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Abstract—Network virtualization is enabling infrastructure
providers (InPs) to offer new services to service providers (SPs).
InPs are usually bound by service level agreements to ensure
various levels of resource availability for different SPs’ virtual
networks (VNs). They provision redundant backup resources
while embedding an SP’s VN request to conform to the SLAs
during physical failures in the infrastructure. An extreme backup
resource provisioning is to reserve a mutually exclusive backup
of each element in an SP’s VN request. Such dedicated pro-
tection scheme can enable an InP to ensure fast VN recovery,
thus, providing high uptime guarantee to the SPs. In this
paper, we study the 1 + 1-Protected Virtual Network Embedding
(1 + 1-ProViNE) problem. We propose Dedicated Protection for
Virtual Network Embedding (DRONE), a suite of solutions to
the 1 + 1-ProViNE problem. DRONE includes an integer linear
programming formulation for optimal solution (OPT-DRONE)
and a heuristic (FAST-DRONE) to tackle the computational
complexity of the optimal solution. Trace driven simulations
show that FAST-DRONE allocates only 14.3% extra backup
resources on average compared to the optimal solution, while
executing 200–1200 times faster. Simulation results also show
that FAST-DRONE can accept four times more VN requests on
average compared to the state-of-the-art solution for providing
dedicated protection to VNs.

Index Terms—Survivable virtual network embedding, network
survivability and resilience, optimization techniques.

I. INTRODUCTION

NETWORK virtualization has evolved as a key enabler
for next generation of network services. Infrastructure

providers (InPs) such as Data Center Network (DCN) oper-
ators and Internet Service Providers (ISPs) are rolling out
network virtualization technologies to offer slices of their net-
working infrastructure to Service Providers (SPs) [1]. Even the
long haul connectivity providers, i.e., the transport network
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operators are working toward leveraging Software Defined
Networking (SDN) to offer full fledged virtual networks (VNs)
to their customers [2], [3]. This next generation of trans-
port network, also known as Transport SDN (T-SDN), gives
customers more flexibility and control over their virtual
slice and deploy their own routing and traffic engineering
solutions.

The benefits from network virtualization come at the cost of
additional resource management challenges for the InP. A fun-
damental and well studied problem in this area is to efficiently
embed a VN request from an SP on the physical network (PN),
also known as the Virtual Network Embedding (VNE) prob-
lem [4]. Typical objectives for VNE include maximizing the
number of embedded VNs [5], minimizing the resource pro-
visioning cost on the PN [6], [7], etc. One particular aspect
of VNE is to take the possibility of PN failures into account,
known as the Survivable VNE (SVNE) [8] problem. Protection
and restoration mechanisms exist in the literature for SVNE.
Restoration approaches reactively take action after a failure has
occurred, while protection approaches pro-actively provision
backup resources when a VN is embedded.

One extreme case for the VN protection approach is to
provision dedicated backup resource for each virtual node
and virtual link in a VN request, also known as the 1 + 1-
protection scheme. 1 + 1-protection has its roots back to
Wavelength Division Multiplexing (WDM) optical networks
where light paths are established with a dedicated backup path
for recovering fiber cuts within tens of milliseconds [9], [10].
In network virtualization context, 1 + 1-protection for VN
is motivated by use cases from T-SDN. T-SDN leverages
SDN technology to separate the control and optical switch-
ing planes of the Optical Transport Networks (OTNs) for
flexible management and better automation. T-SDN envisions
the coexistence of multiple customers with full-fledged VNs
instead of traditional end-to-end connectivity, while each cus-
tomer having full control over its virtual slice. These customer
VNs carry high volumes of traffic at high speed, and usu-
ally have Service Level Agreements (SLAs) with the InP for
recovery from physical failures within tens of milliseconds. To
satisfy such tight SLAs, the InPs may need to provision dedi-
cated backup resources for the entire VN topology, which can
be used for immediate recovery from a physical failure [11].
Otherwise, a prolonged recovery time can lead to service dis-
ruption for the SP, leading to revenue and reputation loss for
the InP. However, such fast recovery with dedicated backup
comes at the expense of provisioning idle backup resources
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in the network. Therefore, the InP should carefully provision
VN requests to minimize resource provisioning cost.

In this paper, we study the problem of 1 + 1-Protected
Virtual Network Embedding (1+ 1-ProViNE) with the objec-
tive of minimizing resource provisioning cost in the PN, while
protecting each node and link in a VN request with dedicated
backup resource in PN. The primary and backup embeddings
need to be disjoint to ensure that a single physical node fail-
ure does not affect both the primary and the backup. If the
primary embedding of a VN is affected by a physical node
failure, the SP should not incur a significant service disrup-
tion typical when migrating the whole or part of the VN to
the backup. Indeed, during a single physical node failure,
the disjoint primary and backup embeddings both accessi-
ble to the SP enables the InP to instantly switch traffic to
the backup embedding without requiring any re-embedding
decision. This capability of instantly switching traffic to
the backup facilitates fast recovery within tens of millisec-
onds, which is a typical SLA between an OTN provider and
customer [9], [10].

A major challenge in solving 1+ 1-ProViNE is to find the
primary and backup embedding at the same time. Relevant
literature [12] shows that sequentially embedding the primary
and backup can lead to failure in embedding even though a fea-
sible embedding exists. In this regard, we propose Dedicated
Protection for Virtual Network Embedding (DRONE), a suite
of solutions for 1+ 1-ProViNE. DRONE guarantees a VN
to survive under a single physical node failure. We focus
on single node failure scenario since it is the most proba-
ble case [13], [14], and leave the multiple failure scenario
for future investigation. Specifically, we make the following
contributions in this paper:

1) OPT-DRONE: An Integer Linear Program (ILP) for-
mulation to find the optimal solution for 1+ 1-ProViNE,
improving on the quadratic formulation from previous
work [12]. We also show that 1+ 1-ProViNE is at least
as hard as jointly solving balanced graph partitioning and
minimum unsplittable flow problems, both of which are
NP-Hard [15], [16].

2) FAST-DRONE: A heuristic to tackle the computational
complexity of OPT-DRONE and to find solution in a rea-
sonable time frame. Trace driven simulations show that
FAST-DRONE uses about 14.3% extra resources on aver-
age compared to OPT-DRONE, while executing 200 – 1200
times faster. Simulation results also show that FAST-DRONE
outperforms state-of-the-art solution for providing dedicated
protection to VNs [12] and accepts 4 times more VN requests
on average.

This paper extends our initial work presented in [17] on
several aspects. First, we provide a guideline on how to par-
allelize FAST-DRONE to leverage multiple CPU cores on
a multi-core machine. Second, we perform more extensive
simulations and present results on the steady state behav-
ior of FAST-DRONE and compare to the state-of-the-art
solution [12]. We also extend the micro-benchmarking perfor-
mance analysis by demonstrating the impact of VN topology
type on OPT-DRONE and FAST-DRONE’s performance, and
including results on mean embedding path lengths obtained

by OPT-DRONE and FAST-DRONE. Finally, we present in-
depth discussion on the subtle differences of 1+ 1-ProViNE
to various related problems in SVNE literature.

The rest of the paper is organized as follows. We begin with
introducing the mathematical notations and a formal definition
of 1+ 1-ProViNE in Section II. Then we present the ILP for-
mulation of 1+ 1-ProViNE, i.e., OPT-DRONE in Section III
followed by the details of FAST-DRONE in Section IV.
Section V presents our evaluation of DRONE. Then we discuss
related works from the literature in Section VI. Finally, we
conclude with some future research directions in Section VII.

II. MATHEMATICAL MODEL: 1+ 1-ProViNE

In this section, we first present a mathematical represen-
tation of the inputs: the PN and the VN request. Then we
formally define 1+ 1-ProViNE.

A. Physical Network

We represent the PN as an undirected graph, G = (V, E),
where V and E are the set of physical nodes and links, respec-
tively. The set of neighbors of each physical node u ∈ V
is represented by N (u). Each physical link (u, v) ∈ E has
the following attributes: i) buv: bandwidth capacity of the link
(u, v), ii) Cuv: cost of allocating unit bandwidth on (u, v) for
provisioning a virtual link.

B. Virtual Network

We represent a VN as an undirected graph Ḡ = (V̄, Ē),
where V̄ and Ē are the set of virtual nodes and virtual links,
respectively. Each virtual link (ū, v̄) ∈ Ē has bandwidth
requirement būv̄. We also have a set of location constraints,
L = {L(ū)|L(ū) ⊆ V,∀ū ∈ V̄}, such that a virtual node ū ∈ V̄
can only be provisioned on a physical node u ∈ L(ū). The
location constraint set for ū ∈ V̄ contains all physical nodes
when there is no location constraint for ū. The binary variable
�ūu represents the location constraint as follows:

�ūu =
{

1 if ū ∈ V̄ can be provisioned on u ∈ V,

0 otherwise.

C. 1+ 1-ProViNE Problem Statement

Given a PN G = (V, E), VN request Ḡ = (V̄, Ē), and a set
of location constraints L , embed Ḡ on G such that:
• Each virtual node ū ∈ Ḡ has a primary and a backup

embedding in the PN, satisfying the location constraint.
• For each virtual node ū ∈ Ḡ, the physical nodes used

for the primary embedding are disjoint from the physical
nodes used for the backup embedding.

• Each virtual link (ū, v̄) ∈ Ē has a primary and a backup
embedding in the PN. A primary or backup embedding
of a virtual link on the PN corresponds to a single path
in the PN having at least būv̄ available bandwidth. The
physical paths corresponding to the primary and backup
embedding of a virtual link (ū, v̄) ∈ Ē are represented by
Pūv̄ and P′̄uv̄, respectively.

• Backup embedding of a virtual link is disjoint from
the set of physical paths used for primary embedding
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Fig. 1. Example embedding with DRONE.

of the virtual links. The same disjointedness principle
applies for the primary embedding.

• The total cost of provisioning bandwidth in PN is mini-
mum according to the following cost function:

∑
∀(ū,v̄)∈Ē

∑
∀(u,v)∈Pūv̄∪P′̄uv̄

Cuv × būv̄ (1)

Therefore, a solution of 1+ 1-ProViNE will yield two dis-
joint embeddings of a VN request on the PN while minimizing
the given cost function (1). Fig. 1 shows such an example with
filled nodes and thickened lines marking the primary, and hol-
low nodes and thinner lines marking the backup embedding
of a VN request on a PN.

III. ILP FORMULATION: OPT-DRONE

1+ 1-ProViNE’s objective is to ensure fault tolerance of a
VN by providing dedicated protection to each VN element
with minimal resource overhead. This ensures that a single
physical element failure does not bring down both the pri-
mary and backup embedding of the same VN element. To
find an optimal solution, we first transform the input VN
(Section III-A), which ensures that the primary and the backup
embedding are computed simultaneously, and then provide an
ILP formulation for the optimal embedding (Section III-B).
A glossary of key notations used in the ILP formulation is
provided in Table I.

A. Virtual Network Transformation

We formulate 1+ 1-ProViNE as simultaneously embedding
two copies of the same VN disjointly on the PN. To accom-
plish this goal, we first replicate the input VN Ḡ to obtain a
shadow VN G̃ = (Ṽ, Ẽ). G̃ has the same number of nodes
and links as Ḡ and each shadow virtual link (ũ, ṽ) ∈ Ẽ has
the same bandwidth requirement as the original virtual link
(ū, v̄) ∈ Ē. We enumerate the nodes in the shadow VN G̃ by
using the following transformation function: τ (ū) = ũ.

Our transformed input now contains the graph Ĝ = (V̂, Ê),
s.t. V̂ = V̄ ∪ Ṽ and Ê = Ē ∪ Ẽ. We now embed Ĝ on G
in such a way that any node u ∈ V̄ and any node ũ ∈ Ṽ are
not provisioned on the same physical node. Similar constraints
apply on the virtual links as well.

TABLE I
SUMMARY OF KEY NOTATIONS

B. ILP Formulation

We begin by introducing the decision variables
(Section III-B1). Then we present the constraints
(Section III-B2) followed by the objective function
(Section III-B3).

1) Decision Variables: A virtual link is mapped to a
physical path. The following decision variable indicates the
mapping between a virtual link and a physical link.

xûv̂
uv =

{
1 if

(
û, v̂

) ∈ Ê is mapped to (u, v) ∈ E,

0 otherwise.

The following decision variable represents the virtual node
mapping:

yûu =
{

1 if û ∈ V̂ is mapped to u ∈ V,

0 otherwise.

2) Constraints:
a) Link mapping constraints: We ensure that every vir-

tual link is mapped to a non-zero length physical path by (2). It
also ensures that no virtual link is left unmapped. Physical link
resource constraint is expressed using (3). Finally, (4) makes
sure that the in-flow and out-flow of each physical node is
equal except at the nodes where the endpoints of a virtual link
are mapped. Equation (4) ensures a continuous path between
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the mapped endpoints of a virtual link [18].

∀(û, v̂
) ∈ Ê :

∑
∀(u,v)∈E

xûv̂
uv ≥ 1 (2)

∀(u, v) ∈ E :
∑
∀(û,v̂)∈Ê

xûv̂
uv × bûv̂ ≤ buv (3)

∀û, v̂ ∈ V̂,∀u ∈ V :
∑
∀v∈N (u)

(
xûv̂

uv − xûv̂
vu

)
= yûu − yv̂u (4)

The binary nature of the virtual link mapping decision vari-
able along with the flow constraint prevents any virtual link
being mapped to more than one physical path. This restricts
the link mapping to the Multi-Commodity Unsplittable Flow
Problem [16].

b) Node mapping constraints: Equations (5) and (6)
ensures that a virtual node is mapped to exactly one physi-
cal node according to the given location constraints. Then (7)
ensures that a physical node does not host more than one
virtual node from the same virtual network request.

∀û ∈ V̂,∀u ∈ V :
∑
∀u∈V

yûu = 1 (5)

∀û ∈ V̂,∀u ∈ V : yûu ≤ �ûu (6)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (7)

The virtual node embedding follows from the virtual link
embedding since we do not have any cost associated with vir-
tual node embedding. Therefore, the problem of coordinated
node and link embedding is at least as hard as the Multi-
commodity Unsplittable Flow Problem with Unknown Sources
and Destinations.

c) Disjointness constraints: We need to ensure that every
virtual link in Ḡ and its corresponding virtual link in G̃ is
embedded on node and link disjoint paths in PN. To ensure
this disjointedness property, we first constrain the virtual links
in Ḡ and G̃ to be mapped on disjoint set of physical links
using (8) and (9).

∀(u, v) ∈ E :
∑
∀(ũ,ṽ)∈Ẽ

xũṽ
uv = 0 if xūv̄

uv = 1,∀(ū, v̄) ∈ Ē (8)

∀(u, v) ∈ E : xūv̄
uv = 0 if

∑
∀(ũ,ṽ)∈Ẽ

xũṽ
uv > 0,∀(ū, v̄) ∈ Ē (9)

Then we forbid the virtual link endpoints of the primary
embedding to be intermediate nodes on the path of backup
embedding and vice versa using (10) and (11).

∀u ∈ V : yūu = 0, if
∑
∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽ
uv > 0 (10)

∀u ∈ V :
∑
∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽ
uv = 0, if yūu = 1 (11)

We also ensure that the physical paths corresponding to the vir-
tual links in Ḡ and G̃ do not share any intermediate nodes. This
constraint is necessary to ensure that a physical failure does
not affect a primary resource and its corresponding backup

resource at the same time.

∀u ∈ V :
∑
∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽ
uv = 0, if

∑
∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄
uv > 0

(12)

∀u ∈ V :
∑
∀(ū,v̄)∈Ē

∑
∀v∈N (u)

xūv̄
uv = 0, if

∑
∀(ũ,ṽ)∈Ẽ

∑
∀v∈N (u)

xũṽ
uv > 0

(13)

3) Objective Function: Our objective is to minimize
the cost of provisioning bandwidth on the physical links.
Therefore, we have the following objective function:

minimize

⎛
⎜⎝ ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂
uv × Cuv × bûv̂

⎞
⎟⎠.

C. Hardness of 1+ 1-ProViNE

As discussed earlier in Section III-B2, the coordinated
node and link mapping without the disjointedness con-
straints is at least as hard as solving the NP-Hard Multi-
commodity Unsplittable Flow Problem with Unknown Source
and Destinations. State-of-the art literature reveals that this
problem is also very hard to approximate even when the source
and destination of the flows are known. Recent research works
have found (2 + ε) approximation algorithms for line and
cycle graphs, respectively [19]. However, finding constant fac-
tor approximation algorithms for general graphs still remains
open [20]. With the added mutual exclusion constraints, the
embedding problem becomes at least as hard as partitioning
the PN while minimizing the cost of multi-commodity unsplit-
table flow with unknown sources and destinations in each of
the partition. Even an easier version of this problem, balanced
graph partitioning, is NP-hard [21] and does not have a con-
stant factor approximation algorithm [15], [21]. This makes
it challenging to devise an constant factor approximation
algorithm for 1+ 1-ProViNE.

IV. HEURISTIC SOLUTION: FAST-DRONE

Given the NP-hard nature of the 1+ 1-ProViNE prob-
lem, we resort to a heuristic, i.e., FAST-DRONE, for finding
solutions within a reasonable time frame. First, we restruc-
ture 1+ 1-ProViNE for the ease of designing a heuristic,
while keeping the original problem intact in its meaning
(Section IV-A). Then we present our heuristic algorithm
in detail (Section IV-B, Section IV-C, Section IV-D, and
Section IV-E) to solve the restructured problem. We also ana-
lyze the running time of FAST-DRONE (Section IV-F) and pro-
vide a guideline on parallel implementation of FAST-DRONE
on a multi-core machine (Section IV-G).

A. Problem Restructuring

We reformulate 1+ 1-ProViNE as a variant of graph parti-
tioning problem as follows:

Given a PN G = (V, E), a VN request Ḡ = (V̄, Ē), and
a set of location constraints, L = {L(ū)|L(ū) ⊆ V,∀ū ∈ V̄}
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(Section II-B), 1+ 1-ProViNE requires to partition the graph
G into two disjoint partitions P and Q such that:
• ∀ū ∈ V̄ , P has at least one element from each L(ū).
• ∀ū ∈ V̄ , Q has at least one element from each L(ū).
• The sub-graph induced by the elements of each set L(ū)

in P (and Q ) is connected.
• The sum of costs of embedding Ḡ on P and Q is

minimum according to the given cost function (1).
The sets P and Q are disjoint partitions of G where the

primary and backup resources for Ḡ can be provisioned with-
out violating the disjointedness constraint of 1+ 1-ProViNE.
An optimal P and Q will minimize the total cost of primary
and backup link embedding. Such optimal P , Q will yield the
optimal solution to 1+ 1-ProViNE.

Graph partitioning, which is an NP-hard problem [21], can
be reduced to the aforementioned partitioning problem by
relaxing the location constraint, i.e., setting each set L(ū),
∀ū ∈ V̄ , equal to V . Once we have the two partitions, embed-
ding the virtual links inside one partition is at least as hard
as solving the NP-Hard Multi-commodity Unsplittable Flow
problem [16], since we are not allowed to embed a virtual link
over multiple physical paths. In the next section, we present
our heuristic algorithm based on this reformulation.

B. Heuristic Algorithm

In order to find a solution to 1+ 1-ProViNE we need to par-
tition the PN s.t. the total cost of embedding the virtual links
in the partitions are minimized (Section IV-A). Our heuris-
tic starts with a seed mapping set containing the primary and
backup mapping of one virtual node and goes through the
following three phases to partition the PN and embed the VN.

1) Node Mapping Phase: Use the seed mapping and loca-
tion constraint set to find a primary and backup node embed-
ding for the other virtual nodes. This phase yields a partial
partitioning of the PN. This partial partition acts as a seed that
we grow to a complete partition of the PN into two disjoint
subgraphs.

2) Partitioning Phase: Once we have a seed primary and
backup partition from the node mapping phase, we grow the
seed partition to include the rest of the physical nodes into
either of the partitions. At the end of this phase, all of the
physical nodes are either assigned to the primary or to the
backup partition.

3) Link Mapping Phase: In this phase, we have the vir-
tual node mapping and the primary and backup partition of
the PN as input. We embed the virtual links in these parti-
tions separately by using the Constrained Shortest Path First
algorithm.

We run this three phase algorithm for different initial seed
node mapping and retain the solution with the minimum cost.
To generate different seed node mappings we identify the vir-
tual nodes that have the minimum number of elements in their
location constraint set. We call these virtual nodes the most
constrained virtual nodes. Such virtual nodes may lead to
infeasible embedding if they are not embedded first, since they
have the fewest options for embedding. For each of these most
constrained virtual nodes ūc, we take every pair of physical

Algorithm 1 MapVNodes

1: function MAPVNODES(G, Ḡ, location, seed)
2: nmapp(seed.node)← seed.primary
3: nmaps(seed.node)← seed.backup
4: taken(seed.primary), taken(seed.backup)← false
5: P ← φ, Q ← φ

6: // Sequence V̄ represents virtual nodes sorted in
7: // decreasing order of location constraint set size
8: for all ū ∈ V̄ do
9: best← NIL

10: for all c ∈ location(ū) do
11: if taken(c) = false then
12: if BetterAssignment(G, P , Q , c, best) then
13: best← c
14: end if
15: end if
16: end for
17: if best �= NIL then
18: taken(best)← true
19: nmapp(ū)← best, P ← P ∪ {best}
20: end if
21: best← NIL
22: for all c ∈ location(ū) do
23: if taken(c) = false then
24: if BetterAssignment(G, Q , P , c, best) then
25: best← c
26: end if
27: end if
28: end for
29: if best �= NIL then
30: taken(best)← true
31: nmaps(ū)← best, Q ← Q ∪ {best}
32: end if
33: end for
34: return {nmapp, nmaps}
35: end function

nodes from ūc’s location constraint set L(ūc) and consider that
pair as a primary and backup node embedding for ūc. In this
way, we generate a number of seed node mappings and exe-
cute the above-described three phase algorithm. In the rest of
this section, we describe the individual phases in detail.

C. Node Mapping Phase

The node mapping phase follows a greedy approach to map
the virtual nodes to it’s primary and backup physical nodes,
while satisfying the location constraint. In this phase, we map
the virtual nodes one at a time and select them in the increas-
ing order of their location constraint set size. The rationale for
following this order is that a virtual node with fewer possi-
ble locations for mapping is more constrained. Mapping a less
constrained virtual node first might lead to infeasible mapping
of the more constrained virtual node(s). Node mapping is per-
formed by the MapVNodes procedure (Algorithm 1). We first
initialize the primary and backup node mapping sets nmapp

and nmaps, respectively, with the provided seed. Then we take
one virtual node at a time according to the aforementioned
order (Line 8) and iterate over its location constraint set to find
the best physical node for primary mapping (Line 10 – 20).
After finding a primary mapping, we determine the corre-
sponding backup mapping (Line 22 – 33). While considering a
physical node u ∈ V as primary mapping of a virtual node, we
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try to determine if u is a better choice compared to bestu, the
best choice of physical node that we have seen so far consid-
ering the node mappings we already have. This is evaluated
using the BetterAssignment procedure. This procedure
performs the following tests in the order they are listed. We
choose this order to minimize the chances of not finding a
solution and to create a partition that yields a close to optimal
embedding.

1) Infeasibility Test: Does adding u to the primary mapping
makes the backup mapping impossible to be connected and
vice versa? If the answer is yes, then we do not consider u
for primary node mapping of the virtual node. Otherwise, we
perform the next test.

2) Compact Mapping Test: Does considering u instead of
bestu in the primary (or backup) mapping decreases the mean
shortest path length among the nodes currently present in the
primary (or backup) mapping set? If the answer is yes then u
is considered to be better than bestu. Otherwise, we perform
the next test.

3) Connectivity Contribution Test: Does u contribute more
connectivity to the mapping set (primary or backup) compared
to bestu? If the answer is yes, then bestu is updated with u.
We measure connectivity contribution using the following:
• Number of connected components decreased in the cur-

rent mapping set if u is considered instead of bestu in the
mapping set.

• Number of links incident from u to the current mapping
set compared to bestu.

We iterate over all possible physical nodes u in the loca-
tion constraint set of a virtual node and find the best among
them for the mapping. We do the same iteration and tests again
(line 24 of Algorithm 1) to find a backup mapping for that vir-
tual node. We repeat this procedure for all the virtual nodes
and we finally obtain a primary and backup mapping of the vir-
tual nodes, nmapp and nmaps, respectively. This primary and
backup mapping sets acts as seed primary and backup parti-
tions (P0 and Q0, respectively) that we grow to full partitions
in the Partitioning phase.

D. Partitioning Phase

Given two seed primary (P0) and backup (Q0) partitions
obtained from the node mapping phase, we partition the phys-
ical network G into two disjoint partitions P and Q for
the primary and backup embeddings of the virtual network,
respectively. The partitioning process is performed using the
PartitionGraph procedure (Algorithm 2). We consider
the physical nodes that are not already assigned to any of
the partitions (line 4 – 5) one at a time, and perform the fol-
lowing tests in the order they are listed. Such order is chosen
for similar reasons as discussed in the node mapping phase.

1) Infeasibility Test: Does adding u to P makes the parti-
tion Q impossible to be connected (line 6)? If the answer is
yes, then we do not consider u for P , rather we add break u
to Q .

2) Compact Partition Test: Does including u to P reduce
shortest path length more than that reduced when u is added
to Q (9 – 11)? If the answer is yes, then add u to P , otherwise

Algorithm 2 PartitionGraph
1: function PARTITIONGRAPH(G,nmapp, nmaps)
2: P ←

⋃
∀np∈nmapp

np, Q ←
⋃

∀ns∈nmaps

ns

3: taken← Array of size |V|, initialized with false
4: for all v ∈ V do
5: if taken(v) = false then
6: if IsFeasiblePartition(G, P , Q , v) = false then
7: Q ← Q ∪ {v}
8: else
9: x← Mean-SP-Reduction(G, P , Q , u)

10: y← Mean-SP-Reduction(G, Q , P , u)
11: if x > y then
12: P ← P ∪ {v}
13: else if x = y then
14: δp ← Components-Reduced(G, P , v)
15: δs ← Components-Reduced(G, Q , v)
16: if δp > δs then
17: P ← P ∪ {v}
18: else if δp = δs then
19: cutp ← Num-Cut-Edges(G, P , v)
20: cuts ← Num-Cut-Edges(G, Q , v)
21: if cutp > cuts then
22: P ← P ∪ {v}
23: else if cutp < cuts then
24: Q ← Q ∪ {v}
25: else
26: Assign u to the smaller partition
27: end if
28: else
29: Q ← Q ∪ {v}
30: end if
31: end if
32: end if
33: end if
34: end for
35: return {P , Q }
36: end function

evaluate the next test. Mean-SP-Reduction procedure
computes the reduction in mean shortest path length within
a partition if a candidate node is added to that partition.

3) Connectivity Contribution Test: We determine whether
a candidate node u ∈ V contributes more connectivity to P or
to Q by evaluating the following:
• Does including u in P reduces more the number of com-

ponents compared to adding u to Q (line 14 – 16)? If the
answer is yes, then u is added to P , otherwise we evaluate
the next criterion. Components-Reduced procedure
computes the reduction in number of components if a
candidate node is added to a partition.

• Does the candidate node u ∈ V has more physical links
going to P compared to Q (line 19 – 24)? If the answer
is yes then u is added to P , otherwise u is added to Q .
Num-Cut-Edges procedure computes the number of
physical links from a candidate node to a partition.

4) Load Balancing Test: If all the previous tests fail to
assign a u ∈ V to either P or Q , then we assign u to P if
|P | < |Q |, otherwise u is assigned to Q .
PartitionGraph procedure iterates over all the unas-

signed physical nodes u ∈ V and assigns u to either P or
to Q . At the end of this phase, we have two disjoint partitions,
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Algorithm 3 FAST-DRONE

1: function FAST-DRONE(G, Ḡ, location)
2: {nmapp, nmaps} ← MapVNodes(G, Ḡ, location)
3: {P , Q } ← PartitionGraph(G, nmapp, nmaps)
4: emapp ← EmbedAllVLinks(G, Ḡ, P , nmapp)
5: emaps ← EmbedAllVLinks(G, Ḡ, Q , nmaps)
6: Compute embedding_cost from emapp and emaps
7: return {nmapp, emapp, nmaps, emaps, cost}
8: end function

each of them has at least one node from each of the location
constraint sets. Therefore, this partitioning conforms to the
conditions as described in Section IV-A.

E. Link Mapping Phase

Given the two disjoint partitions, P and Q , and the node
mappings for the virtual nodes in each partition, we use con-
strained shortest path first algorithm to map a virtual link
to a physical path inside a partition. Application of shortest
path based algorithms are common practice in cases when vir-
tual links cannot be split and embedded on multiple physical
paths [22]. We also have this constraint in 1+ 1-ProViNE.

All of the three phases are combined and presented in the
FAST-DRONE procedure (Algorithm 3). Line 2 corresponds
to the node mapping phase, Line 3 represents the partition
growing phase, and finally line 4,5 gives us the link mappings.

F. Running Time Analysis

Before going to the analysis we first introduce the following
notations:
• n = Number of vertices in the physical network
• n′ = Number of vertices in the virtual network
• m = Number of edges in the physical network
• m′ = Number of edges in the virtual network
• σ = Maximum size of a location constraints set for any

virtual node
• δ = Maximum degree of a physical node

We analyze the running time of FAST-DRONE procedure by
analyzing the running time for each of the phases as follows.

1) Node Mapping Phase: Sorting the virtual nodes requires
O(n′ log n′) time. Then for each of these n′ virtual nodes,
we traverse its location constraint set, which can have ≤ σ

elements. For each of these O(σ ) nodes, we perform: (i) fea-
sibility check (ii) compute the reduction in shortest path length
(iii) compute the decrease in number of components and
(iv) compute the number of edges incident form the candidate
physical node to the current set of mappings. (i) can be accom-
plished in O(n+m) time by simply keeping a disjoint set data
structure with O(n) elements, and perform union operation on
the data structure. (ii) can take up to O(n′3) time. (iii) can be
performed in O(n+m) time in the worst case with a disjoint
set data structure. Finally for step (iv), the number of edges
incident from a candidate physical node to a mapping set can
be computed in O(δ) time. Therefore, the mapping phase runs
in O(n′σ(n+ m+ δ + n′3)) time.

2) Graph Partitioning Phase: We iterate over O(n) unas-
signed physical nodes and perform similar steps as in the
node mapping phase. Therefore, the time complexity of each

iteration is the same as the four tasks described for the
node mapping phase. Hence, partitioning the graph requires
O(n(n+ m+ δ + n′3)) time.

3) Link Mapping Phase: For the link mapping phase, we
compute shortest path between the mapped nodes for each of
the m′ virtual links using Dijkstra’s shortest path algorithm.
This requires O(m′m log n) time in total.

Overall, the running time of the proposed heuristic is:
O((n′σ + n)(n+ m+ δ + n′3)+ m′m log n).

G. Parallel Implementation of FAST-DRONE

The proposed heuristic, i.e., FAST-DRONE can be imple-
mented as a multi-threaded program to utilize multiple CPU
cores. We observed in Algorithm 1 that embedding of the first
virtual node to its primary and backup physical nodes has the
most impact on the subsequent embeddings. To mitigate this
impact, we can consider all possible initial primary/backup
embedding combinations for the most constrained virtual node,
i.e., the virtual node with the smallest location constraint set
and then run the rest of the heuristic. We can parallelize this
process by executing each run of the heuristic with one com-
bination of primary/backup embedding of the first virtual node
on a separate thread running on one CPU core. After the paral-
lel executions finish, we can choose the best embedding among
all the parallel executions.

V. PERFORMANCE EVALUATION

We evaluate the proposed solutions for 1+ 1-ProViNE
through extensive simulations. We perform simulations using
both randomly generated network topologies with various con-
nectivity levels and a real ISP topology. Section V-A describes
the simulation setup in detail and Section V-B defines the
performance metrics. Then we present our evaluation results
focusing on the following two aspects: first, we perform micro-
benchmarking of our solutions and compare with PAR [12],
a recent work on survivable virtual infrastructure embedding
with dedicated resources. For the micro-benchmarking sce-
nario, we consider each VN embedding request in isolation
and assume that the VN can always be embedded on the
PN. Under these assumptions, we measure the resource effi-
ciency of our proposed solutions and compare our results
with that of [12]. Second, we perform steady state analysis
of FAST-DRONE and compare with that of PAR [12]. The
steady state analysis considers VN arrivals and departures over
a period of time and also considers the possibility of failing
to embed a VN request on the PN. The steady state analysis
provides valuable insight on the number of accepted VNs and
the physical resource utilization in a longer time frame.

A. Simulation Setup

1) Testbed: We have implemented OPT-DRONE, the ILP
based optimal solution for 1+ 1-ProViNE using IBM ILOG
CPLEX 12.5 C++ libraries. The heuristic is also implemented
in C++. We implemented the heuristic as a multi-threaded pro-
gram by following the guidelines in Section IV-G. Both the
heuristic and CPLEX solutions were run on a machine with
hyper-threaded 8×10 core Intel Xeon E7-8870 CPU and 1TB
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of memory. Both the CPLEX and heuristic implementations
spawn up to 160 threads to saturate all the processing cores
during their executions. We have developed an in-house dis-
crete event simulator that simulates the arrival and departure
of VNs for the steady state scenario.

2) Physical Network Topology: We have generated random
topologies for the micro-benchmarking scenario by varying
the number of physical nodes from 50 to 200 in increments
of 25, and varying the Link-to-Node Ratio (LNR) from 1.2
to 2.2 in steps of 0.1. We used PNs with different LNR
to study the impact of physical network’s connectivity on
FAST-DRONE’s performance. For the steady state scenario,
we have used the topology of a large ISP (AS-6461) from the
Rocketfuel ISP topology dataset [23] containing 141 nodes
and 374 links. We used random integers uniformly distributed
between 35000Mbps and 40000Mbps as link bandwidth, since
link bandwidth is not specified in [23].

3) Virtual Network Topology: We generated three types of
VN topologies for the micro-benchmarking scenario: ring, star
and randomly connected graphs with ≤ 16 nodes to study
the impact of different types of VNs on FAST-DRONE’s per-
formance. As stated earlier, the micro-benchmarking scenario
evaluates the resource efficiency of the algorithms given that
the physical network’s capacity and the virtual nodes’ location
constraints yield a feasible embedding. In order to ensure that
the VNs have at least one feasible embedding, we have itera-
tively grown the VNs from an input PN. We first start with an
empty VN and add exactly one virtual node and some virtual
links to the VN in each iteration. During an iteration, we first
randomly select a physical node and its neighbor as the pri-
mary and backup embedding for the new virtual node being
added. Then we find paths in the PN from these primary and
backup embeddings to the primary and backup embeddings of
the existing virtual nodes, respectively. These existing virtual
nodes are selected according to the type of VN (e.g., ring,
star, random) that we are trying to grow. Each pair of these
newly found primary and backup paths in the PN, correspond
to a virtual link between the virtual node being added and
the selected virtual nodes from the already grown VN. While
computing the paths, we maintain the disjointedness invariant
of 1+ 1-ProViNE as described in Section II-C. This procedure
ensures that the grown VN has at least one valid embedding
on the PN. This process is continued until a VN of a desired
size is found.

For the steady state scenario, we generated VNs with ran-
dom connectivity. We set the VN connectivity level at 50%
and vary the number of virtual nodes from 4 to 8. The virtual
link bandwidth requirements are integers chosen uniformly
between 12000Mbps and 15000Mbps. The VN arrival rate fol-
lows a Poisson distribution with a mean from 4 to 10 VNs per
100 time units. The VN life time is exponentially distributed
with a mean of 1000 time units. These parameters have been
chosen in accordance with the standards used in [5] and [24].
For the location constraint of a virtual node, we randomly
choose a physical node and all the nodes reachable within a
3-hop radius. We choose a larger location constraint set in this
case to reduce the chances of VN embedding failure due to
limited number of locations.

Fig. 2. Comparison between OPT-DRONE and FAST-DRONE.

B. Performance Metrics

1) Embedding Cost: The embedding cost is the cost of pro-
visioning bandwidth for the virtual links and their backups,
computed using (1).

2) Execution Time: The time required for an algorithm to
find the solution to 1+ 1-ProViNE.

3) Mean Embedding Path Length: For a given VN request,
this is the mean of the physical path lengths corresponding to
the virtual link embeddings.

4) Acceptance Ratio: Acceptance ratio is the fraction of
VN requests that have been successfully embedded on the PN
over all the VN requests.

5) Utilization: We compute the utilization of a physical
link as the ratio of total bandwidth allocated to the embedded
virtual links to that physical link’s capacity.

C. Micro-Benchmarking Results

Our micro-benchmarking evaluation scenario focuses on the
following aspects: i) comparing the resource efficiency of the
proposed heuristic (FAST-DRONE) with that of the optimal
(OPT-DRONE) (Section V-C1), ii) analyzing the impact of
VN topology type (Section V-C2), iii) analyzing the impact
of physical network connectivity levels (Section V-C3), iv)
demonstrating the scalability of FAST-DRONE (Section V-C4),
and v) comparing DRONE with PAR [12] (Section V-C5).

1) Comparison Between OPT-DRONE and FAST-DRONE:
In this section, we present the results on how much
extra resource is provisioned by FAST-DRONE compared to
OPT-DRONE. This extra resource usage is measured as the
ratio of FAST-DRONE’s cost to OPT-DRONE’s cost since our
cost function is proportional to the total bandwidth allocated
for the VN. Fig. 2 shows the Cumulative Distribution Function
(CDF) of cost ratio for different types of VN requests as well
as the CDF for all types combined. A point (x, y) on this
curve gives us the fraction y of total VN requests with cost
ratio ≤ x. This plot shows that about 70% VN requests are
embedded by FAST-DRONE with at most 15% extra resources,
while 90% VN requests are embedded with at most 23% extra
resources compared to OPT-DRONE. On average this extra
resource provisioning is 14.3% over all VN request types.

2) Impact of VN Request Type: Fig. 3(a) presents result for
the cost ratio of different types of VN requests on different
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Fig. 3. Impact of VN request type.

sizes of PNs. A take away from this result is that FAST-DRONE
performs better for star VN topologies compared to ring and
randomly connected VN topologies. The reason behind such
behavior is that only the center node in a star topology imposes
high disjointedness requirement. On the other hand, all nodes
in a ring or a randomly connected VN topology impose
similar disjointedness requirement. This intensifies resource
contention while allocating disjoint paths in the PN leading to
longer paths, hence, the higher cost ratio.

We also compute the mean physical path lengths for the
embedded virtual links to validate this finding and present the
result along with 5th and 95th percentile error bars in Fig. 3(b).
The difference between mean embedded path length obtained
by FAST-DRONE compared to OPT-DRONE is slightly higher
for ring and randomly connected VN topologies (15% and
13%, respectively) compared to star VN topologies (12.5%).
If we consider the 95th percentile of the spectrum, this differ-
ence is more significant, i.e., 13.8%, 12%, and 10%, for ring,
random, and star VN topologies, respectively.

3) Impact of Physical Network Connectivity: In this sec-
tion, we present results on how the connectivity level of the
underlying PN impacts the performance of FAST-DRONE. We
varied the LNR of the generated physical networks from 1.2 to
2.2 in increments of 0.1 and measured the mean FAST-DRONE
to OPT-DRONE cost ratio for each case. Fig. 4(a) shows
the mean cost ratio with 5th and 95th percentile error bars
against different LNRs. This plot gives us an idea about a
good operating region for FAST-DRONE. As we can observe,

Fig. 4. Impact of PN Connectivity.

FAST-DRONE allocates about 15% extra resources compared
to the optimal solution for PNs having an LNR ≤ 1.8. For
higher LNR, the increased path diversity may lead to more
sub-optimal solution since the heuristic does not explore all
the paths to keep the running time fast.

We also compute the mean of embedded physical path
lengths corresponding to the virtual links and present the
results in Fig. 4(b). The takeaway from this figure is that, a
lower LNR in the PN, i.e., sparse PNs cause both OPT-DRONE
and FAST-DRONE to select longer paths for virtual link
embedding. This is due to less path diversity in the PN.
However, with increasing LNR, more paths become available
in the PN and the mean path lengths for embedding virtual
links become shorter. However, in line with the previous obser-
vation, FAST-DRONE explores a much smaller set of paths to
keep the running time fast. As a result, the gap between mean
embedded path lengths for OPT-DRONE and FAST-DRONE
increases.

4) Scalability of Heuristic: To demonstrate the scala-
bility of FAST-DRONE we show the execution times of
FAST-DRONE and OPT-DRONE on same problem instances
in Fig. 5. As it turns out, FAST-DRONE takes less than 500ms
on average over all test cases, whereas OPT-DRONE takes
more than 2 minutes to run on average on the smallest PN
instance. For larger instances, the execution time exponen-
tially increases for OPT-DRONE and becomes in the order
of hours (e.g., about 110 minutes on average for a 175 node
PN). We found FAST-DRONE to be 200 – 1200 times faster
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Fig. 5. Comparison of Execution time.

than OPT-DRONE depending on the problem instance. With
our current setup OPT-DRONE did not scale beyond PNs with
more than 175 nodes.

5) Comparison With PAR [12]: PAR [12] is a greedy
heuristic for embedding a VN request on a PN with 1 + 1-
protection. PAR maximizes the probability of accepting a VN
request by first embedding the virtual nodes on physical nodes
with higher residual node capacities. After node embedding,
PAR embeds the virtual links using a modified version of
Suurballe’s algorithm [25]. In our case, we do not have node
capacities. Therefore, we first implemented PAR by randomly
mapping a virtual node ū ∈ V̄ to a physical node within its
location constraint set L(ū). However, such random mapping
lead to infeasible solutions almost all the time. Then we used
our proposed MapVNodes (Algorithm 1) procedure to map
the virtual nodes. The link embedding was done exactly the
same way as described in [12]. It is worth noting that even
after the modification in the node embedding, PAR could only
find solutions for ≈12% test cases in our simulation setting.

We first compare how much extra resource is allocated
by PAR and FAST-DRONE compared to the optimal solution
(OPT-DRONE). For this comparison, we compute the ratio
of costs1 between PAR and OPT-DRONE, and FAST-DRONE
and OPT-DRONE. Fig. 6(a) shows the CDF of these cost
ratios. This plot shows that in 90% cases, PAR allocates up to
40% additional resources compared to the optimal, whereas,
FAST-DRONE allocates up to 23% additional resources. On
average, the amount of extra resource allocated compared to
the optimal is 25% and 14.3% for PAR and FAST-DRONE,
respectively. We also compute the ratio of PAR’s cost to that
of FAST-DRONE and plot the CDF in Fig. 6(b) to see how
much FAST-DRONE improves over PAR. This plot shows that
PAR never performs better than FAST-DRONE and allocates
up to 40% extra resources compared to FAST-DRONE at the
90th percentile. On average, we found PAR to allocate 17.5%
additional resources compared to FAST-DRONE.

D. Steady State Analysis

Our steady state analysis focuses on the following aspects:
(i) comparing the acceptance ratio obtained by FAST-DRONE
with that of PAR [12] under different loads, i.e., VN arrival
rates (Section V-D1), (ii) compare the impact of FAST-DRONE
on the load distribution on physical links with that of PAR

1cost is computed using (1).

Fig. 6. Comparison between FAST-DRONE and PAR [12].

Fig. 7. VN Acceptance Ratio.

(Section V-D2), and (iii) analyze topological properties of the
solutions (Section V-D3). We perform the steady state analysis
using the VN arrival rate and duration parameters described in
Section V-A3 for a total of 10000 time units. The total number
of VNs used in this simulation was varied between 400 to 960.

1) Acceptance Ratio: In this section, we report our findings
on the acceptance ratio obtained by FAST-DRONE and com-
pare that with the acceptance ratio obtained by using PAR [12].
We consider the first 1000 time units of the simulation as the
warm up period and discard the values from this duration. We
take the mean of the acceptance ratio obtained during the rest
of the simulation and report it along with 5th and 95th per-
centile values under varying VN arrival rates in Fig. 7. We
can see from the results that FAST-DRONE outperforms PAR
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Fig. 8. Mean Physical Link Utilization with Varying Load.

in all cases and accepts 4× more VNs on average over all
VN arrival rates. There are two possible reasons contributing
this difference: (i) either the network is being quickly satu-
rated by one algorithm leading to its lower acceptance ratio,
or (ii) the one algorithm having lower acceptance ratio is not
sufficiently exploring the search space to be able to utilize the
PN resources, hence, leaving PN resources unused. In the next
section, we analyze how FAST-DRONE and PAR distribute the
load on the PN to gain more insight into the difference between
their achieved acceptance ratios.

2) Load Distribution on PN: We measure the utilization of
each physical link at each VN arrival and departure events,
and compute the mean utilization for each physical link. We
first present results showing the mean physical link utilization
with varying VN arrival rates in Fig. 8. As we can see, there
is a slight increase in the mean physical link utilization with
increasing VN arrival rate. Also physical link utilization is
on average 2.5× higher for FAST-DRONE compared to PAR.
However, this plot, representing the mean utilization, fails to
capture the variance in link utilizations and does not give us
much insight into how the load is distributed across the PN.

In order to capture the essence of load distribution across
the physical links, we compute the CDF of average, 5th and
95th percentile physical link utilization for each VN arrival
rate. However, we found the CDFs for different VN arrival
rates to follow similar trend, hence, we combined the CDFs
for different VN arrival rates into one and present the results in
Fig. 9. It is evident from Fig. 9 that a significant portion of the
physical links (≈30%) remain unused by PAR throughout the
simulation. In case of FAST-DRONE, the fraction of unused
physical links is less than 5%. In addition, for any level of
utilization x, the fraction of physical links having utilization
≥ x is larger for FAST-DRONE compared to PAR for all three
cases, i.e., average, 5th and 95th percentile. When load dis-
tribution is combined with acceptance ratio, we observe that
despite having unused capacity in the PN, PAR yields lesser
acceptance ratio compared to FAST-DRONE. This indicates
that FAST-DRONE is exploring larger portion of the solution
space compared to PAR, hence, the increased acceptance ratio.

3) Topological Properties of the Solutions: We compute
the mean embedding path lengths for the virtual links and
present the results in Fig. 10. Fig. 10(a) shows the variation in
mean path length with varying VN arrival rate, and Fig. 10(b)

shows the CDF of mean path lengths over all VN arrival rates.
The results show that for similar VN arrival rate and also
for all VN arrival rates FAST-DRONE yields embeddings that
have slightly longer mean embedding path length compared
to PAR. According to our cost function (1), longer embed-
ding paths result into an increased cost. Therefore, results from
these plots are counterintuitive when they are compared to that
from Section V-C5, which indicated that FAST-DRONE yields
more resource efficient embeddings compared to PAR. The
reason behind this slightly longer paths during the steady state
scenario is that, a higher acceptance ratio for FAST-DRONE
pushes the network closer to saturation, hence, exhausting
the shorter paths as more VNs are embedded. Therefore,
FAST-DRONE is forced to choose the longer paths for the later
VNs. In case of PAR, the lower acceptance ratio and the lower
network utilization still leaves sufficient room in the shorter
paths, resulting in shorter embedding paths on average.

VI. RELATED WORKS

In this section, we first discuss the research efforts that
address different aspects of SVNE problem (Section VI-A).
Then we focus our discussion on the works that are
closely related to 1+ 1-ProViNE (Section VI-B). Finally, we
briefly discuss the known results regarding the hardness of
unsplittable flow problem and graph partitioning problem
(Section VI-C).

A. Survivable Virtual Network Embedding (SVNE)

Network survivability has been extensively studied in
the context of mapping IP links over WDM optical net-
works [26]–[29]. However, unlike VN embedding, IP link
mapping over WDM networks assume that the endpoints are
already mapped and addresses the issue of provisioning light
paths for embedding IP links. In contrast, node embedding is
as important as link embedding in VNE, and a coordination
between node and link embedding have been shown to increase
the acceptance ratio of VNs [5]. Ensuring survivability in the
context of VNE was first addressed by Rahman et al. [8]. They
formulated the problem of ensuring survivability in VNs under
single physical link failure as a Mixed Integer Program and
proposed heuristics to obtain solutions in a reasonable time.
However, unlike 1+ 1-ProViNE their proposal does not pro-
tect VNs from node failures. A number of subsequent research
works since then have addressed different aspects of SVNE
such as considering node failures [30]–[34], optimizing backup
resource allocation [35], [36], and ensuring certain level of
availability of the virtual resources [37]–[39]. In the rest of
this section, we briefly discuss some of the works that con-
sider different aspects of SVNE and contrast them with our
proposal.

References [30] and [31] are among some of the early works
that consider node failure for SVNE. Reference [30] addresses
the issue of ensuring survivability under regional physical fail-
ures. A regional physical failure corresponds to a physical
damage of a facility due to a disaster, leading to multiple phys-
ical node failures. Reference [30] addresses the regional failure
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Fig. 9. Load Distribution on Physical Network.

Fig. 10. Topological Properties of Solutions.

scenario by pro-actively provisioning backup nodes at differ-
ent geographical locations. More recent research on ensuring
survivability under regional failures, including [32] and [33],
propose to take reactive measures after a regional failure and
also allow VNs to operate with degraded QoS during regional
failures for reducing backup provisioning overhead. On the
other hand, [31] and [34] address the SVNE problem for a sin-
gle physical node failure. References [31] and [34] propose to
enhance a VN with some additional virtual resources. During
a physical node failure, virtual nodes and links are migrated
to the additional resources to restore the VN. In contrast, we
take a proactive approach and provide dedicated protection for
each component of the VN to facilitate fast recovery.

Some SVNE approaches optimize the backup bandwidth
provisioning by sharing the backup path of multiple vir-
tual links [35] or by leveraging multi-path embedding of

virtual links [36]. However, with a shared backup scheme
such as [35], multiple virtual links sharing the same backup
can suffer from degraded QoS during a single physical link
failure. Khan et al. [36] proposes to optimize the backup band-
width provisioning by embedding a virtual link over multiple
physical paths and provisioning a fraction of the virtual link
bandwidth instead of the full bandwidth over each such path.
The advantage of this approach is that it requires less backup
bandwidth and can survive single link failures with full QoS.
However, they assume virtual links can be splittable, which is
not the case for 1+ 1-ProViNE.

SVNE problem has also been addressed from the point of
view of guaranteeing availability. References [37] and [38]
have addressed the issue of guaranteeing availability of vir-
tual resources in the context of Virtual Data Centers (VDCs).
A VDC is an extension to a VN to include compute, memory
and storage resources. More recently, [39] has addressed the
issue of ensuring VN availability on optical networks. These
works determine the number of backups required for a virtual
resource based on the historical reliability data on the physical
resources. Subsequently, the embedding ensures that the pri-
mary and the backups provide a desired level of availability
for that virtual resource. In contrast, the number of backup
resources are already known for 1+ 1-ProViNE and we need
to find a resource efficient embedding.

B. Virtual Network Embedding With Dedicated Protection

The motivation for 1+ 1-ProViNE comes from use cases in
T-SDN virtualization, where customers are provided with full-
fledged VNs instead of traditional end-to-end connectivity. A
recent paper [11] identifies dedicated protection for an entire
VN topology as one possible customer requirement for relia-
bility among others. Therefore, it becomes important for the
InP to embed a customer VN request with 1 + 1-protection
for the entire topology in a resource efficient way. In this
context, the most related to our work is a recent work by
Ye et al. [12] which addresses the problem of providing dedi-
cated protection for VNE. They formulate the problem using a
Quadratic Integer Program in contrast to our ILP formulation.
However, the major difference between their approach and
ours is the objective. Reference [12] focused on increasing the
VN request acceptance ratio over time, whereas we focus on
minimizing the resource allocation cost for embedding VNs.
Ye et al. [12] proposed a greedy heuristic based on the node
resource requirement, which is not suitable for our case since
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we do not consider any node capacity or node embedding
cost. Lastly, [12] does not consider the location constraint,
which is an important constraint in our case. Another closely
related work is from Jiang et al. [40]. They propose a backup
scheme where the backup virtual nodes are disjoint from the
primary virtual nodes. However, the backup nodes can share a
single physical node and therefore exhibit lesser survivability
compared to 1+ 1-ProViNE. Reference [40] also does not pro-
vision full backup of the virtual links, rather provisions some
backup paths that can be used to route between the virtual
nodes during a single physical resource failure.

C. Unsplittable Flow and Graph Partitioning

The root of providing dedicated protection for virtual net-
work embedding goes back to combinatorial optimization
problems such as graph partitioning and multi commodity
unsplittable flow problem [16]. Relevant literature shows that
they are computationally hard to solve. Finding a constant
factor approximation algorithm for these problems for general
graphs is still open [20], [21], [41]. The best known approxi-
mation ratio for graph partitioning is not constant, rather it is
a poly-logarithm function of the number of nodes [21]. On
the other hand, the first constant factor approximation algo-
rithm for the unsplittable flow problem with known sources
and destinations had (7 + ε) and (8 + ε) approximation
ratio for simple line graph and cycle graph, respectively [20].
Approximation ratio for the same types of graphs has recently
been improved to (2 + ε) by Anagnostopoulos et al. [19].
Friggstad and Gao [42] has recently proposed a Linear
Programming relaxation based algorithm for unsplittable flows
on trees. However, the approximation ratio for this LP relax-
ation based algorithm is not constant, rather it is a logarithmic
function of the number of nodes. Without known sources for
the commodity and the flow destinations, this problem is even
harder to solve.

VII. CONCLUSION

In this paper we have formulated 1 + 1 Protected Virtual
Network Embedding (1+ 1-ProViNE) problem that embeds a
VN on a PN while ensuring dedicated backup for each vir-
tual node and link. We presented DRONE, a suite of solutions
for 1+ 1-ProViNE. We devised an ILP based optimal solution
(OPT-DRONE) as well as a heuristic (FAST-DRONE) to tackle
the computational complexity. Trace driven simulations using
both real and synthetic topologies show that FAST-DRONE
can solve 1+ 1-ProViNE in a reasonable time frame with only
14.3% extra resources on average compared to OPT-DRONE.
Simulation results also show that FAST-DRONE can accept
4 times more VN requests compared to the state-of-the-art
solution [12].

We believe that the formulation of the 1+ 1-ProViNE prob-
lem will open up new avenues for future research. Among the
possibilities we intend to investigate the problem of providing
mixed backup scheme for the VNs. A mixed backup scheme
consists of providing both shared and dedicated backup to
the VN elements based on the SP’s request. A mixed backup
scheme can enable the SPs to have dedicated protection for

critical network paths while shared protection for best effort
network paths for instance.
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