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Abstract—Middleboxes or network appliances like firewalls,
proxies, and WAN optimizers have become an integral part of
today’s ISP and enterprise networks. Middlebox functionalities
are usually deployed on expensive and proprietary hardware
that require trained personnel for deployment and maintenance.
Middleboxes contribute significantly to a network’s capital and
operation costs. In addition, organizations often require their
traffic to pass through a specific sequence of middleboxes for com-
pliance with security and performance policies. This makes the
middlebox deployment and maintenance tasks even more com-
plicated. Network function virtualization (NFV) is an emerging
and promising technology that is envisioned to overcome these
challenges. It proposes to move packet processing from dedi-
cated hardware middleboxes to software running on commodity
servers. In NFV terminology, software middleboxes are referred
to as virtualized network functions (VNFs). It is a challenging
problem to determine the required number and placement of
VNFs that optimizes network operational costs and utilization,
without violating service level agreements. We call this the VNF
orchestration problem (VNF-OP) and provide an integer linear
programming formulation with implementation in CPLEX. We
also provide a dynamic programming-based heuristic to solve
larger instances of VNF-OP. Trace driven simulations on real-
world network topologies demonstrate that the heuristic can
provide solutions that are within 1.3 times of the optimal solu-
tion. Our experiments suggest that a VNF-based approach can
provide more than 4× reduction in the operational cost of a
network.

Index Terms—Optimization techniques, service function chain-
ing, network function virtualization, NFV orchestration.

I. INTRODUCTION

TODAY’S enterprise networks ubiquitously deploy ver-
tically integrated proprietary middleboxes or network

appliances to offer various network services. Examples of
such middleboxes include firewalls, proxies, WAN optimizers,
Intrusion Detection Systems (IDSs), and Intrusion Prevention
Systems (IPSs). These middleboxes are used for realizing
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various performance and security objectives [1], [2]. A recent
study shows that the number of different middleboxes is com-
parable to the number of routers in enterprise and data center
networks [2], [3]. Even though middleboxes have become an
integral part of modern networks, they come with high Capital
Expenditure (CAPEX) and Operational Expenditure (OPEX).
They are usually vendor specific, vertically integrated, expen-
sive, and require specially trained personnel for deployment
and maintenance. Moreover, it is often impossible to add new
functionality to an existing middlebox, which makes it very
difficult and cumbersome for the network operator to deploy
new services. In many cases, the network operator is com-
pelled to upgrade or purchase new hardware for introducing
new network services.

Another set of problems arise from the fact that most
often traffic flows are required to pass through multiple stages
of middlebox processing in a particular order, e.g., a traf-
fic flow may be required to go through a firewall, then an
IDS, and finally through a proxy [4]. This phenomenon is
very common for middleboxes and is typically referred to
as Service Function Chaining (SFC) [5]. The IETF Network
and Service Chaining Working Group has several IETF drafts
demonstrating middlebox chaining use-cases in operator net-
works [6], mobile networks [7], and data center networks [8].
The task of sequencing these in-network middlebox processing
is commonly referred to as middlebox orchestration. Currently,
middleboxes are placed at fixed locations within a network.
Traffic flows are routed through the required sequence of mid-
dleboxes by manually crafting the routing table entries. It is
a cumbersome and error-prone process. Moreover, the fixed
location of middleboxes cannot be optimal for all possible
traffic patterns in the long run.

An emerging and promising technology that
can address these limitations is Network Function
Virtualization (NFV) [9], [10]. It proposes to move packet
processing from hardware middleboxes to software mid-
dleboxes or Virtual Network Functions (VNFs) running on
commodity (e.g., x86 based systems) servers. This approach
will not hamper performance as many state-of-the-art software
middleboxes have already shown the potential to achieve
near-hardware performance [11], [12]. NFV provides ample
opportunities for network optimization and cost reduction.
Previously, middleboxes were hardware appliances placed
at fixed locations, but now we can deploy a VNF on any
server in the network. VNF locations can be determined
intelligently to ensure efficient traffic routing. NFV opens-up
the opportunity to simultaneously optimize VNF locations
and traffic routing paths, which can significantly reduce the
network OPEX.
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VNF chains can be orchestrated by dynamically deploy-
ing a composition of VNFs either on a single server or on a
cluster of servers. This approach can significantly reduce the
OPEX of a network. However, several issues need to be con-
sidered before provisioning VNFs: (i) the cost of deploying a
new VNF, (ii) energy cost for running a VNF, (iii) the cost of
forwarding traffic to and from a VNF, and (iv) fragmentation
of the underlying physical resource pool. Placing just enough
VNFs to match traffic processing requirements may yield the
lowest deployment and energy cost, but steering traffic through
these VNFs will increase traffic forwarding cost and may even-
tually lead to Service Level Objective (SLO) violations. On
the other hand, one may try to always forward traffic through
the shortest possible path by deploying VNFs in all possible
locations. This approach may avoid SLO violation penalty,
but will surely lead to huge deployment and energy costs.
An optimal VNF orchestration strategy must address these
issues during the cost minimization process. Moreover, it must
avoid Service Level Objective (SLO) violations and satisfy the
capacity constraints of the physical servers and physical links.
We refer to this problem as the Virtualized Network Function
Orchestration Problem (VNF-OP). This paper builds on our
earlier work [13] and makes the following contributions:
• We provide the first quantifiable results showing that

dynamic VNF orchestration can have more than 4×
reduction in OPEX compared to hardware middleboxes.

• The problem is formulated as an Integer Liner
Program (ILP) and implemented in CPLEX1 to find
optimal solutions for small scale networks.

• We prove the NP-hardness of VNF-OP by a reduction
from the Capacitated Plant Location Problem with Single
Source constraints.

• We propose a fast heuristic algorithm that can find
solutions within 1.3 times of the optimal.

• The heuristic’s performance in terms of solution qual-
ity and scalability is evaluated using both real-world and
synthetic topologies and traffic traces.

• Finally, we compared the performance of our heuristic
with related work from [14].

The rest of the paper is organized as follows: we start by
explaining the mathematical model used for our system and by
formally defining the VNF Orchestration Problem (Section II).
Then the problem formulation is presented (Section III).
Next, a heuristic is proposed to obtain near-optimal solutions
(Section IV). We validate our solution through trace driven
simulations on real-world network topologies (Section IV-E).
Then, we provide a literature review (Section V) and finally,
we conclude with some future research directions (Section VI).

II. MATHEMATICAL MODEL AND PROBLEM DEFINITION

In this section we introduce the mathematical model for our
system and formally define the VNF Orchestration Problem.

A. Physical Network

We represent the physical network as an undirected graph
Ḡ = (S̄, L̄), where S̄ and L̄ denote the set of switches and

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

links, respectively. We assume that VNFs can be deployed
on commodity servers located within the network. These net-
work locations are traditionally known as Point-of-Presences
or PoPs. The set N̄ represents these servers and the binary vari-
able h̄n̄s̄ ∈ {0, 1} indicates whether server n̄ ∈ N̄ is attached to
switch s̄ ∈ S̄.

h̄n̄s̄ =
{

1 if server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄,
0 otherwise.

Let, R denote the set of resources (CPU, memory, disk, etc.)
offered by each server. The resource capacity of server n̄ is
denoted by cr

n̄ ∈ R
+, ∀ r ∈ R. The bandwidth capacity and

propagation delay of a physical link (ū, v̄) ∈ L̄ is represented
by βūv̄ ∈ R

+ and δūv̄ ∈ R
+, respectively. We also define η(ū)

as the set of neighbors for switch ū.

η(ū) = {v̄ | (ū, v̄) ∈ L̄ or (v̄, ū) ∈ L̄}, ū, v̄ ∈ S̄

B. Virtualized Network Functions (VNFs)

Different types of VNFs (e.g., firewall, IDS, IPS, proxy, etc.)
can be provisioned in a network. The possible VNF types are
represented by the set P. Each VNF type p has a specific
deployment cost, resource requirements, processing capacity,
and processing delay represented by D+p , κr

p ∈ R
+(∀r ∈ R),

cp (in Mbps), and δp (in ms), respectively. These quantities
are explained below:
• Deployment Cost (D+p ) includes the cost of image

transfer and booting a VNF of type p on a server.
• Resource Requirement (κr

p) is the amount of resource
of category r that must be allocated to a type p VNF.

• Processing Capacity (cp) represents the amount of traffic
(in Mbps) a type p VNF can process.

• Processing Delay (δp) is the average delay (in ms) expe-
rienced by a packet when traversing through a VNF of
type p.

The actual values of the above mentioned quantities are
highly implementation specific and depend on a lot of fac-
tors. Here, we have assumed an approximate value for these
properties to simplify the mathematical model.

There can be certain hardware requirements (e.g., hardware-
accelerated encryption for Deep Packet Inspection (DPI))
that may prevent a server from running a particular type of
VNF. Furthermore, the network manager may have preferences
regarding provisioning a particular type of VNF on a partic-
ular set of servers, e.g., Firewalls should be deployed close
to the network edge. So, we assume that for each VNF type
there is a set of servers on which it can be provisioned. The
following binary variable represents this relationship:

dn̄p =
{

1 if VNF type p ∈ P can be provisioned on n̄,
0 otherwise.

C. Traffic Request

We assume that the network operator is receiving requests
for setting up paths for different kinds of traffic (e.g., VPN
setup, security features, new application or service in a data
center, etc.). A traffic request is represented by a 6-tuple
t = 〈ūt, v̄t,� t, β t, δt, ωt〉, where ūt, v̄t ∈ S̄ denote the ingress
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Fig. 1. VNF Chain.

and egress switches, respectively. β t ∈ R
+ is the bandwidth

demand of the traffic. δt is the maximum allowed propaga-
tion delay according to Service Level Agreement (SLA). � t

represents the ordered VNF sequence the traffic must pass
through (e.g., Firewall � IDS � Proxy). l�t denotes the
length of � t and ωt denotes the policy to determine SLO
violation penalties.

In our mathematical model, we transform a VNF sequence
� t into a directed acyclic graph Gt = (Nt,Lt), where Nt

represents the set of traffic nodes (VNFs, ingress and egress
switches) and Lt denotes the links between them. Fig. 1 shows
a sample VNF chains. Here, traffic flows through the chain
Firewall � IDS � Proxy. Modeling the traffic flow in this
way makes it easy for the provisioning process to ensure that
it passes though the correct sequence of VNFs. We also define
ηt(n1) to represent the neighbors of n1 ∈ Nt:

ηt(n1) =
{
n2

∣∣(n1, n2) ∈ Lt}, n1, n2 ∈ Nt

Without loss of generality, we consider n2 > n1 (n1, n2 ∈
Nt), iff n2 appears after n1 in the topological order of Gt.

Next, we define a binary variable gt
np ∈ {0, 1} to indicate

the type of a node n ∈ Nt

gt
np =

{
1 if node n ∈ Nt is of type p ∈ P,
0 otherwise.

A glossary of symbols is provided in Table I.

D. VNF Orchestration Problem (VNF-OP)

We consider a scenario where an operational network is
serving a set of traffic T̂ . It has a set of VNFs already deployed
and the routing paths for the traffic in T̂ are also provisioned.
Now, the network operator is receiving new traffic requests and
wants to provision the required VNFs and routing paths for
them. The network operator can choose to provision resources
for one traffic request at a time or leverage a lookahead inter-
val by accumulating a number of traffic requests and provision
resources in batches. Determining the optimal number or vol-
ume of traffic or the length of the lookahead interval for each
batch is an interesting research challenge that is beyond the
scope of this work and we plan to pursue it in the future. In
the rest of this paper, we denote a new traffic batch by T.
Based on the operator’s choice, a batch may contain just one
or multiple traffic requests.

In the VNF-OP, we are given a physical network topol-
ogy, VNF specifications, current network status and a set of
new traffic requests. Our objective is to minimize the overall
network OPEX and physical resource fragmentation by (i) pro-
visioning an optimal number of VNFs, (ii) placing them at the
optimal locations, and (iii) finding the optimal routing paths
for each traffic request, while respecting the capacity con-
straints (e.g., physical servers, links, and VNFs) and ensuring
that traffic passes through the proper VNF sequence.

OPEX: In this work, we consider the network OPEX to be
composed of the following four cost components:
• VNF deployment cost: we need to complete tasks like

transferring a VM image, booting it and attaching it to
devices before deploying a VNF. We associate a cost (in
dollars) with these operations.

• Energy cost: it represents the cost of energy consumption
by the active servers. A server is considered active if it has
at least one active VNF. Servers consume power based on
the amount of resources (e.g., CPU, memory, disk, etc.)
under use. A server is assumed to be in the idle state if
it does not have any active VNFs [15].

• Traffic forwarding cost: traffic forwarding cost may be
incurred from two sources: (i) leasing cost of transit
links [16] and (ii) energy consumption of the network
devices (e.g., switches, routers, etc.). In the rest of the
paper, we use the terms ‘traffic forwarding cost’ and
‘transit cost’ interchangeably.

• Penalty for SLO violation: this cost component repre-
sents the penalty that must be paid to the customer for
SLO violations, e.g., if a traffic experienced more that the
maximum allowed propagation delay.

Resource Fragmentation: We compute physical resource
fragmentation by measuring the percentage of idle resources
for the active servers and links. We want to minimize
fragmentation as it eventually increases the possibility of
accommodating more traffic on the same physical resources.

III. PROBLEM FORMULATION AND

COMPLEXITY ANALYSIS

VNF-OP is a considerably harder problem to solve than
traditional Virtual Network (VN) embedding problems [17].
There is no node ordering requirement in VN embedding,
while in VNF-OP we need to preserve the ordering of VNFs.
Moreover, in VNF-OP we need to respect the processing
capacity constraints of servers and the VNFs to be deployed.
How many VNFs are to be deployed is not known in advance,
rather it is an outcome of the optimization process. Multi-
dimensional Bin Packing [18] can also be used to solve
VNF-OP, but here we will end-up with a nested bin packing
problem. In the first layer traffic need to be packed into VNFs
and in the next layer VNFs need to be packed into the phys-
ical servers. The fact that the number and locations of VNFs
is not known in advance, results in quadratic constraints for
resource capacity and renders the problem unsolvable even for
very small instances by existing optimization solvers. In this
work, we address these challenges by judiciously augmenting
the physical network, as explained in the rest of the section.

A. Physical Network Transformation

We transform the physical network to generate an aug-
mented pseudo-network that reduces the complexity involved
in solving the VNF-OP. The transformation process is per-
formed in the following two steps as explained by Fig. 2.

1) VNF Enumeration: A part of a physical network topol-
ogy is shown in Fig. 2(a). Here, we have three switches (s1, s2
and s3) and a server n2 connected to switch s2. We enumerate
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Fig. 2. Network Transformation.

all possible VNFs in this step by finding the maximum num-
ber for each VNF type that can be deployed on each server.
We calculate this number based on the resource capacity of
the server and the resource requirement of a type of VNF.
For example, if a server has 16 cores, and CPU requirement
for Firewall and IDS are 4 and 8 cores, respectively, we can
deploy 4 Firewalls and 2 IDSs on it. In Fig. 2(b) we show
enumerated VNFs for server n2.

We denote the set of these VNFs (called pseudo-VNFs)
by M . Each VNF m ∈ M is implicitly attached to a server
n̄ ∈ N̄. We also attach two additional pseudo-VNFs to each
server to represent the ingress and egress points of a traffic
request. We use the function ζ(m) to denote this mapping.

ζ(m) = n̄ if VNF m is attached to server n̄

We also define a function 	(n̄) to represent this mapping
in the opposite direction:

	(n̄) = {
m

∣∣ζ(m) = n̄
}
, m ∈M , n̄ ∈ N̄

Next, we define qmp ∈ {0, 1} to indicate the type of a VNF:

qmp =
{

1 if VNF m is of type p ∈ P,
0 otherwise.

We also define the function τ (m) that returns the type of
pseudo-VNF m:

τ (m) = {
p
∣∣qmp = 1

}
, m ∈M , p ∈ P

As discussed earlier, a given type of VNF can be deployed on
a specific set of servers. To ensure this we must have:

qmp = dζ(m)p (1)

We should note that pseudo-VNFs simply represent where
a particular type of VNF can be provisioned. ym ∈ {0, 1}
indicates whether a pseudo-VNF is active or not.

ym =
{

1 if pseudo-VNF m ∈ M is active,
0 otherwise.

2) Adding Pseudo-Switches: Next, we augment the physi-
cal topology again by adding a pseudo-switch between each
pseudo-VNF and the original switch to which it was con-
nected. This process is shown in Fig. 2(c). We perform this
step to simplify the expressions of the network flow conserva-
tion constraint in the ILP formulation. This process does not
increase the size of the solution space as we consider them
only for the flow conservation constraint.

TABLE I
GLOSSARY OF SYMBOLS

B. ILP Formulation

We define the decision variable xt
nm to represent the mapping

of a traffic node to a pseudo-VNF:

xt
nm =

{
1 if node n ∈ Nt is provisioned on m ∈M ,

0 otherwise.

Next, we define another variable to represent the mapping
between a traffic node and a switch in the physical network.

zt
ns̄ =

{
1 if node n ∈ Nt is attached to switch s̄,
0 otherwise.

zt
ns̄ is not a decision variable as it can be derived from xt

nm:

zt
ns̄ = 1 if xt

nm = 1 and h̄ζ (m)s̄ = 1
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We can also derive the variable ym from xt
nm as follows:

ym = 1 iff
∑
t∈T

∑
n∈Nt

xt
nm > 0

We assume that x̂t
nm represents the value of xt

nm at the last
traffic provisioning event. To ensure that resources for previ-
ously provisioned traffic are not deallocated we must have
xt

nm ≥ x̂t
nm, ∀ t ∈ T̂, n ∈ Nt,m ∈ M . Now, we define

ŷm ∈ {0, 1} that represents the value of ym at the last traffic
provisioning event as follows:

ŷm = 1 iff
∑
t∈T

∑
n∈Nt

x̂t
nm > 0

Again, to ensure that resources for previously provisioned
traffic are not deallocated we must have ym ≥ ŷm, ∀ m ∈M .
Next, we need to ensure that VNF capacities are not over-
committed. The processing capacity of an active VNF must
be greater than or equal to the total amount of traffic passing
through it. We express this constraint as follows:∑

t∈T

∑
n∈Nt

xt
nm × β t ≤ cτ (m), ∀ m ∈ {

a
∣∣a ∈M , ya = 1

}
(2)

We also need to make sure that physical server capacity con-
straints are not violated by the deployed VNFs. We represent
this constraint as follows:∑

m∈	(n̄)
ym × κr

m ≤ cr
n̄, ∀ n̄ ∈ N̄, r ∈ R (3)

Each node of a traffic must be mapped to a proper VNF
type. This constraint is represented as follows:

xt
nm × gt

np = qmp, ∀ t ∈ T, n ∈ Nt,m ∈M , p ∈ P (4)

Next, we need to ensure that every traffic node is provi-
sioned and to exactly one VNF.∑

t∈T

∑
n∈Nt

xt
nm = 1, ∀ m ∈M (5)

Now, we define our second decision variable to represent
the mapping between links in the traffic model (Fig. 1) to the
links in the physical network.

wtn1n2
ūv̄ =

{
1 if (n1, n2) ∈ Lt uses physical link (ū, v̄),
0 otherwise.

We also assume that ŵtn1n2
ūv̄ represents the value of wtn1n2

ūv̄
at the last traffic provisioning event. To ensure that resources
for previously provisioned traffic are not deallocated in the
current iteration we must have

wtn1n2
ūv̄ ≥ ŵtn1n2

ūv̄ , ∀ t ∈ T̂,∀(n1, n2) ∈{
(a, b)

∣∣a ∈ Nt, b ∈ ηt(a), b > a
}
, ∀ū, v̄ ∈ S̄ (6)

To ensure that each directed link in a traffic request is not
mapped to both directions of a physical link, we must have:

wtn1n2
ūv̄ + wtn1n2

v̄ū ≤ 1, ∀ t ∈ T,∀(n1, n2) ∈{
(a, b)

∣∣a ∈ Nt, b ∈ ηt(a), b > a
}
,∀ū, v̄ ∈ S̄ (7)

Now, we present the capacity constraint for physical links:∑
ū∈S̄

∑
v̄∈S̄

(
wtn1n2

ūv̄ + wtn1n2
v̄ū

)× β t ≤ βūv̄,∀ t ∈ T,

∀(n1, n2) ∈
{
(a, b)

∣∣a ∈ Nt, b ∈ ηt(a), b > a
}

(8)

Next, we present the flow constraint that makes sure that the
in-flow and out-flow of each switch in the physical network
is equal except at the ingress and egress switches:∑

v̄∈η(ū)

(
wtn1n2

ūv̄ − wtn1n2
v̄ū

) = zt
n1ū − zt

n2ū, ∀ t ∈ T,∀(n1, n2) ∈
{
(a, b)|a ∈ Nt, b ∈ ηt(a), b > a

}
,∀ū ∈ S̄ (9)

Finally, we need to ensure that every link in a traffic request
is provisioned on a path in the physical network:∑

ū∈S̄

∑
v̄∈S̄

(
wtn1n2

ūv̄ + wtn1n2
v̄ū

) ≥ 0,∀ t ∈ T,

∀(n1, n2) ∈
{
(a, b)

∣∣a ∈ Nt, b ∈ ηt(a), b > a
}

(10)

Our objective is to find the optimal number and place-
ment of VNFs that minimizes OPEX and physical resource
fragmentation in the network. We formulate them in detail
below.

OPEX: We consider four cost components to contribute to
OPEX. These are as follows.

1) VNF Deployment Cost: the VNF deployment cost can be
expressed as follows.

D =
∑

m∈M |ym=1

D+p × qmp ×
(
ym − ŷm

)
(11)

2) Energy Cost: Without loss of generality we assume that
the energy consumption of a server is proportional to the
amount of resources being used. However, a server usually
consumes power even in the idle state. So, we compute the
power consumption of a server as follows:

En̄ =
∑

m∈	n̄

ym × qmp × er
(

cr
n̄, κ

r
p

)

where

er(rt, rc) =
(
er

max − er
idle

)× rc

rt
+ er

idle

Here, rt and rc denote the total and consumed resource,
respectively. er

idle and er
max denote the energy cost in the idle

and peak consumption states for resource r, respectively.
Hence, the total energy cost is

E =
∑
n̄∈N̄

∑
m∈	n̄

ym × qmp × er
(

cr
n̄, κ

r
p

)
(12)

3) Cost of Forwarding Traffic: Let us assume that the cost
of forwarding 1 Mbit data through one link in the network is σ
(in dollars). We can compute the total cost of traffic forwarding
as follows:

F =
∑
t∈T

∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄

∑
v̄∈η(ū)

((
wtn1n2

ūv̄ − ŵtn1n2
ūv̄

)× β t × σ )

(13)
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4) Penalty for SLO Violation: We can compute the actual
propagation delay experienced by a traffic as follows:

δa
t =

∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄

∑
v̄∈η(ū)

wtn1n2
ūv̄ δūv̄

Let ρt(ωt, δt, δt
a) be a function that computes the penalty for

SLO violation given the policy for determining penalty (ωt),
expected propagation delay (δt) and actual propagation delay
(δt

a) for traffic t. So, the total cost for SLO violations can be
expressed as follows:

P =
∑
t∈T

ρt(ωt, δt, δ
t
a

)
(14)

– Resource Fragmentation: Our second objective is to
minimize resource (e.g., server and links) fragmentation of
active servers and links. We express it using the same unit as
the above mentioned costs. For this purpose, we assume that
pr denotes the price of unit resource of type r ∈ R. We also
denote ρβ as the price of unit bandwidth.

A physical server n̄ is considered active if it hosts at least
one active pseudo-VNF. The binary variable an̄ captures this
property:

an̄ =
{

1 if
∑

m∈	(n̄)
ym > 0,

0 otherwise.

Similarly, a physical link (ū, v̄) is considered active if it is
hosting at least one traffic flow. We use the binary variable fūv̄

to represent this:

fūv̄ =

⎧⎪⎨
⎪⎩

1 if
∑

t∈T,
(n1,n2)∈Lt

wtn1n2
ūv̄ > 0,

0 otherwise.

Now, we can compute the total cost for resource fragmen-
tation as follows:

C =
∑
n̄∈N̄

an̄

∑
r∈R

⎛
⎝cr

n̄ −
∑

m∈	(n̄)

(
κr

p × qmpym

)⎞
⎠pr

+
∑
ū∈S̄

∑
v̄∈η(ū)

fūv̄

⎛
⎜⎜⎝βūv̄ −

∑
t∈T

∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

(
wtn1n2

ūv̄ × β t)
⎞
⎟⎟⎠ρβ

(15)

Here, the first term represents the cost of server resource
fragmentation (e.g., CPU, memory, disk, etc.) and the second
term represents the cost of link bandwidth fragmentation.

Our objective is to minimize the total network operational
cost and resource fragmentation that can be expressed as a
weighted sum of the aforementioned costs.

minimize (αD + βE+ γF+ λP+ μC) (16)

Here, α, β, γ , λ and μ are weighting factors that are used
to adjust the relative importance of the cost components.

VNF-OP is NP-Hard. We reduce the NP-Hard Capacitated
Plant Location Problem with Single Source constraints
(CPLPSS) [19] to the VNF-OP. In CPLPSS, we are given

a set of potential locations for production plants with fixed
costs and capacities. A commodity produced by these plants
is to be supplied to a set of customers with fixed demands and
associated transportation costs. Moreover, each customer must
be served by a single plant. The objective is to find a subset
of the plats that should be operated to minimize cost without
violating capacity and demand constraints.

Given an instance of the CPLPSS we can transform it to an
instance of VNF-OP in the following manner: (i) for each cus-
tomer we create the chain DS → plant → customer,
where DS is a dummy ingress switch, customer is the egress
switch, and plant is a VNF, (ii) set the bandwidth of the
chain to be equal to the customer demand, (iii) use the trans-
portation cost as the traffic forwarding cost, (iv) configure each
physical machine to deploy a single VNF of type plant, and
(V) set the processing capacity of each plant to be equal to
its production capacity. These operation can be performed in
polynomial time of the problem size. Now, if we can solve
this instance of VNF-OP, we will also get a solution for the
CPLPSS. However, CPLPSS is NP-hard, so the VNF-OP is
NP-hard as well.

IV. HEURISTIC SOLUTION

In this section, we present a heuristic to solve the VNF-OP.
Given a network topology, a set of middlebox specifications
and a batch of traffic requests, the heuristic finds the number
and locations of different types of VNFs required to oper-
ate the network with minimal OPEX. We did not explicitly
consider resource fragmentation to keep the heuristic sim-
ple and fast. However, our experimental results show that
even with this simplification, the heuristic produces solutions
that are very close to the optimal. The heuristic runs in two
steps. First, we model the VNF-OP as a multi-stage directed
graph with associated costs. Then we find a near-optimal VNF
placement from the multi-stage graph by running the Viterbi
algorithm [20]. In the following, we first describe the modeling
of VNF-OP using multi-stage graph (Section IV-A), followed
by the solution using Viterbi algorithm (Section IV-C). A
detailed discussion of the heuristic along with an illustrative
example is provided in the Appendix.

A. Modeling With Multi-Stage Graph

For a given traffic request, t = 〈ūt, v̄t,� t, β t, δt, ωt〉, we
represent t as a multi-stage graph with l�t + 2 stages. The
first and the last (i.e., l�t +2) stages represent the ingress and
egresses switches, respectively. These two stages contain only
one node representing ūt and v̄t, respectively. Stage i (∀i ∈
{2, . . . (l�t + 1)}), represents the (i− 1)-th VNF in the traffic
request and the node(s) within this stage represent the possible
server locations where that type of VNFs can be placed. Each
node is associated with a VNF deployment cost (11) and an
energy cost (12) as described in Section III-B.

An edge (v̄i, v̄j) in this multi-stage graph represents the
placement of a VNF at a server attached to switch v̄j, given
that the previous VNF in the sequence is deployed on a server
attached to switch v̄i. We put a directed edge between all pairs
of nodes in stage i and i + 1 (∀i ∈ {1, 2, . . . (l�t + 1)}). We
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associate two costs with each edge: the cost for forwarding
traffic (13) and the penalty for SLO violations (14). The traf-
fic forwarding cost is proportional to the weighted shortest
path (in terms of latency) between the switches. The penalty
for SLO violations is obtained by the following process: (i) we
equally divide the maximum allowed delay between the stages,
(ii) we assign a SLO violation cost for a transition between
two successive stages in the multi-stage graph whenever we
incur more than the allocated delay due to traffic transport and
processing at the nodes. The total cost of a transition between
two successive stages is calculated by summing the node and
edge costs following (16). Finally, a path from the node in the
first stage to the node in the last stage represents a placement
of the VNFs. Our goal is to find a path in the multi-stage
graph that yields minimal OPEX.

B. Heuristic Algorithm

Algorithm 1 gives the pseudcode of the heuristic solution.
The procedure ProvisionTraffic takes as input a traffic request t
and the network topology graph Ḡ annotated with the resource
capacities at each switch. We keep two tables, cost and π , to
keep track of the cost and the sequence of middlebox place-
ments, respectively. costi,j represents the cost of deploying
the j-th middlebox in the middlebox sequence � t to a server
attached with switch i. The cost computation procedure is the
same as described in Section IV-C. We use a number of helper
procedures for the ease of implementation. The first helper
procedure, IsResourceAvailable checks if a middlebox mbox
for a traffic request t can be placed at switch i, satisfying the
minimum bandwidth and resource requirements. The second
helper, GetCost, computes the cost of placing middlebox mbox
for a traffic request t at a server attached to switch j. The previ-
ous node k that yields the minimum cost for the current node
in consideration j, is tracked by the entry πk,j. Finally, we
backtrace using entries in π to obtain the desired middlebox
sequence.

Running Time: Let the number of switches and the maxi-
mum length of a middlebox sequence be n and m, respectively.
Algorithm 1 performs �(nm) computations at the beginning
to initialize the cost matrix. Then for each element in the traf-
fic sequence, the algorithm takes all possible pairs of nodes
u, v and computes the cost of deploying a middlebox at the
server attached to switch v given that the previous middlebox
in the sequence was deployed at a server connected to switch u.
Therefore, there is a total of �(n2m) operations involved. With
some pre-computation steps the costs can be calculated and
resource availability can be queried in O(1) time. Therefore,
Algorithm 1 runs in �(n2m).

C. Finding a Near-Optimal Solution

Viterbi algorithm is a widely used method for finding
the most likely sequence of states from a set of observed
states. To find such a sequence, Viterbi algorithm first mod-
els the states and their relationships as a multi-stage graph.
Each stage consists of the possible states and a transition
cost is assigned between all pairs of states in successive

Algorithm 1 ProvisionTraffic(t, Ḡ)

1: ∀(i, j) ∈ {1 . . . |�t |} × {1 . . . |S̄|} : costi,j←∞, πi,j← NIL
2: ∀i ∈ |S̄| :
3: if IsResourceAvailable(ut, i,�t

1, t) then
4: cost1,n← GetCost(ut, i,�t

1, t), π1,n← n
5: end if
6: ∀(i, j, k) ∈ {2 . . . |�t |} × {1 . . . |S̄|} × {1 . . . |S̄|} :
7: if IsResourceAvailable(k, j,�t

i , t) then
8: costi,j← min{costi,j, costi−1,k + GetCost(k, j,�t

i , t)}
9: πi,j← i yielding minimum costi,j

10: end if
11: �← NIL, C←∞, ψ ←<>
12: ∀i ∈ |S̄| :
13: C← min{C, cost|�t |,i + ForwardingCost(i, vt)+

SLOViolationCost(i, vt, t)}
14: �← i yielding minimum cost|�t |,i
15: ∀i ∈< |�t |, |�t | − 1 . . . 1 > : Append � to ψ , �← πi,�
16: return Reverse(ψ)

stages. Once the multi-stage graph is constructed, Viterbi algo-
rithm proceeds by computing a per node cumulative cost,
costu. This cost is computed recursively as the minimum of
costv + transition_cost(v, u), for all v in the previous stage as
of u’s stage. costu represents the cost of including node u in
the final solution. This computation proceeds in the increas-
ing order of stages. After finishing the computation at the final
stage, the most likely sequence of states is constructed by trac-
ing back a path from the final stage back to the first that yields
the minimum cost.

We borrow the idea of how costs are computed from
Viterbi Algorithm and propose a traffic provisioning algorithm,
ProvisionTraffic (Algorithm 1). It takes a traffic request t and
a network topology Ḡ as input and returns a placement of
� t in Ḡ. For each node u in each stage i, we find a node
v in stage i − 1 that yields the minimum total cost costv,u
(costs are defined according to the discussion in Section IV-A).
We keep track of the minimum cost path using the table π .
After finishing computation for the final stage, we construct
the desired VNF placement by back tracing from the final
stage to the first stage, using the entries in π . During this pro-
cess we update residual resource capacities of the servers and
the residual bandwidth of the links after each path is allocated.
For each traffic request, the heuristic solution runs in �(n2m)
time, where n is the number of switches in the network and
m is the VNF sequence length.

D. Heuristic in Action

Fig. 3(a) shows an example network topology with six
switches, where the servers are connected to switch 2, 3 and 4.
We need to find the path for a traffic which is going from
switch 1 to 6 and must pass through a firewall, then an IDS
and finally through a proxy.

First, we generate a multi-stage graph as shown in Fig. 3(b).
Here, we are assuming that the firewall and proxy can be
deployed on any server, but the IDS can only be deployed
on servers connected to switches 3 and 4. Each node in the
multi-stage graph represents a decision about where to place
a VNF. For example, if we select node 4 in the stage labeled
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Fig. 3. Modeling with Multi-Stage Graph.

“IDS”, it means that a VNF corresponding to an IDS will be
deployed on the server connected to switch 4. As explained
earlier, there is a cost associated with each node selection.

Now, we traverse this graph starting at node 1. The first
stage is trivial, we just compute the cost of deploying and
running (energy cost) a firewall at node 2, 3 and 4 and add
the cost of routing traffic from node 1 to each node. There is no
additional computation as there is just one incoming link for
each node. However, the operations for the subsequent stages
involve comparing the cost of reaching a particular node from
different nodes. For example, node 3 in stage “IDS” can be
reached from three different nodes. The operation performed
in this is stage is explained in Fig. 3(c).

We need to compute the cost of transition from nodes 2,
3 and 4 to node 3. These costs are shown on the left side
of Fig. 3(c). Now, if we select the link between node 4 and
node 3 then the Firewall will be deployed on node 4 and
the IDS will be deployed on node 3 and cost of deploy-
ing the IDS will be 38. However, we have links with lower
costs than this one and at each stage we select the incom-
ing link with the minimal cost. So, here we will select the
link between node 2 and 3 as it has the lowest cost of 15.
We will also save a pointer (back_ptr) to mark the node
that was selected. We continue in this manner until we reach
the destination node (node 6 in this example), then we fol-
low the back_ptrs to re-construct the solution. We perform
trace driven simulations on real-world network topologies to
gain a deeper insight, and to evaluate the effectiveness of
the proposed solution. Our simulation is focused on the fol-
lowing aspects: (i) demonstrating the benefits of dynamic
VNF orchestration over hardware middleboxes (Section IV-G),
(ii) comparing the performance of the heuristic solution with
that of the CPLEX based optimal solution (Section IV-H),
(iii) comparing the performance of our heuristic with state-
of-the art (Section IV-I), (iv) demonstrating the scalabil-
ity of our heuristic (Section IV-J), and (iv) Analyzing the
behavior of the proposed solution for different traffic vol-
ume (Section IV-K). Before presenting the results, we briefly
describe the simulation setup (Section IV-E) and the evalua-
tion metrics (Section IV-F). Implementations of both CPLEX
and heuristic are available at http://goo.gl/Da7EZu.

E. Simulation Setup

1) Topology Dataset: We have used a wide range of net-
work topologies: (i) Internet2 research network (12 nodes, 15
links) [21], (ii) A university data center network (23 nodes,

TABLE II
SERVER AND MIDDLEBOX DATA USED IN EVALUATION

42 links) [22] and (iii) Autonomous System 3967 (AS-3967)
from Rocketfuel topology dataset (79 nodes, 147 links) [23].

2) Traffic Dataset: We use both real traces and synthetically
generated traffic for the evaluation. We use traffic matrix traces
from [21] to generate time varying traffic for the Internet2
topology. This trace contains a snapshot of a 12 × 12 traffic
matrix and demonstrates significant variation in traffic vol-
ume. For the data center network, we use the traces available
from [22], and replay the traffic between random source-
destination pairs. Finally, for the Rocketfuel topology, we
generated a synthetic time-varying traffic matrix using the
FNSS tool [24]. It follows the distribution from [25] and
exhibits time-of-day effect.

3) Middlebox and Cost Data: We have generated a 3-length
middlebox sequence for each traffic based on the data pro-
vided in [4] and [8]. We have used publicly available data
sheets from manufacturers and service providers to select and
infer values for server energy cost, SLO violation cost (for vio-
lating maximum latency), resource requirements for software
middleboxes and their processing capacities. We also obtained
energy consumption data for hardware middleboxes from a
popular network equipment manufacturer. Table II lists the
parameters used for servers, VNFs and middleboxes. In the
rest of this section we use the term “middlebox” to refer to
both hardware middlebox and VNF.

F. Evaluation Metrics

1) Operational Expenditure (OPEX): We measure OPEX
according to (16), and compare CPLEX and heuristic solutions
by plotting the ratio of OPEX and its components. Here, we
have assigned equal weights to the cost components in (16).

2) Execution Time: It is the time required to find middlebox
placement for a given traffic batch and network topology.
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Fig. 4. Traffic Distribution over Time for Different Scenarios.

Fig. 5. Time vs. Cost Ratio.

3) System Utilization: We compute it as the fraction of used
CPU for a server. We also report the number of active servers.

4) Topological Properties of Solution: We report two topo-
logical properties of the middlebox locations: (i) percentage
of middleboxes placed withing k-hops from the ingress/egress
switches and (ii) path stretch, i.e., the ratio of path length
obtained by CPLEX or the heuristic to the shortest path length
for the traffic. The first metric gives us an insight into the
location of middleboxes with respect to the ingress/egress
switches, and the second one shows how many additional links
(hence more bandwidth) are required to steer traffic through
middlebox sequences.

G. VNFs vs. Hardware Middleboxes

One of the driving forces behind NFV is that VNFs can
significantly reduce a network’s OPEX. Here, we provide
quantifiable results to validate this claim. Fig. 5(a) shows the
ratio of OPEX for hardware middleboxes to VNFs for incom-
ing traffic provisioning requests (about 132 requests per batch)
over a period of 10000 minutes. We show two components of
OPEX: energy and transit cost. There is no publicly avail-
able data that can be used to estimate the deployment cost
of hardware middleboxes. So, for this experiment, we do not
consider deployment cost as a component of OPEX to make
the comparison fair. The SLO violation penalty is not shown
as it is zero for all time-instances. We implemented a different

CPLEX program to peak provision the hardware middleboxes
(peak traffic occurs at time-instance 7665). VNFs are provi-
sioned at each time-instance by our CPLEX implementation
corresponding to the formulation provided in Section III.

The bottom part of Fig. 5(a) shows that VNFs provide
more than 4× reduction in OPEX. The individual reductions
in energy and transit costs are also shown in the same fig-
ure. The reduction in energy cost is much higher than that of
the transit cost. This is due to the fact that hardware middle-
boxes consume considerably higher energy than commodity
servers. From Fig. 5(a) and Fig. 4(a), we can also see that
with the increase in traffic volume (after time-instance 4000)
the total cost ratio decreases. Interestingly, the energy cost
ratio decreases, but the transit cost ratio increases. Handling
higher traffic volume requires higher number of VNFs to be
deployed, which increases the energy consumption of com-
modity servers, thus decreasing the energy cost ratio. However,
VNFs are provisioned at optimal locations by CPLEX, which
causes the transit cost to decrease and increases the tran-
sit cost ratio. The cost ratio relationship between VNFs and
hardware middleboxes depends on a number of factors like
processing capacity, traffic volume, idle and peak energy
consumption.

The topological properties of VNF and hardware middle-
box placement locations are reported in Fig. 6. The CDF of
hop distance between the ingress switch and middlebox is
shown in Fig. 6(a). Higher percentage of VNFs are located
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Fig. 6. Topological Property Comparison between Hardware middlebox and VNF deployment (Internet2).

Fig. 7. Resource Utilization.

within 2 hops of the ingress switch (mostly withing 1 hop),
compared to hardware middleboxes. Some VNFs are also
located at 4 hop distance. This only occurs when placing
a VNF farther away reduces the OPEX by decreasing the
energy cost. Similar results are obtained for the hop distance
between middlebox and egress switch (Fig. 6(b)). These two
figures also demonstrate the fact that CPLEX places mid-
dleboxes in a more balanced (symmetric) way on the path
between the ingress and egress switch. The path stretch for
both hardware middleboxes and VNFs are shown in Fig. 6(c).
VNFs consistently achieve a lower path stretch than hardware
middleboxes, as VNF locations are not static like the hard-
ware middleboxes. They can be provisioned on any server to
reduce OPEX.

H. Performance Comparison Between CPLEX and Heuristic

Now, we compare the performance of our heuristic with that
of the optimal solution. Fig. 5(b) and Fig. 5(c) show the cost
ratios for Internet2 and data center networks, respectively. The
traffic patterns for these two topologies are shown in Fig. 4(a)
and Fig. 4(b), respectively. The deployment cost and penalty
for SLO violation are not shown, as the deployment cost is
equal in both cases and the SLO violation penalty is zero for
all time-instances. From Fig. 5(b), we can see that the heuris-
tic finds solutions that are within 1.1 times of the optimal

TABLE III
AVERAGE EXECUTION TIME

solution. During peak traffic periods, the ratio of energy cost
goes below 1, but the ratio of transit cost increases. The opti-
mal solution adapts to high traffic volumes by deploying more
VNFs (increasing energy cost) and placing them at locations
that decrease the transit cost. As a result, the ratio of energy
cost decreases and the ratio of transit cost increases. However,
the total cost ratio stays almost the same (varying between 1
and 1.1). Similar results are obtained for the data center net-
work (Fig. 5(c)), where the cost ratio is also very close to 1
and varies between 1.1 and 1.3.

The average execution times of the heuristic and CPLEX
are shown in Table III. They were run on a machine with
10 × 16-Core 2.40GHz Intel Xeon E7-8870 CPUs and 1TB
memory. As we can see, our heuristic provides solutions that
are very close to the optimal one and its execution time is
several order of magnitude faster than CPLEX.

Fig. 7 shows results related to server resource utilization
for Internet2 and data center networks. Fig. 7(a) and Fig. 7(b)
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Fig. 8. Topological properties of solution.

show the mean utilization and the total number of active
servers, respectively, for the Internet2 topology. Fig. 7(c)
shows the average utilization per server over all time-instances.
The mean utilization of the heuristic is less than that of
CPLEX, as CPLEX uses more servers than the heuristic
(Fig. 7(b)). CPLEX achieves lower OPEX by deploying more
VNFs during higher traffic periods to route traffic through
shorter paths. However, the solutions provided by the heuris-
tic are within 1.1 times the optimal results (Fig. 5(b)). In
case of the data center network, CPLEX uses less servers
than the heuristic (Fig. 7(e)) and the utilization is also higher
(Fig. 7(d)). The solution provided by the heuristic has higher
resource fragmentation than the CPLEX one (Fig. 7(f)). The
data center topology offers higher number of locations to
deploy VNFs compared to Internet2. Hence, the heuristic falls
a little short of the optimal placement as it explores a smaller
solution space. CPLEX finds the optimal value, but at the cost
of much higher execution time (Table III).

The topological properties for middlebox deployment for
Internet2 and data center networks are shown in Fig. 8. The
CDF of hop distance from the ingress switch to a VNF is
shown in Fig. 8(a). The hop distances for the heuristic is very
close to that of the optimal solution. In case of the data center
network, there is a relatively larger gap. This occurs due to
the higher path diversity offered by a data center network.
Each pair of nodes has more than one equal cost path. CPLEX
finds the optimal solution by exploring all of them. However,
the heuristic always picks the first shortest path. It does not
explore the alternate paths to keep the execution time within
practical limits (Table III). Similar results are observed for the
egress case (Fig. 8(b)). From Fig. 8(a) and Fig. 8(b) we can
also see that the CDFs are quite similar, which means that
both CPLEX and heuristic place VNFs uniformly on the path
between the ingress and egress switches. The path stretch is
shown in Fig. 8(c). As before, the heuristic’s performance is
close to that of the optimal solution. In case of the data center
network, the heuristic has a larger stretch, which is a result of
the path diversity issue discussed earlier.

The results for the AS-3967 topology are shown in Fig. 9
and Fig. 10. The traffic for this topology is show in Fig. 4(c).
As mentioned earlier, this traffic was generated using the FNSS
tool [24] and it exhibits time-of-day effect. We cannot provide
a comparison with the optimal solution as the CPLEX program
was not able to solve the problem for this topology. It failed
to fit the optimization model in its memory even though the
physical machine had 1TB of memory. The program crashes

Fig. 9. OPEX Components for AS-3967.

after the total memory usage reaches around 300 GB. We
observed similar behavior when experimenting with high traf-
fic volumes. CPLEX was not able to solve the problem for
the Internet2 topology when traffic was increased to utilize
the network by more than 40%. We tuned different parame-
ters (e.g., solving the dual problem, storing branch and bound
tree data on disk, reducing the number of threads, etc.) of
the CPLEX solver according to the guidelines provided by
IBM, but could not solve the problem. We plan to investi-
gate this issue further in the future. However, the heuristic
solution was able to solve the same problem in less than
3 seconds.

The transit and energy cost for the AS-3967 topology is
reported in Fig. 9. The transit cost is two order-of-magnitude
higher than the energy cost, which is expected for a larger net-
work with large amount of traffic. From Fig. 4(c) and Fig. 9,
we can see that our dynamic VNF orchestration approach
adapts nicely with the changing traffic conditions. It can
dynamically scale-up or scale-down the number of active
VNFs (demonstrated by the rise and fall of the energy cost).
It can also adapt the location of the VNFs according to the
variation in the traffic volume.

The results for system resource utilization and topologi-
cal properties for middlebox locations are shown in Fig. 10.
From Fig. 10(a) we can see that the mean utilization and num-
ber of active servers vary with fluctuation in traffic volume.
The mean utilization of the servers is around 80%, but there is
a small number of servers that are underutilized (Fig. 10(b)).
The CDF of percentage of middleboxes deployed within k-hop
distance from the ingress switch is reported in Fig. 10(c). More
than 90% middleboxes are deployed within 5 hops, which is
quite reasonable for a network with 79 switches and 147 links.
Similar results are obtained for the egress case as shown in the
same figure. Finally, the path stretch is shown in Fig. 10(d).
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Fig. 10. Results for Rocketfuel Topology (AS-3967).

Fig. 11. Performance comparison with [14].

We can observe that 20% traffic passes through the short-
est path even after going though the VNF sequence. So, in
20% of the cases VNFs are provisioned on the shortest path
between the ingress and egress switches that the traffic is
passing through.

I. Performance Comparison With Previous Work

We demonstrate the effectiveness of our proposed heuristic
(NFO-DP) over prior work by comparing with a very recent
and relevant proposal. We implemented the binary search
based heuristic proposed in [14] (NFO-BS). We adjusted the
heuristic parameters according to the provided guideline in
the paper. We experimented with a moderate sized ISP net-
work topology with 79 nodes and 147 links (AS3967 from
RocketFuel topologies [23]). We varied the number of VNF
chaining requests from 10 to 100 and measured the execution
time along with the number of deployed VNFs. The results are
reported in Fig. 11. NFO-BS could not find a feasible solu-
tion for more than 60 traffic requests within a time limit of
24 hours. Moreover, the solution quality is not consistent, as
shown by the irregular line in Fig. 11. Our findings show that
on similar problem instances NFO-DP outperforms NFO-BS
in both solution quality and execution time.

J. Scalability of Heuristic

In this scenario, we test the scalability of our proposed
heuristic by running it on larger network topologies and report

Fig. 12. Scalability of Heuristic.

Fig. 13. Cost Ratio (Heuristic / CPLEX) with Varying Load.

the execution time. For larger network topologies, we used a
28-port fat tree [27] with around 1000 nodes and 10K links as
a data center network and an ISP network topology with 315
nodes and 972 links (AS1239 from RocketFuel ISP topolo-
gies [23]). For each of these topologies we varied the number
of VNF chaining requests from 10 to 100 and reported the
execution time. Fig. 12 shows the results of this experiment.
As we can see, even for a very large data center network, our
proposed heuristic could embed 100 requests in under 6 min-
utes. It is worth mentioning that the heuristic proposed in [14]
could embed only less than 30 VNF chaining request withing
6 minutes on a much smaller network.

K. Effect of High Traffic Volume

Now, we show the impact of higher traffic volume on
our solution. We perform this experiment by increasing the
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original traffic by 10% to 40% (in increments of 10%) for the
Internet2 topology (Fig. 13). We observed a linear relation-
ship between OPEX and network utilization for both of our
solutions. The cost also grows almost at the same rate for both
CPLEX and heuristic as evident from Fig. 13(a). The heuristic
is able to follow the optimal solution very closely. Although
it might seem a bit unintuitive by looking at the ratio of the
individual cost components, it occurs as the transit cost is two
order-of-magnitude larger than the energy cost.

The server utilization increases sub-linearly with increasing
network load (Fig. 13(b)). The number of used servers remains
the same for different network loads, but more cores were
used since more VNFs were deployed. The larger error bar
for CPLEX indicates the deployment of more VNFs, which
increases the energy cost. However, more VNFs eventually
decreased the transit cost, which is the major contributor to
OPEX in this case.

V. RELATED WORK

The initial drive for NFV was from several telecommunica-
tion operators back in 2013 [9]. The motivation behind NFV
is to break the barrier of proprietary hardwares and have more
flexibility in the network in terms of service placement, intro-
ducing new services, and vendor independence. To this date,
research efforts have been made in different aspects of NFV.
In this section, we first discuss about state-of-the-art NFV
management and orchestration proposals (Section V-A), then
we describe some placement algorithms for VNFs and VNF
chains (Section V-B), followed by some enabling technologies
for NFV (Section V-C).

A. Management and Orchestration of Network Functions

Some of the early works on managing VNFs, propose to
outsource them to a cloud service [2], [28]. Such outsourcing is
motivated in the literature by studying experiences of different
network operators. References [2] and [28] show how the man-
agement complexities arising in today’s enterprise networks
can be mitigated by outsourcing.

A more formal management approach towards NFV is taken
by projects such as Stratos [29], and OpenNF [30]. Stratos
proposes an architecture for orchestrating VNFs outsourced
to a remote cloud by taking care of traffic engineering, hor-
izontal scaling, etc. On the other hand, OpenNF proposes a
converged control plane for VNFs and network forwarding
plane by extending the centralized SDN paradigm. In contrast,
we propose orchestration algorithms for VNF chain placement,
which can be utilized by such management systems.

Some recent works on managing VNFs focus on traffic
engineering issues such as steering the traffic through some
existing sequence of VNFs [4], [31]. This problem becomes
more challenging when some VNF modifies the packet head-
ers, thus changing the traffic signature. Qazi et al. [4] and
Fayazbakhsh et al. [31] proposed tagging based mechanisms
to identify a traffic during its lifetime and also to keep track of
the visited sequence of VNFs. These works are complemen-
tary to ours as we focus on determining the placement and
traffic routing paths for VNF chains, while the tagging based

approaches can be utilized to deploy the VNF chain in a SDN
network.

B. VNF and VNF Chain Placement

Mehraghdam et al. [32] proposed a grammar for specifying
VNF chains and then provided a mathematical formulation for
VNF chain placement. Their formulation is quadratic and does
not allow VNF sharing between multiple tenants. In contrast,
we provide a linear formulation and allow for VNF sharing.
Cohen et al. [33] provided a LP-relaxation based approach
for finding inter-data center VNF chain placement. However,
due to LP-relaxation their solution violates physical resource
capacities by a factor of at most 16. Our solutions do not
have such issue and we provide extensive simulations to show
that our proposed heuristic achieves near-optimal performance
within a second. A genetic algorithm for VNF chain place-
ment is proposed in [34], but it does not address the issue
of dynamically adjusting the placement of VNFs to balance
between network operating cost and performance. An orches-
tration architecture for automated VNF placement is proposed
in [35], but the authors do not provide any concrete algorithms
for orchestration. Our proposed solutions can be used by such
systems to determine the placement locations.

C. Enabling Technologies for NFV

In recent years, a number of research efforts have been
targeted to achieve near line speed network I/O throughput
with commodity servers [36], [37]. Apart from accelerating
the packets along the network I/O stack, more recent works
have proposed changes to virtualization technologies to sup-
port deployment of modular VNFs on lightweight VMs [11].
Hundreds of these VMs can be instantiated on a single physi-
cal machine within milliseconds. CoMb [38] and xOMB [39]
propose an extensible and consolidated framework for incre-
mentally developing scalable middleboxes by leveraging the
idea of reusable network processing pipelines. These works are
orthogonal to our work. They focus on developing the tech-
nologies for scalable VNFs, while we focus on optimization
algorithms for VNF chain placement.

VI. CONCLUSION

Virtualized network functions provide a flexible way to
deploy, operate and orchestrate network services with much
less capital and operational expenses. Software middleboxes
(e.g., ClickOS) are rapidly catching up with hardware mid-
dlebox performance. Network operators are already opting for
NFV based solutions. We believe that our model for dynamic
VNF orchestration will have significant impact on middlebox
management in the near future. Our model can be used to
determine the optimal number of VNFs and to place them
at the optimal locations to optimize network operational cost
and resource utilization. Our trace driven simulations on the
Internet2 research network demonstrate that network OPEX
can be reduced by a factor of 4 over hardware middleboxes
through proper VNF orchestration.

In this paper, we presented two solutions to the VNF orches-
tration problem: CPLEX based optimal solution for small
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networks and a heuristic for larger networks. We found that
the heuristic produces solutions that are within 1.3 times of the
optimal solution, yet the execution-time is about 65 to 3500
times faster than that of the CPLEX solution. We intend to
extend this work in a number of ways. We plan to extend our
model for supporting both hardware and software middleboxes
in the same network. We want to explore the possibility of
introducing failure-resilience by deploying backup VNFs that
can take over the traffic processing tasks from failed VNFs. We
plan to enhance the physical network transformation process
to further reduce the solution space and speed-up the running
time of the optimal solution. We also intend to address the
issues of traffic departure and admission control in the future.
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