
MILP VARIABLES

A. Delay and Capacity Bounded Forest Overlay Construction

For any channel i, its video entrypoint si has to build up to
Wi = K̂ × |Vi| delivery trees. The main idea of this MILP is to
decompose the network graph G into a set of instances denoted
by Gik with i ∈ I and k ∈ {1, . . . ,Wi}. Each instance is the
support for a tree T ik rooted at the entrypoint of channel i.
A tree T ik may be null with zero arcs while the non-null
trees form the forest Fi dedicated to the delivery of channel i,
i.e., Fi = {T i1, · · · , T iWi}. For any arc (u, v) ∈ E, let Lik

uv ∈
{0, 1} equal 1 if (u, v) is used in T ik, and 0 otherwise.

For the sake of readability, we omit in the MILP formula-
tion below the use of set membership indication ∈ when it
stands for the standard whole set. In other words, we write
∀i, ∀s, ∀u, ∀v 	∈ Vi, and ∀k to imply ∀i ∈ I, ∀s ∈ S, ∀u ∈ V ,
∀v ∈ V \ Vi, and ∀k ∈ {1, . . . ,Wi}, respectively. We also use
N+(v)/N−(v) to denote the set of nodes with an arc from/to v
in G. It is worth noting that only Lik

uv , Ri and Dik
v (introduced

later) are MILP variables while the rest are network input
parameters.

Our goal here is to build the forest overlay Fi under both
the delay constraint and the node capacity constraint for the
delivery of each given channel i ∈ I. We suppose that the CDN
has enough capacity to serve any single channel i ∈ I. We
aim at constructing the leanest overlay, i.e., the overlay that
minimizes the total used capacity while satisfies both the delay
constraint and the edge server capacity constraint. Thus, we
have to solve |I| forest overlay optimization problems in this
part. For each video channel i ∈ I, the objective function is
thus defined as:

minimize
∑
v∈V

∑
k∈{1,...,Wi}

∑
u∈N+(v)

Lik
vu, ∀i (SOP-OC) (4)

subject to constraints (5)–(14).
∑

v∈N−(s)

Lik
vs = 0 ∀s, ∀i ∈ I(s), ∀k (5)

∑
v∈N+(s)

Lik
sv ≤ 1, ∀s, ∀i ∈ I(s), ∀k (6)

∑
u∈N−(v)

Lik
uv ≤ 1, ∀i, ∀k, ∀v 	∈ {si} (7)

∑
u∈N+(v)

Lik
vu ≤

∑
u∈N−(v)

Lik
uv × cv, ∀i, ∀k, ∀v 	∈ {si}

(8)∑
u∈N+(v)

Lik
vu ≥

∑
u∈N−(v)

Lik
uv, ∀i, ∀k, ∀v 	∈ Vi (9)

∑
k∈{1,...,Wi}

∑
u∈N−(v)

Lik
uv ≥ K̂, ∀i, ∀v ∈ Vi (10)

∑
k∈{1,...,Wi}

∑
u∈N+(v)

Lik
vu ≤ cv, ∀i, ∀v (11)

Constraint (5) ensures that the entrypoint of channel i is not
involved in channel delivery with another role than being the
root node for each delivery tree of channel i. Constraint (6)
makes sure that an entrypoint has at most one direct child in a
delivery tree when a channel is delivered. This constraint limits
an entrypoint source to use only one unit upload capacity in
each delivery tree. Constraint (7) guarantees that an edge server
has at most one input arc in each tree of a channel. Constraint
(8) makes sure that no node in V can be the root of a tree in Fi

except the entrypoint si. This constraint permits a relay edge
server to connect as many as cv other edge servers in a delivery
tree. Thus, we will obtain a delivery tree instead of a path for
one stream, although the entrypoint source has only one direct
child. Constraint (9) guarantees that the leaf nodes in a channel
i are in Vi (edge servers belonging to unneeded channels are
only data relays). Constraint (10) ensures that each node v ∈ Vi

should be spanned at least K̂ times in Fi. Constraint (11)
imposes a capacity limitation on both entrypoints and nodes.
It indicates that an edge server v ∈ V is able to use as much
as cv capacity for the overlay of channel i. It is important to
understand that the construction of this overlay is independent
of that of the other overlays.

We also have to guarantee the end-to-end delay and ensure
that there is no cycles in trees. We define a new variable Dik

v ∈
[0,∞], which stands for the delay from the entrypoint si to an
edge server v in T ik. The additional constraints are:

Dik
s = 0, ∀s, ∀i ∈ I(s), ∀k (12)

Dik
v ≤ H, ∀i, ∀k, ∀v 	∈ {si} (13)

Dik
v −Dik

u ≥duv −M
(
1−Lik

uv

)
, ∀i, ∀k, ∀v, ∀u∈N−(v)

(14)

Constraints (12) set the delay of an entrypoint s as zero in the
delivery tree originated from s and constraints (13) bound the
delay of each edge server. Constraints (14) make sure that no
cycle exists in Fi. Together with constraints (7) and (8), they
guarantee the tree structure in each instance Gik if it exists.

By solving the above |I| optimization problems, we will
obtain a set of forest overlays {F1, F2, · · · , F|I|} one for each
video channel. The formulated SOP-OC problem is a minimum
spanning tree packing problem, which tries to minimize the
total cost of the spanning forest while satisfying all the con-
straints. Suppose that each link has a cost of 1 and that only
one stream is enough (K̂ = 1). Then the SOP-OC problem
becomes a Steiner tree problem, which is NP-hard [20].

B. Bandwidth Allocation

The first step results in |I| forest overlays. Now we allocate
resources with respect to the requirements of each overlay. A
forest Fi can be either null (zero arc), or a forest that spans all
peers of Vi in at least K̂ trees. When a forest Fi is null, no
capacity should be allocated. In other words, the channel with
null Fi cannot be transmitted. On the contrary, a non-null forest
Fi may be used for the delivery of channel i, but it requires that

92 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

the engaged resources are available. Let civ be the capacity that
should be reserved by an edge server v ∈ V for the forest Fi:

civ =
∑

k∈{1,...,Wi}

∑
u∈N+(v)

Lik
vu ∀i ∈ I, ∀v (15)

The sum of all capacities civ over all channels i ∈ I can be
greater than cv . It means that not all the computed forests can be
delivered. For any channel i ∈ I, we define a decision variable
Ri ∈ {0, 1}. Now we need to decide whether a channel i should
be accepted (Ri = 1 and all the engaged capacities in Fi should
be secured to deliver the video channel i) or rejected(Ri = 0).
The only constraint in this step is that, for each edge server, the
sum of its used capacity in all accepted overlays should not be
above its capacity. Our objective is to find the set of accepted
channels so that the overall profit πi ×Ri is maximized:

maximize
∑
i∈I

Ri × πi (SOP-BA) (16)

subject to the following constraint:
∑
i∈I

civ ×Ri ≤ cv, ∀v (17)

In this MILP model, civ is regarded as the input while Ri

is the variable. There are |I| variables and |V | constraints.
Only the accepted video channels (Ri = 1) can be delivered
by using the forest overlay Fi constructed in SOP-OC. SOA-
BA is a multi-Dimensional Knapsack Problem (DKP), which
is strongly NP-hard for any |I| ≥ 2 [27]. In addition, the DKP
problem does not admit any fully-polynomial time approximate
scheme [28]. Thus greedy-like fast heuristic algorithms are
needed.

In the two-step approach, we treat the overlay construction
and bandwidth separately. Although we find the optimal so-
lution for each subproblem, we may not guarantee that the
final solution is globally optimal, since these two subproblems
interact with each other. This is why we will introduce a joint
optimization MILP in the next section.

V. JOINT OPTIMIZATION MILP

Different from the previous two-step approach, here we
formulate the multi-channel video delivery problem as a joint
optimization MILP, which enables to solve the overlay con-
struction and bandwidth allocation simultaneously. We name
joint optimization MILP as JOP-ILP. Then, we compare these
two different MILP formulations.

A. Joint Optimization Formulation

The joint MILP formulation allows the computation of a
globally optimal solution in the Telco-CDN by solving the
overlay computation and bandwidth allocation at the same time.
Our goal is to maximize the sum of the importance of all deliv-
ered video channels while respecting both the nodal capacity
and the end-to-end delay constraints. Once guaranteeing this
main objective, we secondly want to reduce the traffic load on

the CDN infrastructure. The load on the CDN infrastructure,
namely Cap is expressed as follows:

Cap =
∑
i∈I

∑
v∈V

∑
k∈{1,...,Wi}

∑
u∈N+(v)

Lik
vu (18)

The quality of the delivery, which we call Deli, is defined as:

Deli = nK̂ ×
∑
i∈I

|Vi| ×
∑
i∈I

(Ri × πi) (19)

The only component that matters is
∑

i∈I Ri × πi. All other
components are constants introduced to make the Deli objec-
tive prevail over Cap in the general objective function, which
is thus expressed as:

maximize Deli− Cap (JOP) (20)

Since nK̂ ×
∑

i∈I |Vi| is bigger than Cap and πi is an integer,
we can see that the Deli dominates the objective function.
Thus, our main objective is to maximize the quality of the
delivery instead of finding a tradeoff between delivery quality
and the traffic load. Nevertheless, we believe that finding such
tradeoff can be very valuable and is left for future research.

Most part of the JOP-ILP formulation is exactly the same as
that of the SOP-OC ILP formulation (i.e., constraints (5)–(14)).
However, we construct the overlay, decide the delivery of a
video channel, and allocate the ressource at the same time in the
JOP-ILP model. Thus, we should have three kinds of decision
variables Lik

uv , Ri and Dik
v . Constraints (6), (7), (10) and (11)

should also be modified accordingly as follows:∑
v∈N+(s)

Lik
sv ≤ Ri, ∀s, ∀i ∈ I(s), ∀k (21)

∑
u∈N−(v)

Lik
uv ≤ Ri, ∀i, ∀k, ∀v 	∈ {si} (22)

∑
k∈{1,...,Wi}

∑
u∈N−(v)

Lik
uv≥Ri×K̂, ∀i, ∀v ∈ Vi (23)

∑
i∈I

∑
k∈{1,...,Wi}

∑
u∈N+(v)

Lik
vu ≤ cv, ∀v (24)

Constraint (21) makes sure that an entrypoint has at most one
child in a tree when a channel i is delivered and no child at all
when channel i is not delivered. For each channel i, constraint
(22) guarantees that an edge server has at most one input arc in
each tree if channel i is accepted, otherwise it has zero incoming
arc. Constraint (23) ensures that each node v ∈ Vi is spanned
at least K̂ times in Fi if channel i is delivered. Constraint (24)
imposes that the bandwidth of node v (edge servers and entry-
points) used by all channels should not be bigger than its capacity.

Thus, the JOP-ILP formulation is subject to constraints (5),
(21), (22), (8), (9), (23), (24) and (12)–(14). This method will
produce a set of forest overlays {F1, F2, · · · , F|I|} for all video
channels at the same time.

B. Comparison With the Two-Step Optimization MILP

We compare the complexity of the proposed joint optimiza-
tion MILP (JOP-ILP) with that of the two-step MILP (SOP −
ILP = SOP-OC + SOP-BA) in Table III. We can see that both
MILP formulations have exactly the same number of variables,
but the latter one requires |I| × |V | more constraints. Instead

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 93

TABLE III
COMPARISON OF VARIABLES AND CONSTRAINTS IN THE PROPOSED TWO MILP FORMULATIONS

of solving the multi-channel video delivery problem entirely at
once, the two-step MILP approach divides the problem into |I|
separate overlay optimization subproblems plus one bandwidth
allocation subproblem, which are also NP-hard. Thus, the gain
in time complexity is difficult to estimate, while overall sys-
tem performance will obviously degrade. Further performance
comparisons are given in Section VII.

VI. HEURISTIC ALGORITHMS

Since both JOP and SOP-OC+SOP-BA MILP formulations
are computationally expensive, they do not scale with the
number of channels and network size in practical Telco-CDNs.
Thus, we propose three fast heuristic algorithms for solving the
delivery of multiple video channels. Both heuristic algorithms
are greedy algorithms, with one main loop. We assume that the
delay is the same for all links in the network, which we call one
unit delay, e.g., 5 ms. Before explaining these two algorithms,
we next introduce a min-cost based forest overlay construction
algorithm, which can be used for both JOP and SOP heuristic
algorithms.

A. Capacity-and-Delay-Bounded Min-Cost Forest Overlay
Construction Algorithm

The difficulty of our forest overlay construction problem
is that both the delay and the node capacity are bounded in
each tree of the overlay, which makes our problem much more
complicated than the degree-bounded spanning tree problem
or the delay-bounded Steiner tree problem [25]. Thus existing
algorithms in the literature cannot be applied for computing the
required forest overlay. To this end, we propose a Capacity-
and-Delay-Bounded Min-Cost Forest Overlay construction al-
gorithm, whose pseudo code is given in Algorithm 1. Given
a video channel i ∈ I, its subscribing edge servers Vi and
rateless coding parameter K̂, and the bandwidth of each edge
server, Algorithm 1 computes the video delivery tree one by
one iteratively until all subscribing edge servers are spanned
in at least K̂ trees so that they are able to recover the video
trunk. Since one objective is to minimize the traffic load on the
CDN infrastructure, the basic idea of our algorithm is to add
each edge server to the video delivery tree with the minimum
cost. For the sake of explaining the pseudo code of Algorithm 1,
some definitions are provided as follows. We define Vk and Ek

as the node set and the edge set of tree Tk respectively. We note
hTk

(v) as the depth of an edge server v in the delivery tree Tk,
which is the distance from the tree root si to v. We use V +

k to
denote connection-useful edge servers in Tk, whose capacity is

not null and depth is smaller than H . These connection-useful
edge servers can be used to connect a new edge server to tree
Tk. An auxiliary graph Gc is introduced, in which SPGc

(a, b) is
the shortest path between edge server a and b, and distGc

(a, b)

is its length. We note VK as the edge servers not yet spanned K̂
times, Vc as the edge servers still with capacity, and VKc as the
subscribing edge servers still with capacity or not yet spanned
in Tk, and VH as the edge servers with a depth of H in tree Tk.
The edge servers in Vc ∪ VKc and VH are not able to connect
a new edge server to the delivery tree due to the out usage of
capacity or the depth constraint. Thus, they are removed from
the orignal graph to generate an auxiliary graph Gc.

94 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

For each spanning tree Tk, we begin with the entrypoint si
of a video channel i. Then, we should find the first nearest edge
server in VK to connect to si. The entrypoint should have only
one outgoing branch as it delivers only one stream of symbols
in each tree Tk. For computing the nearest edge server to si
without violating the capacity of edge servers, we construct an
auxiliary graph Gc by removing from the original graph the
incapacitated edge servers except the subscribing edge servers,
i.e. Vc ∪ VK . In the auxiliary graph Gc, the nearest edge server
r to si is added to Tk using the shortest path in SPGc

(r, si)
under the condition that the distance of this shortest path is
no bigger than H . If this distance is bigger than H , it means
that no edge server can be added to the kth delivery tree.
Consequently, not all subscribing edge servers can receive K̂
streams, no forest overlay can be found for this video channel
and Algorithm 1 terminates. If the first edge sever satisfying
the depth constraint can be found, then we will continue the
span of the delivery tree Tk. We update the connection-useful
edge server set V +

k by adding capacitated edge servers in Tk

with a depth smaller than H . Any edge server in V +
k can be

used to connect an edge server in VK to the tree once the tree
height constraint is satisfied. Now, what we want to find is
the nearest edge server to the actual delivery tree Tk without
violating the tree height constraint. To this end, the auxiliary
graph should be generated a little bit differently from the first
step. Here, we remove connection-useless edge servers from
the orignal graph to obtain Gc, which are incapacitated edge
servers except the subscribing edge servers not yet spanned in
Tk, the edge servers with depth H and the entrypoint si, i.e.
Vc ∪ VKc + {si}+ VH . Then, Dijkstra’s algorithm is used to
compute the shortest path from each edge server v ∈ Vk ∩ VK

to each edge server u ∈ V +
k . Among them, the shortest one

satisfying the height constraint will be added to the delivery
tree, i.e, distGc

(v, u) + hTk
(u) ≤ H . The same procedure will

be repeated to span tree Tk until no satisfying edge server can
be found or all edge servers are spanned. If there are still some
edge servers not yet spanned K̂ times (VK is not empty), we
start a new delivery tree Tk+1 using the same technique.

Algorithm 1 returns either a forest overlay Fi for delivering
video channel i or null if the video channel cannot be delivered.

B. Two-Step-Inspired Heuristic Algorithms

The SOP-heu algorithm is inspired by the two-step opti-
mization approach where all overlays are computed before the
resources are allocated. By applying Algorithm 1 for each video
channel, |I| forest overlays are constructed beforehand. What
we should do next is to find a bandwidth allocation strategy to
maximize the total importance of transmitted videos. The band-
width allocation problem is in essence a 0-1 multidimensional
knapsack problem. Thus, the Greedy-Like heuristic algorithms
in [29] can be applied directly to solve this problem.

For ease of expression, we introduce channel sets IP , IA
and bandwidth vectors B, C. Set IP is the set of video
channels to be processed, while IA is the set of video chan-
nels accepted for delivery. The bandwidth of edge server v
consumed for delivering accepted videos in IA is denoted
by Bv, i.e., Bv =

∑
i∈IA civ, and the bandwidth consumption

vector consists of the bandwidth consumption of all edge
servers B = {Bv1

, . . . , Bvn
}. If Bv ≤ cv , there is no need for

considering the bandwidth constraint of edge server v. C is
the vector of initially available bandwidth of all edge servers,
i.e., C = {cv1

, . . . , cvn
}. The bandwidth required by a video

channel i is represented by vector Bi = {civ1
, civ2

, . . . , civn
}.

Here we emphasize: (i) all the overlays are pre-computed using
Algorithm 1 presented in the previous subsection; and (ii) the
video channels are selected iteratively according to a utility
scoreU , which is defined as

U = max
i∈I

Ui = max
i∈I

πi

Pi
(25)

where Pi represents the penalty factor of the video channel i. Pi

may be defined in several different ways which will then define
different selection criteria, such as the channel importance, or
the required bandwidth for a channel. Once the selected video
channel satisfies the bandwidth constraint of all edge servers,
it will be accepted for delivery, otherwise it will be dropped.
We repeat this procedure until all video channels have been
processed. This algorithm will return the forest overlays for all
accepted video channels. Pseudocode is given in Algorithm 2.

The key point of Algorithm 2 is the definition of the utility
score U . Here, we define them in the following two ways by
varying the penalty factor Pi.

• SOP1-heu. The simplest implementation of the utility
score is to set U(i) = πi, ∀i ∈ I, i.e., the penalty factor
of each video is equal to Pi = 1 and the channels are
processed according to their importance.

• SOP2-heu. It is however well-known from knapsack and
bin packing literature [28] that better performance can be
obtained using utility scores that take into account both
the gain (here πi) and the penalty costPi that this overlay
produces on the infrastructure. In our implementation, we
utilize the following parameters to set the penalty cost for
each video channel i ∈ I: (i) required bandwidth: If two
candidate video channels of IP have equal importance,
it is more advantageous to select the one consuming less
bandwidth. Video channel i consumes bandwidth vector
Bi, and hence the penalty factor Pi should be large if
the norm of Bi is large. However, this remark should
be refined by considering each bandwidth ressource sep-
arately. Thus, we use Bv + civ to represent this parameter,

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 95

which is the bandwidth consumption of edge server v if
video channel i is accepted for delivery. (ii) remaining
bandwidth: We try to prevent edge servers from capac-
ity exhaustion, with the risk of network disconnection.
Indeed, the bandwidth consumption vector B is used out
by the currently accepted video channels, thus bandwidth
vector C −B remains available for the video channels
to be processed in IP . The minimum element of C −B
designates the currently scarcest bandwidth of all edge
servers, which should then be spared as much as possible.
This factor can be represented by cv − (Bv + civ). (iii)
saving on critical edge servers: We suppose channel i is
accepted for delivery. Then, we analyse the channels that
have not been processed yet, and estimate the edge servers
that are the most demanded. If the future bandwidth de-
mand is large, we should also tend to avoid selecting a
video channel requiring too much bandwidth of v. This
parameter can be represented by

∑
ī∈IP cīv − civ . From

these remarks, Pi should be governed by the worst effect
that the video channel i would have on the following
quantities of bandwidth of edge server v:

Pi = max
v∈V

(
Bv + civ

) (∑
ī∈IP cīv − civ

)

(cv −Bv − civ)
(26)

The two-step inspired heuristic algorithms have the follow-
ing advantages and drawbacks.

1) Advantages: The overlay construction and bandwidth
allocation are two completely independent procedures,
one will not influence another. In case of churn of video
channels, only the bandwidth allocation part should be re-
computed, while the overly forest computed beforehand
can still be used. Thus, computation time can be saved.
Moreover, the most costly channels are not processed first
if they are not very important. This strategy is expected to
allow the rapid distribution of video channels.

2) Drawbacks: For each video channel, Algorithm 2 uses
the original bandwidth vector C to pre-compute a forest
overlay without the knowledge of bandwidth consump-
tion of other channels. If all of these forests use too much
bandwidth of critical edge servers, only few of them can
be accepted for delivery. Therefore it may be unable to
utilize the last remaining resources at the end of the loop.
However, if we know the remaining bandwidth of critical
edge servers before computing the forest overlay, we can
find alternative paths by avoiding passing through those
critical edge servers.

C. Joint-Inspired Heuristic Algorithm

The JOP-heu algorithm is inspired by the joint optimization
approach. Pseudocode is given in Algorithm 3. In this method,
overlay computation and bandwidth allocation are conducted at
the same time. Higher priority is given for allocating bandwidth
to more important video channels, and the overlay computation
takes into account the remaining capacities of edge servers.
This algorithm works as follows. At each step, the video
channel ī with the biggest importance is selected for processing

(as emphasized in line 5 of Algorithm 3). Before computing a
forest overlay for video channel ī, the remaining bandwidth of
each edge server is already known and they are used as input
parameters for the forest computation (refer to line 6). Once a
valid forest Fī is found, the bandwidth of each edge server is
updated by removing the used bandwidth (refer to line 9).

The advantages and drawbacks of the joint-inspired heuristic
algorithm are as follows:

1) Advantages: Since the forest overlays are computed with
the remaining capacity, this algorithm is able to construct
overlays even when most capacities have been exhausted.
This is because alternative solution may be found to avoid
overusing the bandwidth of critical edge servers. It should
result in no waste of resources.

2) Drawbacks: Algorithm 3 is oblivious to the amount of
capacities that are utilized by the channels. That is, an
important but very costly channel can be processed before
some channels that are just slightly less important, but far
cheaper in terms of resources. Moreover, if a new channel
has to be delivered, or if a channel should not be delivered
anymore, the algorithm should be executed from scratch.

VII. EVALUATIONS

Extensive simulations are conducted to evaluate the perfor-
mance of the proposed solutions in this paper: JOP-ILP, SOP-
ILP, JOP-heu, SOP1-heu and SOP2-heu. In our evaluation, we
use both the French CDN network (16 nodes and 36 links) as
shown in Fig. 1 and the USA AtHome ISP backbone network
(46 nodes and 55 links) [30] as the testbeds.

The following five metrics are used in our comparisons:

1) Profit ratio. It indicates the satisfaction of the service
provider by measuring if channels are well delivered,
according to their importance, i.e.,

∑
i∈I Ri × πi∑

i∈I πi
(27)

2) Number of delivered video channels. It is expressed as
∑
i∈I

Ri (28)

96 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

TABLE IV
HEURISTIC SOLUTIONS VS MILP SOLUTIONS: 6 CHANNELS

3) Ratio of used capacity. It is the ratio between the used
bandwidth of all edge servers and their original available
bandwidth, i.e.,

Cap∑
v∈V cv

(29)

4) Computing time. It is the computing time for an algo-
rithm to find a solution for delivering all video channels.

We set the channel importance such that it is proportional
to the popularity of the channel. We assume an identical delay
over all links in the network, which equals one unit delay. We
use a Zipf distribution to model the popularity of channels
(consequently their importance). The bandwidth of edge servers
follows a lognormal distribution. The video was compressed
with the H.264 coder at various bitrates ranging from 512 kbps
to 2,560 kbps. The entrypoint applies rateless coding on each
chunk and sends the encoded symbols in successive UDP pack-
ets. After receiving the packets, the subscribing edge servers ap-
ply rateless decoding to recover the original video. For rateless
coding, the Raptor code model proposed in [8] was used. With
this model, a redundancy of 5%, gives a very high probability
of successful decoding [7], [8], [31]. Thus, for an original video
bitrate of 512/1, 024/1, 536/2, 048/2, 560 kbps respectively, an
entrypoint will generate a video channel of about 537/1, 075/1,
613/2, 150/2, 688 kbps respectively, and an edge server needs to
receive the same rate of encoded symbols to recover the original
chunk. In our simulations, JOP-ILP and SOP-ILP models are
solved by ILOG CPLEX, while all heuristic algorithms are
implemented directly in C++.

A. Comparison of MILP Solutions and Heuristic Solutions

We used the IBM ILOG CPLEX optimizer to solve the MILP
problems. The solver is run on a PC equipped with 5 cores
Intel(R) Xeon(R) 3.00 GHz CPUs, 8 GB RAM memory, and
Windows 7 system. As MILP solutions are time consuming,
simulations are done in the small French CDN network in
Fig. 1. We present in Table IV numerical comparisons between
the different solutions. Unfortunately, the proposed MILP mod-
els (JOP-ILP and SOP-ILP) were unable to obtain optimal
solutions when we used larger instances (when the number
of edge servers requesting channel i is large, the number of

channels |I| is large and the video has large video bite rate,
i.e., K̂). This is why we use a small CDN topology and restrict
the number of video channels to six (|I| = 6) for performance
comparisons. The bandwidth of each edge server follows a
lognormal distribution with mean bandwidth 12 Mbps and
heterogeneity of 0.1. We consider four different video bit rates:
512 kbps, 1,024 kbps, 1,536 kbps and 2,048 kbps. The tree
height is bounded by four (H = 4). As reported in [32],
Youtube video popularity follows Zipf-like distribution, simi-
larly we suppose video channel importance has a distribution of
Zipf(1,6), where the first parameter is the value of the exponent
characterizing the distribution and the second parameter is the
number of video channels. The number of edge servers that
request channel i ranges from three to six according to the
importance of the channel. The results presented in Table IV
represent the average of five instances.

We make five main observations based on the comparison
in Table IV. First, the JOP-ILP finds solutions that the SOP-
ILP cannot find, especially when the resources are constrained.
When the resources get tighter, the SOP-ILP may have dis-
astrous performance due to its incapacity to prevent some
critical edge servers to be exhausted and to disconnect the
network. Second, the heuristic algorithms perform well. The
JOP-heu is able to provide the optimal solution for the given
configurations as JOP-ILP. Both the SOP1-heu and SOP2-
heu algorithms require a small over-utilization of resources for
video bit-rates 512 kbps and 1,024 kbps, while they miss one
video channel delivery for 2,048 kbps. The third observation
concerns the bandwidth consumption of edge servers. We can
see that when the video bit-rate is 512 kbps, the French CDN is
over-provisioned since all methods are able to transmit 6 video
channels. In this configuration, the JOP-ILP solution consumes
the least bandwidth, which is 12.7% of the total bandwidth
ressource, while the other four methods result in almost the
same bandwidth usage. The fourth observation is that the SOP-
ILP may result in the worst solution. It is only able to achieve
67.4% profit ratio for the video bit-rate of 2 Mbps, which is
even worse than the SOP2-heu with a profit ratio of 76.7%.
It is because SOP-ILP searches minimum cost forest overlay
without knowing the bandwidth usage by other video channels.
As it is cost-optimal, it may use too much bandwidth on critical
edge servers for each video channel. Consequently, few of them
can be delivered successfully in the bandwidth allocation part
of the solution. However, two-step inspired heuristic algorithms
may find alternative approximated minimum cost solutions
which does not require as much bandwidth on critical edge
servers as that of SOP-ILP. Thus, more video channels may be
delivered at the same time. Finally, the two MILP methods take
a lot of time (up to 12.5 minutes for video bit rate of 2,048 kbps)
to obtain a solution, while the computing time is less than one
second for heuristic algorithms as presented in Table IV.

B. Evaluations on Real-Scale Systems

Here, we focus on the performance of the proposed heuristic
algorithms: JOP-heu, SOP1-heu and SOP2-heu. We increase
not only the network size but also the number of video channels
and the video quality. Node bandwidth follows a lognormal

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 97

Fig. 3. Simulation Results in a French Telco-CDN. (a) profit ratio vs. channels; (b) delivered channels vs. channels; (c) capacity ratio vs. channels; (d) profit
ratio vs. bit-rate; (e) delivered channels vs. bit-rate; (f) capacity ratio vs. bit-rate.

distribution with an average of 96 Mbps. The channel impor-
tance follows the Zipf(0.5,105) distribution. The simulations
are run on a PC equipped with Intel Core 3.3 GHz CPU, 4 GB
RAM memory, and Windows 7 system.

We first study the performance in the French CDN in
Fig. 3(a)–(f). The height is bounded by six. The number of
subscribers |Vi| for a channel i ranges from 3 to 9. Thus, there
are some configurations where the network is over-provisioned
(e.g., when |I| ∈ {30, 45}), and some others where not all
channels can be delivered.

In Fig. 3(a)–(c), the video bit-rate is 2,048 kbps, and we
evaluate the performance of our algorithms with respect to
the number of channels from 30 to 105. We found that the

proposed three heuristic algorithms serve well the most im-
portant channels, so the overall profit is almost the same for
all algorithms in the over-provisioned network configuration.
In the under-provisioned scenario, i.e., when the number of
channels is bigger than 45, all algorithms obtain an achievable
profit ratio no less than 80%. The JOP-heu algorithm is always
able to obtain up to 10% higher profit ratio and deliver 15 more
video channels than the two-step heuristic algorithms. Thus,
it clearly results in high network bandwidth usage, i.e., 17%
higher. Moreover, the simple importance-first heuristic SOP1-
heu performs better than SOP2-heu in term of achievable profit
ratio, while the latter one tends to accept more video channels
with smaller bandwidth requirement. This may be explained by

98 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

Fig. 4. Simulation Results in USA AtHome ISP Backbone Network [31]. (a) profit ratio vs. channels; (b) delivered channels vs. channels; (c) capacity ratio vs.
channels; (d) profit ratio vs. bit-rate; (e) delivered channels vs. bit-rate; (f) capacity ratio vs. bit-rate.

the fact that a video channel with smaller importance requires
less bandwidth due to the Zipf distribution of importance value.
The SOP1-heu packs the most important videos better than
SOP2-heu, meaning that the more sophisticated utility score of
SOP2-heu is counter-productive.

In Fig. 3(d)–(f), the number of channels is fixed to |I| = 105
and we study the performance of our algorithms when the
video bitrate varies from 512 kbps to 2,560 kbps. We can
find that JOP-heu algorithm is always superior to the others.
As the video bitrate increases, the achievable profit ratio de-
grades slightly while the number of delivered videos diminishes
sharply. This is due to the lack of bandwidth in the video
entrypoints or the edge servers around the videos entrypoints

for accommodating high quality videos. It also should be noted
that the network bandwidth usage is up to 72%, which is not
high. This is because, we employ a mesh topology (c.f. Fig. 1),
where there are only three entrypoints. Since an entrypoint node
does not have a link to all the edge servers, the bandwidth of an
edge server far away from the entrypoint node may be wasted
when the neighbors of the entrypoint exhaust their bandwidth.

We have also performed simulations on the USA AtHome
ISP backbone network (46 nodes and 55 links) [30], which
is nearly three times bigger than the French Telco-CDN. The
objective is to validate our results and show the scalability
of our heuristic algorithms. We adopted the same simulation
configuration as that in the French CDN, except that the number

ZHOU et al.: JOINT OPTIMIZATION FOR THE DELIVERY OF MULTIPLE VIDEO CHANNELS IN TELCO-CDNs 99

Fig. 5. Average Computing Time (Seconds) on Real-Scale Systems: 30 ∼ 105 channels, video bitrate 2048 kbps. (a) Computing time in French-CDN (16 nodes);
(b) computing time in AtHome ISP (46 nodes).

of subscribing edge servers ranges from 3 to 23 and six entry-
points are used. The height of delivery tree is bounded by 20.
According to the obtained results in Fig. 4(a)–(f), JOP-heu is
also able to achieve at least 10% higher profit ratio and deliver
more video channels than the others in the AtHome network.
We also note that this improvement is valid for all high video
bitrates. The SOP1-heu algorithm performs slight better than
SOP2-heu algorithm. These results confirm the superiority and
the scalability of our JOP-heu algorithm.

Furthermore, we have measured the computation complex-
ity of the proposed heuristic algorithms, which are shown
in Fig. 5(a) and (b). Given 105 high quality video channels
of 2,048 kbps, all the three heuristic algorithms need about
5 seconds to find a solution for delivering all channels in the
French CDN, while they require about 58 seconds for the big
USA AtHome ISP backbone network. From the curves, we can
see that only 3 seconds and 29 seconds are needed respectively
in the two topologies to find a solution for delivering the
fifty featured channels of twitch.tv. Recent research [33] on
dynamic live streaming systems like twitch.tv shows that there
is a strong correlation between the popularity of the video
channels and their “stability”, i.e., how long are the channels
online. It is worth noting that CDNs are used for the most
popular video channels, which are stable. Thus, it is reasonable
to conclude that the proposed algorithms are time efficient for
video delivery in Telco-CDNs.

In summary, the proposed heuristic algorithms perform well
in both over-provisioned and under-provisioned network con-
figurations, and they are simple to implement. Among them,
JOP-heu performs best since it is able to compute fast a near-
optimal solution. When the resources are more constrained,
JOP-heu clearly outperforms the SOP-heuristics, serving up
to one third of the channels more. In the considered Telco-
CDNs, such gain in performance is enough to justify the
implementation of JOP-heu for the many cases where resources
are constrained.

VIII. CONCLUSION

This paper addressed the problem of overlay construction
and bandwidth allocation for delivering video channels from

the entrypoints of the Telco-CDN to edge servers. The pursued
goal is to maximize the total profit of delivered channels while
preserving network resources. To this end, two optimization
methods have been compared: joint optimization and two-step
optimization. Our work analyzed the relevance of implementing
joint optimization approaches, which are theoretically more
efficient. We believe such analysis will continue flourishing
in the future since resource allocation in capacity-constrained
environments is often one of the multiple optimization prob-
lems to solve. In this respect, this paper explored some of the
trade-offs at stake and provided insights to network operators
for making informed resource provisioning decisions in the
support of a Telco-CDN. As a future work, we will extend our
optimization methods to solve network planning problems for
adaptive video streaming systems.

REFERENCES

[1] F. Zhou, J. Liu, G. Simon, and R. Boutaba, “Joint optimization for the
delivery of multiple video channels in Telco-CDNs,” in Proc. IEEE/ACM
CNSM, Oct. 2013, pp. 161–165.

[2] Netflix Open Connect Content Delivery Network. [Online]. Available:
https://signup.netflix.com/openconnect

[3] V. K. Adhikari et al., “Unreeling netflix: Understanding and improv-
ing multi-CDN movie delivery,” in Proc. IEEE INFOCOM, 2012,
pp. 1620–1628.

[4] Z. Li and G. Simon, “In a Telco-CDN, pushing content makes sense,”
IEEE Trans. Netw. Serv. Manage., vol. 10, no. 3, pp. 300–311, Sep. 2013.

[5] M. Adler, R. K. Sitaraman, and H. Venkataramani, “Algorithms for opti-
mizing the bandwidth cost of content delivery,” Comput. Netw., vol. 55,
no. 18, pp. 4007–4020, Dec. 2011.

[6] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. J. Wright, “Minimizing
delivery cost in scalable streaming content distribution systems,” IEEE
Trans. Multimedia, vol. 6, no. 2, pp. 356–365, Apr. 2004.

[7] N. Thomos and P. Frossard, “Network coding of rateless video in stream-
ing overlays,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12,
pp. 1834–1847, Dec. 2010.

[8] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[9] C. Wu and B. Li, “rstream: Resilient and optimal peer-to-peer streaming
with rateless codes,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 1,
pp. 77–92, Jan. 2008.

[10] F. Zhou, S. Ahmad, E. Buyukkaya, R. Hamzaoui, and G. Simon, “Mini-
mizing server throughput for low-delay live streaming in content delivery
networks,” in Proc. ACM NOSSDAV , 2012, pp. 65–70.

[11] N. Magharei, R. Rejai, and Y. Guo, “Mesh or multiple-tree: A comparative
study of live P2P streaming approaches,” in Proc. IEEE INFOCOM,
May 2007, pp. 1424–1432.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” in Proc. ACM SIGCOMM, 2002, pp. 205–217.

100 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015

[13] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. Georganas, “A survey
of application-layer multicast protocols,” IEEE Commun. Surveys Tuts.,
vol. 9, no. 3, pp. 58–74, 3rd Quart. 2007.

[14] K. Jinu and S. Kamil, “A survey on the design, applications, enhancements
of application-layer overlay networks,” ACM Comput. Surv., vol. 43,
no. 1, pp. 1–34, Dec. 2010.

[15] M. Castro et al., “Splitstream: High-bandwidth multicast in cooperative
environments,” in Proc. ACM SOSP, 2003, pp. 298–313.

[16] S. Liu et al., “P2p streaming capacity under node degree bound,” in Proc.
IEEE ICDCS, Jun. 2010, pp. 587–598.

[17] R. Sweha, V. Ishakian, and A. Bestavros, “Angelcast: Cloud-based peer-
assisted live streaming using optimized multi-tree construction,” in Proc.
ACM MMSys, 2012, pp. 191–202.

[18] M. Grangetto, R. Gaeta, and M. Sereno, “Rateless codes network coding
for simple and efficient P2P video streaming,” in Proc. IEEE ICME,
Jun. 2009, pp. 1500–1503.

[19] H. R. Oh, D. O. Wu, and H. Song, “An effective mesh-pull-based p2p
video streaming system using fountain codes with variable symbol sizes,”
Comput. Netw., vol. 55, no. 12, pp. 2746–2759, Aug. 2011.

[20] H. Takahashi and A. Matsuyama, “An approximate solution for the steiner
problem in graphs,” Math. Japonica, vol. 24, no. 6, pp. 573–577, 1980.

[21] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” Acta Informatica, vol. 15, no. 2, pp. 141–145, 1981.

[22] C. A. Noronha and F. Tobagi, “Optimum routing of multicast streams,” in
Proc. IEEE INFOCOM, Jun. 1994, pp. 865–873.

[23] C.-F. Wang, C.-T. Liang, and R.-H. Jan, “Heuristic algorithms for pack-
ing of multiple-group multicasting,” Comput. Oper. Res., vol. 29, no. 7,
pp. 905–924, Jun. 2002.

[24] C. A. Oliveira, P. M. Pardalos, and M. G. Resende, “Optimization
problems in multicast tree construction,” in Handbook of Optimization
in Telecommunications. New York, NY, USA: Springer-Verlag, 2006,
pp. 701–731.

[25] Q. Zhang and Y.-W. Leung, “An orthogonal genetic algorithm for mul-
timedia multicast routing,” IEEE Trans. Evol. Comput., vol. 3, no. 1,
pp. 53–62, Apr. 1999.

[26] J. Liu, C. Rosenberg, G. Simon, and G. Texier, “Optimal delivery of
rate-adaptive streams in underprovisioned networks,” IEEE J. Sel. Areas
Commun., vol. 32, no. 4, pp. 706–718, Apr. 2014.

[27] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional knap-
sack problem: Structure and algorithms,” INFORMS J. Comput., vol. 22,
no. 2, pp. 250–265, Apr. 2010.

[28] A. Fréville, “The multidimensional 0-1 knapsack problem: An overview,”
Eur. J. Oper. Res., vol. 155, no. 1, pp. 1–21, May 2004.

[29] R. Loulou and E. Michaelides, “New greedy-like heuristics for the multi-
dimensional 0-1 knapsack problem,” Oper. Res., vol. 27, no. 6, pp. 1101–
1114, 1979.

[30] K. Noriaki, M. Tatsuya, K. Ryoichi, H. Shigeaki, and H. Haruhisa, “An-
alyzing influence of network topology on designing ISP-operated CDN,”
Telecommun. Syst., vol. 52, no. 2, pp. 969–977, 2013.

[31] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable multi-
media download delivery in cellular broadcast networks,” IEEE Trans.
Broadcast., vol. 53, no. 1, pp. 235–246, Mar. 2007.

[32] A. Abdolreza and S. Mojgan, “Workload generation for youtube,” Multim.
Tools Appl., vol. 46, no. 1, pp. 91–118, Jan. 2010.

[33] P. Karine and S. Gwendal, “Dash in twitch: Adaptive bitrate stream-
ing in live game streaming platforms,” in Proc. ACM VideoNext, 2014,
pp. 13–18.

Fen Zhou received the Ph.D. degree in computer sci-
ence from INSA Rennes (France) in 2010. He is cur-
rently an Associate Professor at the Computer
Science lab (LIA) of the University of Avignon,
France. His research interests include routing, re-
source allocation and survivability in optical net-
works, content delivery networks (CDNs), and
vehicular networks.

Jiayi Liu is currently working as a Lecture in Xidian
University, Xi’an, China. She received her Master
Degree in 2009 and her PhD Degree in 2013, both in
Computer Science from Telecom Bretagne, France.
Her reserch interests include video streaming sys-
tems, bandwidth efficient streaming solutions, and
content distribution in mobile networks.

Gwendal Simon received his Master Degree in
Computer Science in 2000 and his PhD degree in
Computer Science in December 2004 from Univer-
sity of Rennes 1 (France). From 2001 to 2006 he was
a researcher at Orange Labs, where he worked on
peer-to-peer networks and social media innovations.
Since 2006, he is Associate Professor at Telecom
Bretagne, a graduate engineering school within the
Institut Mines-Telecom. He has been a visiting re-
searcher at University of Waterloo from September
2011 to September 2012. His research interests in-

clude large-scale networks, optimization problems and video delivery systems.

Raouf Boutaba received the M.Sc. and Ph.D. de-
grees in computer science from the University Pierre
and Marie Curie (France) in 1990 and 1994, respec-
tively. He is currently a Professor of computer sci-
ence with the University of Waterloo (Canada). His
research interests include control and management of
networks and distributed systems. He is a fellow of
the IEEE and the Engineering Institute of Canada.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

