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Abstract—MapReduce has become a prevalent programming model for building data processing applications in the cloud. While
being widely used, existing MapReduce schedulers still suffer from an issue known as partitioning skew, where the output of map tasks
is unevenly distributed among reduce tasks. Existing solutions follow a similar principle that repartitions workload among reduce tasks.
However, those approaches often incur high performance overhead due to the partition size prediction and repartitioning. In this paper,
we present DREAMS, a framework that provides run-time partitioning skew mitigation. Instead of repartitioning workload among
reduce tasks, we cope with the partitioning skew problem by controlling the amount of resources allocated to each reduce task. Our
approach completely eliminates the repartitioning overhead, yet is simple to implement. Experiments using both real and synthetic
workloads running on a 21-node Hadoop cluster demonstrate that DREAMS can effectively mitigate the negative impact of partitioning
skew, thereby improving the job completion time by up to a factor of 2.29 over the native Hadoop YARN. Compared to the
state-of-the-art solution, DREAMS can improve the job completion time by a factor of 1.65.
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1 INTRODUCTION

In recent years, the exponential growth of raw data has
generated tremendous needs for large-scale data process-
ing. In this context, MapReduce [1], a parallel computing
framework, gained significant popularity. A MapReduce job
consists of two types of tasks, namely Map and Reduce. Each
map task takes a chunk of input data and runs a user-
specified map function to generate intermediate key-value
pairs. Subsequently, each reduce task collects the interme-
diate key-value pairs and applies a user-specified reduce
function to produce the final output. Due to its remarkable
advantages in terms of simplicity, robustness and scalability,
MapReduce has been widely used by companies such as
Amazon, Facebook, and Yahoo! to process large volumes
of data on a daily basis. Consequently, it has attracted
considerable attention from both industry and academia.

Despite its success, the current implementations of
MapReduce suffer from a few limitations. In particular, the
widely-used MapReduce system, Apache Hadoop MapRe-
duce [2], uses a hash function to partition the intermediate
key-value pairs across reduce tasks. The goal of using a
hash function is to evenly distribute the workload to each
reduce task. In reality this goal is rarely achieved [3], [4].
For example, Zacheilas et al. [3] have demonstrated the
existence of skewness in a Youtube social graph application
using real-world data. The experiments in [3] showed that
the biggest workload among reduce tasks is larger than the
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smallest by more than a factor of five. The skewed workload
distribution among reduce tasks can have a severe impact
on job completion time. Note that the completion time of a
MapReduce job is determined by the completion time of the
slowest reduce task. Data skewness causes certain tasks
with heavy workload run slower than others. This in turn
prolongs the job completion time.

Several recent approaches are proposed to handle the
partitioning skew problem [4], [5], [6], [7], [8], [9], [10]. They
follow a similar principle that predicts the workload for in-
dividual reduce tasks based on certain statistics of key-value
pairs (e.g. key frequencies [6], [8]), and then repartitions
the workload to achieve a better balance among the reduce
tasks. However, in order to collect the statistics of key-
value pairs, most of those solutions either have to prevent
the reduce phase from overlapping with the map phase,
or add a sampling phase before executing the actual job.
Skewtune [4] can reduce this waiting time by redistributing
the unprocessed workload of a slow reduce task at run-
time. However, Skewtune incurs an additional run-time
overhead of approximately 30 seconds (as reported in [4]).
This overhead can be quite expensive for small jobs with
average life span of around 100 seconds, which are very
common in today’s production clusters [11].

Motivated by the limitations of the existing solutions,
in this paper, we take a radically different approach to ad-
dress data skewness. Instead of repartitioning the workload
among reduce tasks, our approach dynamically allocates
resources to reduce tasks according to their workload. Since
no repartitioning is involved, our approach completely elim-
inates the repartitioning overhead. To this end, we present
DREAMS, a Dynamic REsource Allocation technique for
MapReduce with partitioning Skew. DREAMS leverages
historical records to construct profiles for each job type. This
is reasonable because many production jobs are executed
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repeatedly in today’s production clusters [12]. At run-time,
DREAMS can dynamically detect data skewness and assign
more resources to reduce tasks with large partitions to make
them finish faster. Compared to the previous works, our
contributions can be summarized as follows:

• We first develop a partition size prediction model
that can forecast the partition sizes of reduce tasks at
run-time. Specifically, we can accurately predict the
size of each partition when only 5% of map tasks
have completed.

• We establish a task performance model that corre-
lates the completion time of individual reduce tasks
with their partition sizes and resource allocation.

• We propose a scheduling algorithm that dynamically
adjusts resource allocation to each reduce task using
our task performance model and the estimation of
the partition size. This can reduce the running time
difference among reduce tasks that have different
sizes of partitions to process, thereby accelerating the
job completion.

Experiments using both real and synthetic workloads
running on a 21-node Hadoop cluster demonstrate that
DREAMS can effectively mitigate the negative impact of
partitioning skew, thereby improving the job completion
time by up to a factor of 2.29 over the native Hadoop YARN.
Compared to the state-of-the-art solution like SkewTune,
DREAMS can improve the job completion time by a factor
of 1.65.

This paper extends our preliminary work [13] in a
number of ways. First, the time complexity of the on-line
partition size prediction model has been presented. Second,
we have added memory allocation into the reduce task
performance model. Third, the scheduling algorithm in the
original manuscript has been reformulated as an optimiza-
tion problem and its optimal solution is presented. Finally,
we have conducted additional experiments to evaluate the
effectiveness of DREAMS.

The rest of this paper is organized as follows. Section
2 provides the motivations of our work. We describe the
system architecture of DREAMS in Section 3. Section 4 illus-
trates the design of DREAMS in detail. Section 5 provides
the results from experimental evaluation. Finally, we sum-
marize the existing works related to DREAMS in Section 7,
and draw our conclusion in Section 8.

2 MOTIVATION

In the state-of-the-art MapReduce systems, each map task
processes one chunk of the input data, and generates a
sequence of intermediate key-value pairs. A hash function
is then used to partition these key-value pairs and distribute
them to reduce tasks. Since all map tasks use the same hash
function, the key-value pairs with the same hash value are
assigned to the same reduce task. During the reduce stage,
each reduce task takes one partition (i.e. the intermediate
key-value pairs corresponding to the same hash value) as
input, and performs a user-specified reduce function on
its partition to generate the final output. This process is
illustrated in Figure 1. Ideally, the hash function is expected
to generate equal size partitions if the key frequencies,

Fig. 1: MapReduce Programming Model

and sizes of the key-value pairs are uniformly distributed.
However, in reality, the hash function often fails to achieve
uniform partitioning, resulting into skewed partition sizes.
For example in the InvertedIndex job [14], the hash function
partitions the intermediate key-value pairs based on the
occurrence of words in the files. Therefore, reduce tasks
processing more popular words will be assigned a larger
number of key-value pairs. As shown in Figure 1, partitions
are unevenly distributed by the hash function. P1 is larger
than P2, which causes workload imbalance between R1 and
R2. Zacheilas et al. [3] presented the following reasons of
partitioning skew:

• Skewed key frequencies: Some keys occur more fre-
quently in the intermediate data. As a result, parti-
tions that contain these keys become extremely large,
thereby overloading the reduce tasks that they are
assigned to.

• Skewed tuple sizes: In MapReduce jobs where sizes of
the values in the key-value pairs vary significantly,
even though key frequencies are uniform, uneven
workload distribution among reduce tasks may arise.

In order to address the weaknesses and inadequacies
experienced in the first version of Hadoop MapReduce
(MRv1), the next generation of the Hadoop compute plat-
form, YARN [15], has been developed. Compared to MRv1,
YARN manages the scheduling process using two com-
ponents: a) ResourceManager is responsible for allocating
resources to the running MapReduce jobs subject to ca-
pacity constraints, fairness and so on; b) an Application-
Master, on the other hand, works for each running job,
and has the responsibility of negotiating appropriate re-
sources from ResourceManager and assigning the obtained
resources to its tasks. This removes the single point bot-
tleneck of JobTracker in MRv1 and improves the ability to
scale Hadoop clusters. In addition, YARN deprecates the
slot-based resource management approach in MRv1, and
adopts a more flexible resource unit called container. The
container provides resource-specific, fine-grain accounting
(e.g. < 2GBRAM, 1CPU >). A task running within a
container is enforced to abide by the prescribed limits.

Nevertheless, in both Hadoop MRv1 and YARN, the
schedulers assume each reduce task has uniform workload
and resource consumption, and therefore allocate identical
resources to each reduce task. Specifically, MRv1 adopts a
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Fig. 2: Architecture of DREAMS

slot-based allocation scheme, where each machine is divided
into identical “slots” that can be used to execute tasks.
However, MRv1 does not provide resource isolation among
co-located tasks, which may cause performance degradation
at run-time [16]. On the other hand, YARN uses a container-
based allocation scheme, where each task is scheduled in
an isolated container. But, it still allocates containers of
identical size to all reduce tasks that belong to the same job.
This scheduling scheme can cause variation in task running
time due to partitioning skew, since the execution time of a
reduce task with a large partition can be prolonged because
of the fixed container size. As the job completion time is
dominated by the slowest task, the run-time variation of
reduce tasks will prolong the job execution time.

Most of the existing approaches tackle the partitioning
skew problem by making the workload assignment uni-
formly distributed among reduce tasks, thereby mitigat-
ing the inefficiencies in both performance and utilization.
However, achieving this goal requires (sometimes heavy)
modification to the current Hadoop implementation, and
often requires additional overhead in terms of sampling
and adaptive partitioning. Therefore, in this work we seek
an alternative solution, where we adjust the size of the
container based on partitioning skew. This approach not
only requires minimal modification to the existing Hadoop
implementation, but at the same time effectively mitigates
the negative impact of partitioning skew.

3 SYSTEM ARCHITECTURE

This section describes the design of our proposed resource
allocation framework called DREAMS. The architecture of
DREAMS is shown in Figure 2. There are five main compo-
nents: Partition Size Monitor, running in the NodeManager;
Partition Size Predictor, Task Duration Estimator and Resource
Allocator, running in the ApplicationMaster; and Fine-grained
Container Scheduler, running in the ResourceManager. Each
Partition Size Monitor records the statistics of intermediate

data that a map task generates at run-time and sends them
to the ApplicationMaster though heartbeat messages. The
Partition Size Predictor collects the partition size reports from
NodeManagers and predicts the partition sizes of every re-
duce task for this job. The Task Duration Estimator constructs
statistical estimation model of reduce task performance
as a function of its partition size and resource allocation.
That is, the duration of a reduce task can be estimated
if the partition size and resource allocation of this task
are given. The Resource Allocator determines the amount of
resources to be allocated to each reduce task based on the
performance estimation. Lastly, the Fine-grained Container
Scheduler is responsible for scheduling resources among all
the ApplicationMasters in the cluster, based on scheduling
policies such as Fair scheduling [17] and Dominant Resource
Fairness (DRF) [18]. Note that the schedulers in original
Hadoop assume that all reduce tasks (and similarly, all map
tasks ) have homogeneous resource requirements in terms
of CPU and memory. However, this is not appropriate for
MapReduce jobs with partitioning skew. We have modified
the original schedulers to support fine-grained container
scheduling that allows each task to request resources of
customizable size.

The workflow of resource allocation mechanism used by
DREAMS consists of 4 steps as shown in Figure 2.

(1) After the ApplicationMaster is launched, it schedules
all the map tasks first and then ramps up the reduce task
requests gradually according to the slowstart setting, which
is used to control when to start reduce tasks based on the
percentage of map tasks that have finished. During their
execution, each Partition Size Monitor records the size of
intermediate key-value pairs produced by map tasks. Each
Partition Size Monitor sends locally gathered statistics to the
ApplicationMaster through the TaskUmbilicalProtocal, which
is a RPC protocol used to monitor task status in Hadoop.

(2) Upon receiving the partition size reports from the
Partition Size Monitors, the Partition Size Predictor performs
size prediction using our proposed prediction model (see
Section 4.1). After all the estimated sizes of reduce tasks
are known, the Task Duration Estimator uses the reduce task
performance model (Section 4.2) to predict the duration of
each reduce task with specified amount of resources. Based
on that, the Resource Allocator determines the amount of
resources for each reduce task according to our proposed
resource allocation algorithm (Section 4.3) to equalize the
execution time of all reduce tasks and then sends resource
requests to the ResourceManager. Note that the Resource-
Manager reports to the ApplicationMaster the current total
amount of available resources through heartbeat messages
every second. Thus, the Resource Allocator can check the
availability of resources when requesting containers.

(3) Next, the ResourceManager receives ApplicationMas-
ters’ resource requests through the heartbeat messages, and
schedules free containers in the cluster to corresponding
ApplicationMasters.

(4) Once the ApplicationMaster obtains new containers
from the ResourceManager, it assigns the corresponding
containers to the pending tasks, and finally launches the
tasks.
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4 DREAMS DESIGN

There are three main challenges to be addressed in
DREAMS. First, in order to identify partitioning skew, it is
necessary to develop a run-time forecasting algorithm that
predicts the partition size of each reduce task. Second, in
order to determine the right container size for each reduce
task, it is necessary to develop a task performance model
that correlates task running time with resource allocation.
Lastly, there are multiple resource dimensions such as CPU,
memory, disk I/O and network bandwidth. Allocations
with different combination of these resource dimensions
may yield the same completion time. Determining the ap-
propriate combination of these resource dimensions in order
to minimize the cost is a challenging problem. In the rest of
this section, we shall describe our solutions for each of these
challenges.

4.1 Predicting Partition Size
In order to cull the partitioning skew, the workload distribu-
tion among the reduce tasks should be known in advance.
Unfortunately, the size of the partition belonging to each
reduce task really depends on the input dataset, the map
function and the number of reduce tasks in a MapReduce
job. Even though most of the MapReduce jobs are routinely
executed, the same job processing different input dataset
would produce different workload distribution among its
reduce tasks. Several recently proposed approaches calcu-
late the workload distribution among reduce tasks [3], [5],
[6], [7], [19]. Existing solutions, however, either have to wait
for all the map tasks to finish [3], [5], [6], or need an addi-
tional sampling procedure before executing a job [7], [19].
However, in order to improve the job completion time, ex-
isting Hadoop schedulers allow reduce tasks to be launched
before the completion of all map tasks (e.g. the default
slowstart setting is 5%). It has also been demonstrated by the
existing works [8], [20] that starting the shuffle phase after
the completion of all the map tasks will severely prolong
the job completion time. Therefore, it is necessary to predict
the partition size at run-time without introducing a barrier
between map and reduce phases.

The input datasets of MapReduce jobs in a production
cluster tend to be very large. Hence, the HDFS storage
system [21] splits a large dataset into smaller data chunks,
which naturally creates a sampling space. This suggests that
a small set of random samples in this sample space may
reveal the characteristics of the whole dataset in terms of
workload distribution among reduce tasks. Therefore, we
can analyze the pattern of the intermediate data after a
fraction of map tasks have completed, and then predict
workload distribution among reduce tasks for the entire
dataset.

In DREAMS, we perform k measurements (j =
1, 2, ..., k) over time during the map phase, and collect the
following two metrics

(
F j , Sj

i

)
:

• F j is the percentage of map tasks that have been
processed, where j ∈ [1, k] and k refers to the num-
ber of collected tuples

(
F j , Sj

i

)
. Note that each map

task processes one inputsplit, and each inputsplit has
identical size (64MB, 128MB etc.). As a result, F j is
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(a) a reduce task in InvertedIndex
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(b) a reduce task in WordCount

Fig. 3: Partition size prediction

approximately equal to the fraction of whole dataset
that has been processed.

• Sj
i is the size of the intermediate data generated

by the completed map tasks for reduce task i. In
our implementation, we have modified the report-
ing mechanism so that each map task reports this
information to the ApplicationMaster upon map task
completions.

Our experimental evidences reveal that Sj
i is linearly

proportional to F j . Figure 3 shows the typical results in
InvertedIndex and WordCount jobs. Note that when 100%
map tasks are completed, Sj

i will represent the actual parti-
tion size for reduce task i. Hence, we use linear regression
to determine the following equation for each reduce task
i ∈ [1, N ]:

Sj
i = α1 + β1 · F j j = 1, 2, · · · k (1)

where α1 and β1 are the regression coefficients. We in-
troduce an outer factor, δ, which works as a threshold to
control our prediction model to stop the training process,
and finalize the prediction. In practice, δ can be the map
completion percentage (e.g. 5%) at which scheduling of the
reduce tasks may be started. Every time a new map task
has finished, a new training data is generated. When the
fraction of map tasks reaches δ, we calculate the regression
coefficients (α1, β1), and predict the partition size for each
reduce task. Note that k is determined by δ. For instance,
consider there are 100 map tasks in the job, if δ = 5%, then
k = 5.

The computational complexity of our on-line partition
size prediction model is O(k · N). In particular, for each
reduce task i ∈ [1, N ], the scaling factors can be determined
by the following equation:

(
α1

β1

)
=
(
XTX

)−1
XTY, (2)

where

X =


1 F 1

1 F 2

...
...

1 F k

 , Y =


S1
i

S2
i
...
Sk
i


It takes O(22k) to multiply XT by X , O(23) to compute

the inverse of XTX , O(22k) to multiply
(
XTX

)−1
by XT
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(b) InvertedIndex 5G
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Fig. 4: Relationship between task duration and partition size

and finally O(2k) to multiply
(
XTX

)−1
XT by Y . There-

fore, the total computational complexity of the prediction
model for a MapReduce job with N reduce tasks is O(k ·N).

4.2 Reduce Task Performance Model

In this section, we design a reduce task performance model
to estimate the execution time of reduce tasks. Currently,
there are many techniques for predicting MapReduce job
durations [12], [22], [23], [24]. These approaches, however,
cannot estimate the durations of individual tasks. In our
performance model we consider the execution time of a
reduce task is correlated with two parameters: size of parti-
tion to process and resource allocation (e.g. CPU, disk I/O
and bandwidth). As Hadoop YARN only allows users to
specify the CPU and memory sizes of a container, in our
implementation we focus on capturing the impact of CPU
and memory allocations on task performance.

In order to identify the relationship between task run-
ning time, partition size and resource allocation, we run a
set of experiments in our testbed cluster by varying resource
allocation and input datasets. In the first set of experiments,
we fix the CPU and memory allocations of each reduce task
and focus on identifying the relationship between partition
size and task running time. Figure 4a and 4b show the
results of running the 5G Sort and InvertedIndex jobs,
respectively. It is evident that there is a linear relationship
between partition size and task running time. Hence, we

use linear regression to determine this relationship with
Equation 3 shown as follows:

Ti = α2 + β2 · Pi, i ∈ [1, N ] (3)

where Ti and Pi are the running time and partition size of
reduce task i, respectively. The regression results are also
shown in Figures 4a and 4b as solid lines. Note that if the
time complexities of the reduce functions in other MapRe-
duce jobs grow nonlinearly with the sizes of processing data,
the relationship can also be easily learned by updating the
regression model.

Furthermore, we change the input size of the jobs from
5GB to 10GB and check whether the characteristic of this
relationship is workload independent. Again, the running
time is linearly correlated with partition size, as shown in
Figure 4c and 4d . However, we also find that the size of total
intermediate data, denoted as D (the sum of all partitions),
has an impact on task duration. Similar observation is also
made in [22], where Zhang et al. show the duration of the
shuffle phase can be approximated with a piece-wise linear
function when the intermediate data per reduce task is
larger than 3.2 GB in their Hadoop Cluster. This is consistent
with the phenomenon we observed. Therefore, we update
the regression function to Equation 4 and train the model
by the samples from both 5GB and 10GB datasets together.

Ti = α2 + β2 · Pi + ζ2 ·D, i ∈ [1, N ] (4)

The regression results are shown in Figure 4e and 4f. It
can be seen that this updated function serves as a good fit
for the relationship between partition size and task running
time, although there are two different datasets involved.

In the next set of experiments, we fix the input size and
vary either the CPU or memory allocation of each reduce
task. Figure 5 shows the typical results for 30G Sort and
InvertedIndex jobs by varying CPU allocation from 1 to 8
vCores (memory allocation is fixed to 1 GB). We use a non-
linear regression method to model this relationship with
Equation 5, and find that task running time is inversely
proportional to CPU allocation. While this relationship fits
well when the number of vCores is small, we also found
this model is no longer accurate when a large amount of
CPU resource is allocated to a task. In these cases, the
resource bottleneck may switch from CPU to other resource
dimensions like disk I/O, thus the benefit of increasing
CPU allocation diminishes. Similar observation is also made
in [24], where Jalaparti et al. show increasing network
bandwidth beyond a threshold does not help since the job
completion time is dominated by disk performance. This is
consistent with the phenomenon we observed. Thus, we can
expect that the duration of reduce tasks might be approxi-
mated with a different inversely proportional function when
CPU allocation exceeds a threshold µ. This threshold could
be related to job characteristics and cluster configuration.
However, for a different job and Hadoop cluster, µ can be
easily determined by comparing the change in task duration
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Fig. 5: Relationship between task duration and CPU alloca-
tion
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Fig. 6: Relationship between task duration and mem. alloca-
tion

while increasing CPU allocation.1

Ti = α3 +
β3
Acpu

i

, i ∈ [1, N ] (5)

We then repeat the same set of experiments for memory.
Different from the CPU allocation in YARN, which is deter-
mined by the number of virtual cores used by the task con-
tainer, there are two configurations that control the memory
allocation in YARN: physical RAM limit and JVM heap size
limit for a task. The former setting is a logical allocation used
by the Nodemanager to monitor the task memory usage. If
the usage exceeds this limit, the Nodemanager will kill the
task. The latter setting is maximum heap size of the JVM
process that executes the task. It determines the maximum
memory that can be used by this JVM. Hence, JVM heap
size limit should be less than physical RAM limit. More
importantly, JVM heap size indicates the amount of memory
allocation that a task can use. Consequently, we vary the
JVM heap size limit from 200 MB (the default value) to 5600
MB while keeping the CPU allocation to 1 vCore, and use a
non-linear regression method to learn this relationship with
Equation 6. We find that an inversely proportional function
is also applicable in this case. Figure 6 shows the task run-
ning time as a function of memory allocation while running
30G Sort and InvertedIndex jobs. From this figure we can
see an obvious improvement when the memory allocation
increases at the beginning. That is because memory deficit

1. We use the following policy in this paper: we increase the CPU
allocation from 1 to 8 vCores, and calculate the speedup of task
running time between current and previous CPU allocations denoted
as Speedupj (j ∈ [1, 7]). The first CPU allocation where Speedupj <
0.5 · Speedupj−1 is considered as the threshold µ.

will postpone the completion time of the task. For example,
during the shuffle sub-phase in reduce stage, memory deficit
will cause additional process of spilling data to disk, because
of inadequate space to store all the data of a task in the
RAM, thereby prolonging the task and adding a burden to
disk I/O as well. However, with the allocation continually
rising, the improvement becomes smaller. The reason is
that, as memory allocation increases beyond a threshold, the
resource bottleneck of a task shifts to other resources. After
that point, the completion time of a task will not be reduced
despite the increase in memory allocation. This observation
is consistent with the CPU resource.

Ti = α4 +
β4

Amem
i

, i ∈ [1, N ] (6)

Based on the above observations, we now derive our
reduce task performance model. For each reduce task i
among N reduce tasks, let Ti denote the execution time of
reduce task i, Pi denote the size of partition for reduce task
i, Acpu

i denote the CPU allocation for reduce task i, and
Amem

i denote the memory allocation for reduce task i, the
performance model can be stated as follows:

Ti = (α5+β5Pi+ζ5D) · (ξ5 +
γ5
Acpu

i

+
η5

Amem
i

)

= α5ξ5+
α5γ5
Acpu

i

+
α5η5
Amem

i

+β5ξ5Pi+
β5γ5Pi

Acpu
i

+
β5η5Pi

Amem
i

+ζ5ξ5D+
ζ5γ5D

Acpu
i

+
ζ5η5D

Amem
i

= λ1+
λ2
Acpu

i

+
λ3

Amem
i

+λ4Pi+
λ5Pi

Acpu
i

+
λ6Pi

Amem
i

+λ7D+
λ8D

Acpu
i

+
λ9D

Amem
i

(7)

where λ1, λ2, λ3, λ4, λ5 , λ6, λ7, λ8and λ9 are the coefficients
to be solved using nonlinear regression. In practice, we
may leverage historical records of job execution to provide
input to the regression algorithm. This is reasonable in
production environments as many jobs are executed rou-
tinely in today’s production data centers. Specifically, the
historical profiles are generated by varying CPU alloca-
tion Acpu

i = {1 vCore, 2 vCores, · · · , 8 vCores}, memory
allocation Amem

i = {1GB, 2GB, · · · , 4GB}, and input
dataset Dset = {5GB, 30GB} for different jobs. We then
capture a tuple (Ti, Pi, A

cpu
i Amem

i , D) for each reduce task
i of the job. Using the tuples for all reduce tasks as train-
ing data, we can easily learn the coefficient factors in the
performance model for each job. In the end, we produce
one performance model Mj (i.e. job profile) for each job j
that can be used as an input for scheduling. Note that, if
no job profile is available, DREAMS resorts to the default
container allocation scheme (i.e. uniform container size for
all the reduce tasks).

Finally, we would like to mention that while our per-
formance model focuses on CPU and memory allocations,
we believe our model can be extended to handle the case
where other resources becomes the performance bottleneck
by having additional terms in our performance model.
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4.3 Resource Allocation Algorithm
Once the performance model has been trained and the
partition size has been predicted, the scheduler is ready to
find the optimal resource allocation to each reduce task so as
to mitigate their run-time variation caused by partitioning
skew. Here, our strategy is to equalize the running time of all
reduce tasks. As mentioned in Section 4.2, task duration is a
monotonically increasing function of partition size. Thus,
we consider that the duration of the task with average
partition size (Pavg) as a baseline denoted as Tbase, which
can be obtained according to Equation 7 with Pavg and the
default CPU and memory allocations configured in YARN2.
Then we increase the resources allocated to the reduce tasks
with larger partition sizes to make them run no slower than
Tbase. We observed that there is also no need to allocate
too much resources to large reduce tasks to make them run
faster than Tbase. Thus we wish to find the minimum CPU
and memory allocations for enabling slower reduce tasks to
meet the baseline Tbase. It can be calculated using a variation
of Equation 7 introduced in Section 4.2, where Pi, D and
Tbase are known.

Tbase = λ1+
λ2
Acpu

i

+
λ3

Amem
i

+λ4Pi+
λ5Pi

Acpu
i

+
λ6Pi

Amem
i

+λ7D+
λ8D

Acpu
i

+
λ9D

Amem
i

(8)

We can present Equation 8 in following form:

C1+
C2

Acpu
i

+
C3

Amem
i

=0 (9)

where C1=λ1+λ4Pi+λ7D−Tbase, C2=λ2+λ5Pi+λ8Dand
C3=λ3+λ6Pi+λ9D. Evidently, C1, C2 and C3 are constants
derived from known values. Since there are two variables
(Acpu

i , Amem
i ) needed to be solved using only one equation,

more than one root can be obtained. In other words, there
can be many possible CPU and memory combinations that
will yield the same completion time, Tbase. Hence, we
formulate this resource allocation problem as a constrained
optimization problem:

minx,y f(xi, yi) = xi + ωyi

s.t. C1+
C2

xi
+
C3

yi
=0 (10)

Capcpu>xi>1,

Capmem>yi>1, i ∈ [1, N ]

where xi = Acpu
i , yi = Amem

i , and Capcpu and Capmem are
the capacities of workers in terms of CPU and memory, re-
spectively. We define the optimization function as the sum of
CPU and memory resources, xi+ωyi, where a factor ω is in-
troduced for representing the weight of memory over CPU.
We can configure a higher weight to the bottleneck resource
that has lower availability. For instance, if CPU is lacking
in the cluster but memory is not, CPU will become more
“expensive” comparing to memory. In this case, increasing

2. Here, since Pi can be predicted by the partition size prediction
model, Pavg can be easily obtained. And the default CPU and memory
allocations to a container in YARN are 1vCore and 1GB, respectively.

Algorithm 1 Resource allocation algorithm

Input: δ - Threshold of stopping training the Partition Size
Prediction Model;
Mj - Reduce Phase Performance Model of Job j;
µcpu, µmem- Maximum allowable allocation of CPU and
memory.

Output: C - Set of resource allocations for each reduce task
(Acpu

i , Amem
i )

1: (Si, F )← handlePartitionReport().
2: if CompletedMappercentage ≥ δ then
3: Set < Pi >← PredictPartition()
4: D ←

∑N
1 Pi

5: Pavg ← Avg(Set < Pi >)
6: Tbase ← PredictDuration(Pavg, D,A

cpu
default, A

mem
default,Mj)

7: for each reduce task i ∈ [1, N ] do
8: (Acpu

i , Amem
i )← FindOptimalAlloc(Pi, D, Tbase,Mj).

9: Acpu
i = min(Acpu

i , µcpu)
10: Amem

i = min(Amem
i , µmem)

11: C = C ∪ {(Acpu
i , Amem

i )}
12: end for
13: end if
14: return C

the weight of CPU can improve scheduling availability of
tasks, thereby improving resource utilizations. ω depends
on the capacity and the run-time resource availability of the
cluster. How to tune ω is out of the scope of this work. In
particular, we use ω = 1 in this paper.

Since this is a linear optimization problem, we use La-
grange multipliers to solve this problem. Accordingly, we
get the Lagrangian L(xi, yi, ϕ) as follows:

L(xi, yi) = xi + ωyi + ϕ(C1+
C2

xi
+
C3

yi
) (11)

Then, we differentiate L(xi, yi, ϕ) partially with respect
to xi, yi and ϕ, and we get:

∂L

∂xi
=1−ϕC2

x2i
=0

∂L

∂yi
=ω−ϕC3

y2i
=0 (12)

∂L

∂ϕ
=C1+

C2

xi
+
C3

yi
=0

Solving these equations simultaneously, we get:

x=−C2 ±
√
ωC3C3

C1
, y=−ωC3 ±

√
ωC3C3

ωC1
(13)

The detail of our resource allocation mechanism is
shown in Algorithm 1. NodeManagers periodically send
partition size reports to the ApplicationMaster along with
heartbeat messages. As shown in Line 1, the Application-
Master handles each partition size report and collects the
partition size statistics (Si, F ). Once the percentage of
completed map tasks reaches the threshold δ, we start to
predict the partition size and adjust the allocation for each
reduce task as shown in Line 2-13. In terms of partition
size prediction, we predict the partition size of each reduce
task using the model presented in Section 4.1. With respect
to the resource allocation, we compute the optimal com-
bination of CPU and memory tuples (Acpu

i , Amem
i ) using
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TABLE 1: Benchmarks characteristics

Application Domains Dataset Type Input Size
Small (GB)

Skew-
ness(%)

#Map,
#Reduce

Input Size
Large (GB)

Skew-
ness(%)

#Map,
#Reduce

WordCount text retrieval Wikipedia 5.759 14.75 92, 16 29.049 23.47 467, 64
BigramCount text retrieval Wikipedia 5.759 5.86 92, 16 29.049 12.62 467, 64

Pairs text retrieval Wikipedia 5.759 59.03 92, 16 29.049 55.04 467, 64
RelativeFreq text retrieval Wikipedia 5.759 46.37 92, 16 29.049 64.31 467, 64

InvertedIndex web search Wikipedia 5.759 16.94 92, 16 29.049 25.85 467, 64
AdjList web search GraphGenerator 5.012 0.88 90, 16 27.753 18.91 507, 64
KMeans machine learning Netflix 5.039 49.93 81, 6 26.412 49.81 428, 6

Classification machine learning Netflix 5.039 50.05 81, 16 26.412 49.99 428, 6
DataJoin database RandomTextWriter 5.556 36.46 81, 16 33.334 68.04 481, 64
SelfJoin database Synthetic 5.009 0.13 80, 16 27.99 0.22 448, 64

Sort others RandomWriter 5.086 31.52 85, 16 30.510 61.6 510, 64
Histo-movies others Netflix 5.039 234.98 81, 8 26.412 234.59 428, 8

Lagrange Multipliers. More specifically, we calculate the
execution time Tbase first, which represents the time it takes
to complete the task with the average partition size Pavg and
default resource allocation (Acpu

default, A
mem
default)

3, according
to Equation 8. After that, we set Tbase as a target for each
reduce task, and calculate the resource tuples (Acpu

i , Amem
i )

by solving Equation 13 and taking the floor of the positive
root. Because nodes have finite resource capacities in terms
of CPU and memory (e.g., the default settings for the max-
imum CPU and memory allocation to a container in YARN
are 8 vCores and 8 GB, respectively), both Acpu

i and Amem
i

should be less than the physical capacities, Capcpu and
Capmem, respectively. Besides, from our experience, after a
resource allocation to a task reaches a threshold, increasing
allocation will not improve the execution time, rather it
results in resource wastage as shown in Section 4.2. We
consider Acpu

i and Amem
i should be less than the thresholds

µcpu and µmem, respectively, which are considered as inputs
to our algorithm.

5 EVALUATION

We have implemented DREAMS on Hadoop YARN 2.4.0
as an additional feature. We deployed DREAMS on a real
Hadoop cluster with 21 virtual machines (VMs) in the SAVI
Testbed [25]. The SAVI Testbed is a virtual infrastructure
managed by OpenStack [26] using Xen [27] virtualization
technique. Each VM has four 2 GHz cores, 8 GB RAM and
80 GB hard disk. We use one VM as ResourceManager and
NameNode, and the remaining 20 VMs as workers. Each
worker is configured with 8 virtual cores and 7GB RAM
(leaving 1GB for background processes). The HDFS block
size is set to 64 MB, and the replication level is set to 3.
The CgroupsLCEResourcesHandler configuration is enabled,
and we also activate the configuration of map output com-
pression.4. We use CapacityScheduler to schedule containers
in YARN. In the guest OS, we configure CGroups (Control
Groups) and CFQ (Completely Fair Queuing) for scheduling
CPU and disk I/O among processes, respectively.

We evaluate our approach using a wide range of ap-
plications that include text retrieval, web search, machine

3. The default CPU and memory allocations to a container are 1 vCore
and 1 GB, respectively.

4. Using compression in Hadoop to optimize MapReduce perfor-
mance is prevalent in industry and academia. [28], [29]

learning, database domains, etc. These applications are
listed below:

1) Text Retrieval

• WordCount (WC): WordCount computes the occur-
rence frequency of each word in a corpus. We use
Wikipedia data as the input dataset.

• BigramCount (BC): Bigrams are sequences of two
consecutive words. BigramCount computes the oc-
currence frequency of bigrams in a corpus. We use
the implementation in Cloud9 [30] and Wikipedia
data as the input dataset.

• Pairs (PS): “Pairs” is a design pattern introduced
in [31]. Using this design pattern, PS computes the
word co-occurrence matrix for a corpus. We use the
implementation in Cloud9 and Wikipedia data as the
input dataset.

• RelativeFrequency (RF): Relative Frequencies is in-
troduced in [31]. It measures the proportion of time
word wj appears in the context of word wi. It is also
denoted as F (wj |wi). We use the implementation in
Cloud9 and Wikipedia data as the input dataset.

2) Web Search

• InvertedIndex (II): It takes a list of documents as
input and generates a word-to-document index for
these documents. We use Wikipedia data as the input
dataset.

• AdjacencyList (AL): It generates the adjacency list
for a graph. The graph is represented by a set of
edges, which is generated by a Graph Generator.
We use the implementation and the input dataset
provided by PUMA benchmarks [14].

3) Machine Learning

• KMeans (KM): This application classifies movies
based on their ratings using the Netflix movie rat-
ing data. We use the starting values of the cluster
centroids provided by PUMA and run one iteration.

• Classification: It classifies the movies into one of k
pre-determined clusters. Similar to KMeans, we use
the starting values of the cluster centroids provided
by PUMA, and use the Netflix movie rating data.

4) Database

• DataJoin (DJ): It combines text files based on a
designated key. The text dataset is generated by
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Fig. 7: Prediction accuracy with different threshold δ
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Fig. 8: Job completion time with different
threshold δ

RandomTextWriter, and the first word of each line
in the files serves as the join key. We have modified
the original RandomTextWriter and used Zipf 0.5
distribution to skew the input data.

• SelfJoin (SJ): This application is introduced in
PUMA. It generates (k+1)-sized associations given
the set of k-sized associations. We use the imple-
mentation of this application as well as the synthetic
dataset in PUMA.

5) Others

• Sort (SRT): This application sorts sequence files gen-
erated by Hadoop RandomWriter. Similar to [20],
we have modified RandomWriter to produce non-
uniformly distributed data.

• Histogram-movies: This application bins movies
into 8 bins based on the average ratings of movies.
We use the implementation of this application in
PUMA.

Table 1 gives an overview of these benchmarks with their
configurations used in our experiments. The skewness of the
workload among reduce tasks is measured by the coefficient
of variation (CV), stdev

mean , which is used as a fairness metric
in literature [32]. The larger the ratio, the more skewness
is expected in the distribution of workload among reduce
tasks. In order to better demonstrate the skew mitigation,
we do not use the combiner function in our benchmarks. We
will present the results of running these jobs in the following
sections.

5.1 Accuracy of Prediction of Partition Size
In this set of experiments, we want to validate the accuracy
of the partition size prediction model. To this end, we
execute MapReduce jobs on different datasets , and compute
the mean absolute percentage error (MAPE) of all partitions
in each scenario. The MAPE is defined as follows.

MAPE =
1

N

∑N
i=1

∣∣∣P pred
i − Pmeasrd

i

∣∣∣
Pmeasrd
i

(14)

where N is the number of reduce tasks in a job, P pred
i and

Pmeasrd
i are the predicted and measured value of partition

size of reduce task i, respectively. Table 2 summarizes the

TABLE 2: Mean absolute percentage error of partition size
prediction model on Small and Large datasets

Application MAPE
on Small dataset

MAPE
on Large dataset

WordCount 5.34% 3.94%
BigramCount 8.67% 7.25%

Pairs 6.16 % 4.31 %
RelativeFrequency 6.73% 5.75%

InvertedIndex 3.69% 3.40%
AdjList 11.36% 10.01%
KMeans 8.56% 4.13%

Classification 5.29% 3.17%
DataJoin 5.06 % 2.08%
SelfJoin 1.23% 0.63%

Sort 6.32% 5.34%
Histogram-movies 0.47% 0.35%

MAPE for the benchmarks with threshold δ = 0.05 on two
different datasets. It can be seen that the error rates for
most of the MapReduce applications are less than 5%. In
particular, Adjlist reaches the highest error rate at 11.36%.
Furthermore, Figure 7 illustrates the impact of different
values of δ on prediction accuracy. It is clear that as δ
increases, the prediction accuracy improves. That is because
the number of training samples will augment along with the
increase of δ. When δ = 0.15, the prediction error achieves
less than 6% for all testing applications.

Generally speaking, increasing sample size can improve
accuracy at the cost of increased overhead. In DREAMS,
the larger the sample size used, the longer DREAMS has
to wait for the completion of the map tasks for predict-
ing the partition size5. However, we observed that as δ
increases, the overhead in terms of job completion time
does not necessarily become larger. Figure 8 shows the
job completion times while using different values of δ. As
shown in Figure 8, for reduce-intensive jobs such as Sort and
Kmeans, there will be a sweet spot where the job completion
time is lowest; for map-intensive jobs such as Histogram-
movies, no much difference can be observed. The reason is
that overlapping map and reduce phases can let the reduce
task start to shuffle data earlier, but it will also waste
resources while the map tasks’ output rate is smaller than

5. The computational overhead is negligible, because the maximum
number of samples is hundreds in our experiments.
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Fig. 9: Fitting results for the reduce phase performance
model

the bandwidth. Tang et al. [33] proposed a solution to find
the best timing to start the reduce phase. This is out of the
scope of this paper. In this paper, we use δ = 0.05 in the
following experiments.

5.2 Accuracy of Reduce Task Performance Model

In order to formally evaluate the accuracy and workload
independency of the performance model, we compute the
prediction error using different datasets. That is, we train
and test our model based on the samples from both the
Small and Large datasets. Figure 9 shows the typical results
in terms of the goodness of fit for the performance model.
Similar results can be observed in other applications. To
make the demonstration more clear, we sort the experiment
results by the values in ascending order. The marks ’+’
represent the measured task durations and the solid line
represents the fitted values using the performance model.

We also perform two validations [34] to study the pre-
diction accuracy of the model:

• Resubstitution Method - All the available data is
used for training as well as testing. That is, we
compute the predicted reduce task duration for each
tuple (Pi, Alloc

cpu
i , Allocmem

i , D) by using the per-
formance model which is learned from the training
dataset, then compute a prediction error;

• K-fold Cross-validation - The available data is di-
vided into K disjoint subsets, 1 ≤ K ≤ m. m
is the total size of the available samples. And the
prediction accuracy is evaluated by the average of
the separate errors 1

K

∑K
i=1Errori. For each of theK

sub-validations, (K−1) subsets are used for training
and the remaining one for testing. Here, we choose
K = 10.

TABLE 3: Mean absolute percentage error of the reduce
phase performance model

Application Resubstitution
Method

K-fold
Cross-validation

WordCount 13.13% 13.45%
BigramCount 10.26% 10.98%

Pairs 12.13 % 15.31 %
RelativeFrequency 13.03% 14.91%

InvertedIndex 12.97% 13.07%
AdjList 15.45% 18.02%
KMeans 12.52% 15.13%

Classification 4.61% 7.58%
DataJoin 7.84 % 14.09 %
SelfJoin 9.80 % 11.77 %

Sort 10.95% 11.46%
Histogram-movies 11.14% 14.46%

For both validations, we leverage the MAPE to evaluate
the accuracy using following equation:

MAPE =
1

m

∑m
l=1

∣∣∣T pred
l − Tmeasrd

l

∣∣∣
Tmeasrd
l

(15)

where m is the number of testing samples. Table 2 sum-
marizes the MAPE of reduce task performance model for
our testing workloads. With regard to the Resubstitution
Method validation, the prediction error for all of the
workloads is less than 15.45%. In terms of the K-fold
Cross-validation, the prediction error is slightly higher than
the error in the Resubstitution validation. However, the
error rate is still less than 18.02%. For some applications
such as Adjlist, the prediction error is relatively higher.
But overall, the prediction error is less than 15% for
most of the applications. Lastly, tuning the parameters of
the performance model by continuously training the new
coming data may improve the accuracy, which is considered
as our future work.

5.3 Job Completion Time
In this section, we want to validate how well DREAMS can
mitigate skew. We compare DREAMS against 1) Hadoop
YARN 2.4.0; 2) Speculation-based straggler mitigation ap-
proach (LATE), which launches speculative tasks for the
slower tasks; 3) repartition-based skew mitigation approach
(SkewTune), which repartitions the unprocessed workload
of the slower tasks at run-time and 4) Hadoop 0.21.0 with
slot isolation (MRv1 ISO). To the best of our knowledge, in
addition to SkewTune, many other state-of-the-art solutions
such as LEEN [6], TopCluster [9], are implemented on top
of MRv1, which is slot-based and there is no isolation
between slots. In order to fairly compare DREAMS against
SkewTune, we have implemented isolation between slots in
Hadoop 0.21.0 and installed SkewTune on top of MRv1 ISO.
We configure each worker with 6 map slots and 2 reduce
slots while running SkewTune and MRv1 ISO. Note that
tuning the number of reduce tasks of a MapReduce job can
improve the job completion time [35]. To isolate this effect,
we use the same number of reduce tasks in the correspond-
ing experiments when comparing the job completion time.

Figure 10 shows the comparison among YARN, LATE,
SkewTune, MRv1 and DREAMS in regards to job com-
pletion time. We can see from the figure that DREAMS
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Fig. 10: The comparison of job completion time

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Time (Seconds)

T
as

k 
sl

ot
s

 

 

map
shuffle
reduce

(a) YARN

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Time (Seconds)

T
as

k 
sl

ot
s

 

 

map
shuffle
reduce

(b) LATE

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

Time (Seconds)

T
as

k 
sl

ot
s

 

 

map
shuffle
reduce

(c) SkewTune

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Time (Seconds)

T
as

k 
sl

ot
s

 

 

map
shuffle
reduce

(d) DREAMS

Fig. 11: Execution Timeline for 5G Pairs
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Fig. 12: The comparison of makespan variance of reduce tasks

outperforms other skew mitigation strategies. In par-
ticular, DREAMS achieves 2.29×, 1.93×, 1.42×, 1.34×,
1.31×, 1.29× and 1.26× speedups over YARN for Paris,
RelativeFreq, Sort, DataJoin, WordCount, InvtIndex and
Kmeans, respectively. Compared to other mitigation strate-
gies, DREAMS can achieve the highest improvements of
1.85× and 1.65× over LATE and SkewTune, respectively.
We also observed that DREAMS cannot improve the job
completion time for SelfJoin and Adjlist. This is because
the skewness in these jobs is low, leaving little room for
DREAMS and other mitigation strategies to improve. Since
DREAMS only adjusts resource allocation for reduce tasks,
for jobs such as Classification and HisMovies in which the

reduce phase only lasts for a few seconds, no improvement
in terms of the job completion time can be observed.

In order to understand the reason behind the improve-
ment of DREAMS, in Figure 11 we demonstrate the exe-
cution timeline while running 5G Pairs with YARN, LATE,
SkewTune, and DREAMS, respectively. As shown in Figure
11a, several large reduce tasks take much longer than other
reducers, which dominate the completion time of the job.
In comparison, LATE executes replica tasks for these large
reduce tasks using free resources, which can accelerate those
large reduce tasks. However, since replica tasks process the
same amount of work as original tasks, the improvement
is not significant. SkewTune splits the unprocessed work
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of stragglers at runtime, and launches new jobs (called
migration jobs) to process these tasks. As we can see in
Figure 11c, three additional jobs are launched to process
those long lasting reduce tasks. Hence, overloaded tasks
are processed using more cluster resources, which results
in reducing their execution times. Note that the execution
times of the stragglers are dominated by the completion
times of the corresponding migration jobs. However, the
overhead of repartitioning the running tasks is not small.
As reported in [4], approximately 30s overhead is incurred
for reduce skew mitigation, and SkewTune does not perform
skew mitigation for the tasks with remaining time less than
2 · w, where w is on the order of 30s. As a results, for
small jobs that complete in 100s or with small skewness,
SkewTune cannot improve the job completion time. In con-
trast, DREAMS predicts the partition size of each reduce
task at runtime and proactively allocates more resources to
overloaded reducers. This reduces the durations of over-
loaded tasks, thereby accelerating the job completion with
negligible overhead. As shown in Figure 11d, the running
times of those large reducers are significantly improved.

We also compare the makespan variance of reduce tasks
in DREAMS against other solutions. As we started earlier,
DREAMS is designed to reduce the run-time difference
among reduce tasks with different loads, thereby shortening
the job completion time. Figure 12 shows the comparison
results with respect to the coefficient of variation (CV) of re-
duce tasks’ durations for our benchmarks. The graphs reflect
that DREAMS can effectively reduce the makespan variance
of reduce tasks. More specially, the highest reduction ratio
can achieve 2.47×, 1.84× and 2.23× over YARN, LATE and
SkewTune, respectively. Since the shuffle phase in reduce
stage is overlapping the entire map stage, there is no need
to count the makespan when the shuffle phase is waiting for
the output of map tasks. Here, we compare the durations
of reduce tasks starting from the completion of the last map
task. ARIA [12] considers only the non-overlapping portions
of shuffle into account. Chowdhury et al. [36] also define
the beginning of the shuffle phase as when either the last
map task finishes or the last reduce task starts.

6 DISCUSSION

The concept of dynamic container size adjustment used in
DREAMS is not restricted to MapReduce. It can be applied
to other large-scale programming models such as Spark [37]
and Storm [38] as well. Take Spark as an example, a
Spark job consists of a number of tasks as a form of a
DAG (Direct Acyclic Graph). These tasks are scheduled
to a number of the Spark Executors and executed in a
distributed manner. Each Spark executor runs in a container
on top of the resource management platform (e.g. YARN
and Mesos [39]). If some executors have more workload
to process, dynamically adjusting the container size based
on the resource requirements and workload characteristics
may bring benefit as well.

Nevertheless, there are limitations in DREAMS’s current
design. First, DREAMS can only adjust CPU and memory
for a container in our current implementation, and it relies
on the TCP fairness and Completely Fair Queuing to fairly
share the network bandwidth and disk I/O, respectively.

Hence, DREAMS may not be able to give a precise es-
timation of the task execution time in a highly dynamic
environment. However, our performance model works well
in DREAMS. It roughly estimates the execution time of
the reduce task based on the historical data and in turn
helps DREAMS to determine how much resources should
be allocated to the task. Through allocating more resources
to the reduce tasks with more workload, the executions
of these tasks can be accelerated, and therefore the job
completion time can be improved. We would like to extend
DREAMS to take account of network bandwidth and disk
I/O in future work. One interesting idea is to integrate the
management of containers’ network and disk I/O resources
to YARN using CGroups. Note that CGroups can support
isolating network and disk I/O between processes currently.
This deserves further research. Second, there may be some
applications where DREAMS is not applicable, for example,
the applications that contain computational skew [7] in
their reduce functions. The computational skew refers to
the case where the task running time depends on the
content of the input rather than its size. For this kind of
applications, DREAMS resorts to YARN in current design.
One straightforward extension is to monitor the resource
usage and progresses of tasks at run-time, and then adjust
their allocation dynamically. In this way, skewed tasks
could be accelerated in a more generic manner.

7 RELATED WORK

The partitioning skew problem in MapReduce has been
extensively investigated recently. The authors in [5] and [6]
define a cost model for assigning reduce keys to reduce tasks
so as to balance the load among reduce tasks. However, both
approaches have to wait for the completion of all the map
tasks. Ramakrishnan et al. [7] and Yan et al. [19] propose to
sample partition size before executing actual jobs to estimate
the intermediate data distribution, and then partition the
data to balance the load across all reducers. However, the
additional sampling phase can be time-consuming. Simi-
larly, Kolb et al. [40] propose two approaches, BlockSplit
and PairRange, to handle data skew for entities resolu-
tion based on MapReduce. However, both of these two
approaches have to run an additional MapReduce job to
generate the block distribution matrix (BDM). Gufler et
al. [9] and Chen et al. [10] propose to aggregate selected
statistics of the key-value pairs (e.g. top k keys). Their
solutions can reduce the overhead while estimating the
reducer’s workload, but these solutions still have to wait for
the completion of all the map tasks. SkewTune [4] reparti-
tions heavily skewed partitions at runtime to mitigate skew.
However, it imposes an overhead while repartitioning data
and concatenating final outputs. Compared to SkewTune,
our solution dynamically allocates resources to reduce tasks
and equalizes the reduce tasks’ completion time, which is
simpler and incurs no overhead.

There are also related works on culling stragglers in
MapReduce. LATE [41] speculatively executes a replica task
for the tasks at a slow progress rate. However, executing a
redundant copy for a data-skew task, may result in wasting
resource, since the duplicate tasks with data skew still have
the same amount of data. Mantri [42] culls stragglers based
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on their causes. With respect to data skew, Mantri schedules
tasks in descending order of their input sizes to mitigate
skew, which is complementary to DREAMS. Wrangler [43]
predicts the status of worker nodes based on their runtime
resource usage statistics, then selectively delays the execu-
tion of tasks if a node is predicted to create a straggler.
However, Wrangler neglects that the straggling situation can
also be incurred by the task itself; partitioning skew is one
such example.

Resource-aware scheduling has received considerable
attention in recent years. To address the limitation of slot-
based resource allocation scheme in the first version of
Hadoop, YARN [15] represents a major endeavor towards
resource-aware scheduling in MapReduce. It offers the abil-
ity to specify the size of container. However, YARN assumes
the resource consumption for each map (or reduce) task in
a job is identical, which is not true for data skewed MapRe-
duce jobs. Sharma et al. propose MROrchestrator [16], a
MapReduce resource framework that can identify resource
bottlenecks and resolve them by run-time resource allo-
cation. However, MROrchestrator neglects the workload
imbalance among tasks and cannot mitigate the partitioning
skew. There are several other proposals that fall in other
categories of resource scheduling policies such as [12], [18],
[44], [45]. The main focus of those approaches is on adjusting
the resource allocation in terms of the number of map
and reduce slots for the jobs in order to achieve fairness,
maximize resource utilization or meet job deadline. These
however do not address the data skew problem.

8 CONCLUSION

In this paper, we presented DREAMS, a framework for
run-time partitioning skew mitigation. Unlike previous ap-
proaches that try to balance the reducers’ workload by
repartitioning the workload assigned to each reduce task, in
DREAMS we cope with partitioning skew by adjusting run-
time resource allocation to reduce tasks. Specifically, we first
developed an on-line partition size prediction model which
can estimate the partition size of each reduce task at run-
time. We then presented a reduce task performance model
that correlates run-time resource allocation and the size
of the reduce task with task duration. In our experiments
using a 21-node cluster running both real and synthetic
workloads, we showed that both our partition size pre-
diction model and task performance model achieve high
accuracy in most cases (with highest prediction error at
11.36% and 18.02%, respectively). We also demonstrated
that DREAMS can effectively mitigate the negative impact
of partitioning skew while incurring negligible overhead,
thereby improving the job running time by up to a factor of
2.29 and 1.65 in comparison to the native Hadoop YARN
and the state-of-the-art solution, respectively.
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