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Abstract—This paper shows how to properly achieve elasticity
for network firewalls deployed in a cloud environment. Elasticity
is the ability to adapt to workload changes by provisioning and
de-provisioning resources in an autonomic manner, such that
at each point in time the available resources match the current
demand as closely as possible. Elasticity for cloud-based firewalls
aims to satisfy an agreed-upon performance measure using only
the minimal number of cloud firewall instances. Our contribu-
tion lies in determining the number of firewall instances that
should be dynamically adjusted in accordance with the incoming
traffic load and the targeted rules within the firewall rulebase.
To do so, we develop an analytical model based on the princi-
ples of Markov chains and queueing theory. The model captures
the behavior of a cloud-based firewall service comprising a load
balancer and a variable number of virtual firewalls. From the
analytical model, we then derive closed-form formulas to deter-
mine the minimal number of virtual firewalls required to meet
the response time specified in the service level agreement. The
model takes as input key system parameters including work-
load, processing capacity of load balancer and virtual machines,
as well as the depth of the targeted firewall rules. We validate
our model using discrete-event simulation, and real-world experi-
ments conducted on Amazon Web Services cloud. We also provide
numerical examples to show how our model can be used in prac-
tice by cloud performance/security engineers to achieve proper
elasticity under fluctuating traffic load and variable depth of
targeted firewall rules.

Index Terms—Cloud computing, firewalls, cloud firewalls,
scalability, elasticity, resource management.

I. INTRODUCTION

N A CLOUD environment, and as in any enterprise net-

work, firewalls are typically used to filter traffic and enforce
a given security policy. Today’s cloud infrastructure and ser-
vices offer a customer the ability to provision a customizable
“virtual private cloud” (VPC) that comprises of many vir-
tual machines that can be logically isolated, networked and
configured into different subnets. A VPC provides higher
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control of the infrastructure to the customer, and provides
flexible options to run isolated or single tenant hardware to
support AWS instances. The VPC subnets can host a wide
range of private and public services and applications, and
a customer can interconnect their VPC to a corporate data
center that is located at a different geographical site on the
Internet.

The fact that the VPC is exposed with public IP addresses
(from Amazon’s public IP address pool), security becomes
a major concern and there is a need for a suitable design
when deploying the VPC so that it can securely handle elas-
tic customer traffic needs. More importantly, the VPC has to
remain operational under the threat of new cloud-based attacks
that are always emerging [1]-[3]. In most cases, cloud service
providers give minimal support towards security or protection
of a VPC; it is the responsibility of the VPC customer to
implement the proper performance scaling and adequate secu-
rity measures by deploying the appropriate security appliances.
As a consequence, the cloud customer has to undertake major-
ity of control for management of network services, i.e., the
customer has to treat the VPC network as no different from a
traditional non-cloud enterprise network, requiring the imple-
mentation of firewalls, load balancers, anti-viruses as well as
intrusion detection systems.

To protect and secure a VPC deployment in a pub-
lic cloud platform, typically virtual firewalls (vFirewalls or
vFWs) are deployed as a first line of defense to filter law-
ful and unlawful packets, as shown in Figure. 1. A virtual
firewall is basically a virtual machine that runs different
software-based firewall functions such as, e.g., access con-
trol lists. Unlike traditional firewalls, cloud-based firewalls
need to be elastic in order to seamlessly integrate with
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the other elastic services related to, e.g., compute (EC2),
storage (S3) or service monitoring (CloudWatch). Elasticity
is a key characteristic of cloud-hosted services and applica-
tions, whereby cloud resources are allocated and de-allocated
based on the presented workload in order to satisfy
given SLA (Service Level Agreement) performance metrics
which may include response time, throughput and request
loss ratio.

Elasticity for cloud-hosted applications and services (such
as Web, FTP, and email service, multimedia streaming, cus-
tomer relationship management (CRM), and many others) has
been investigated to a great extent in the literature. However,
the literature is lacking research work and investigation for
implementing proper elasticity of virtualized network services
residing in the cloud as those of routing, domain name ser-
vices, intrusion detection, firewalls, etc. This article focuses on
addressing the challenging issue of elasticity for a cloud-based
firewall service. The article proposes an architectural design
for an elastic scalable virtual firewall service to be deployed
at cloud datacenters that support VPC services. Specifically,
it focuses on how to tune elasticity to desired configurations
by developing an analytical model that estimates the num-
ber of vFirewalls required to meet a certain SLA response
time expected from a cloud-based firewall service. The fire-
wall response time can be part of the overall end-to-end latency
for an application or service hosted within the VPC specified
in the SLA.

Figure 2 shows a typical architecture for an elastic cloud-
based firewall service that can be deployed at a cloud datacen-
ter. The firewall service comprises of a Load Balancer (LB)
which fronts a variable number of vFirewalls (a.k.a. VFWs)
that get allocated and de-allocated based on the received traf-
fic from the Internet. A vFirewall is basically a software-based
firewall running on a compute virtual machine (VM) of a cer-
tain processing capacity. The primary function of the LB is to
distribute the incoming workload A of arriving packets evenly
among M vFWs so that each vFW will receive A/M of the
workload. In the figure, y; is the departure rate or throughput
of a vVFW;.

In this article, we present an analytical model and provide
closed-form solutions and formulas that can be used to support
and enable elasticity for cloud-based firewalls. These formulas
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Fig. 3. Key design components for an elastic cloud-based firewall system.

provide an answer to the question on the number of VFWj
required for a given network workload. The answer to this key
question is at the heart of any proper elasticity implementation.
The answer to this key question is at the heart of any proper
elasticity implementation. In this article, we do not claim to
provide a full-fledge implementation to elasticity for vFWj,
but we focus on this key question. Our analytical formulas
and solutions can be an integral part to any elastic scaling
framework, design or implementation. The implementation of
a full-fledged elastic cloud-based firewall system is beyond the
scope of this article and is left as a future work.

Figure 3 shows the main design components for implement-
ing a cloud-based firewall system. The components and their
roles can be described briefly as follows:

o Service Agents (SA): The measurements of the various
cloud node states and network load have to be performed
in real time by service agents which are placed in various
parts of the VPC network including LB, vFW, hypervi-
sors, and routers. Such agents will measure and monitor
various aspects of node system parameters and network
conditions. For example, the VFW agents will gather fine-
grained statistics on the highly frequent triggered rules
within the rulebase from each vVFW.

o FElasticity Orchestrator (EO): The EO is responsible
for the provisioning (scaling out) and de-provisioning
(scaling in) of new vFWs. The EO carries out such func-
tionality by gathering information from the agents, and
subsequently deciding on the number of needed VFWs.
The orchestrator runs periodically an algorithm to ensure
the created VFWs are meeting the workload demand,
and would adjust the allocated vVFWSs accordingly, based
on the formulas and the analytic solutions given in this
article. The length of the adjustment period and other
parameters including the desirable SLA requirements are
included as part of the “elasticity policy”.

o Resource Manager (RM): The RM is the third key com-
ponent of elasticity. This node is also known in some
systems as the Virtual Infrastructure Manager (VIM)
which is responsible for monitoring, automation, and
management of cloud resources particularly, in keep-
ing track of used and unused cloud resources. The EO
interacts with the Resource Manager at the time of pro-
visioning new VFWs, and also at the time of releasing
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already allocated vFWs. As shown in Figure 3, the
RM interacts with the hypervisors deployed on physical
machines throughput the cloud datacenter, to manage and
allocate virtual resources.

There is also a number of design and management aspects to
consider for implementing and supporting elasticity for cloud-
based applications and services [38]-[40]. Many of these
aspects need to be incorporated to implement a complete
elastic cloud-based firewall system.

This paper is a significant extension of our preliminary work
presented in [4]. Our main contributions of this paper can be
summarized as follows:

o We propose a mathematical model that captures the
behavior and dynamics of cloud-based firewalls. The
model can be used to study the performance of cloud-
based firewalls and also to determine the minimal number
of cloud firewalls needed to achieve elasticity.

o We derive important closed-form formulas and present a
complete algorithm to implement elasticity. Moreover, we
propose a deployment topology of a cloud-based firewall
service comprising LB and vFWs.

o« We conduct a major experimental work and measure-
ments to validate our analytical model. The experiments
were conducted in a real-world VPC environment on the
popular Amazon Web Services cloud infrastructure.

o« We provide several numerical examples to show how
proper elasticity can be achieved, and we offer guidelines
for researchers as well as cloud performance/security
engineers to be able to reproduce the results and conduct
the experiments, as well as to deploy and implement an
elastic cloud-based firewall service.

« Finally, and in general, our model, formulas, experiments,
and guidelines presented in this article can be used and
applied to implement and deploy other types of similarly-
behaving rule-based services, systems, and applications
to be deployed on the cloud. Such services may include
intrusion detection systems, spam email filters, anti-virus
appliances, etc.

The rest of the article is organized as follows. Section II
summarizes work related to cloud-based firewalls. Section III
presents our analytical model capturing the inner-working and
behavior of cloud-based firewalls. In particular, we derive
closed-form formulas to estimate the SLA response time
incurred at both LB and vFWs, and devise an algorithm for the
computation of these formulas. Section IV verifies and vali-
dates our model using simulation and an experimental testbed
deployed within an Amazon Web Services environment. We
also provide numerical examples and show how the model can
be used to achieve elasticity of cloud firewalls that satisfy a
given SLA response time. Finally, Section V concludes our
article.

II. RELATED WORK

To the best of our knowledge, there has been limited stud-
ies of elastic cloud-based firewall services in the literature.
In [5] and [6], a firewall framework of a cluster of firewalls was
proposed to protect cloud-hosted applications and services.

The authors used queuing theory to model and capture the
behavior of the firewalls in order to study performance. In [7],
a cloud-based firewall service is proposed to outsource firewall
functionality from an enterprise local network to the cloud
platform. The authors proposed a framework to preserve pri-
vacy and evaluate different algorithms to study the service
performance issues.

In [8] and [9], cloud-based firewalling was advocated as a
future trend in which a traditional physical firewall can be out-
sourced to the cloud. In [10], a hybrid cloud-based firewalling
service was proposed. The hybrid firewalling service is com-
posed of a physical server infrastructure part and a cloud-based
part. As the network traffic increases beyond a certain level,
the traffic is routed to the cloud firewalls to be handled at-
scale. Such an approach was proven to be potentially effective
for mitigating DDoS attacks [11], [12] by making a decision to
create or not to create virtual firewalls based on traffic demand.

In all of this prior work, the scalability and elasticity issues
of a cloud-based firewall service for critical services such
as VPC were not addressed. Also, all of this prior work
did not consider the role of a load balancer and its critical
impact on the performance. In general, these existing mod-
els do not capture the inner-working details and dynamics of
the elastic services—which makes it difficult to derive proper
guidelines for handling the tradeoffs inherent to cloud-based
firewall elasticity design. As we noted, the LB can play a
key role in creating, monitoring, managing, and orchestrat-
ing VFW instances in the cloud. All of this may result in a
significant processing overhead at the LB, especially when
the incoming workload is high. Hence, any analytical model
should account for the role of LB in order to accurately model
behavior and performance. Accordingly, this article develops
an analytical model used to determine the efficient number of
needed VFWs to meet a given SLA response time taking into
account many key design parameters including, the LB as well
as VFW processing capacity, workload, and depth of firewall
rulebase.

III. ANALYTICAL MODEL

In this section, we develop an analytical model to capture
the service behavior within a vVFW, and then we derive formu-
las to estimate the response time. Typically, for a PC-based
or virtual firewall, and as shown in Figure 4, incoming pack-
ets are queued into a Rx DMA ring and then go into three
stages of service. In Stage I, packet pre-processing takes place
whereby the packet is removed from the queue, header fields
are checked for errors, and packet is prepared for delivery
to upper layers. Firewall rulebase interrogation takes place at
Stage 2 in which rule conditions are checked sequentially one
by one until a match occurs. Stage 3 executes the rule in which
an action to drop, log, or pass the packet takes places. In our
model, a new packet only gets forwarded to Stage I after
the previous packet has left Stage 3 completely, i.e., it has
departed from the entire queuing system. We also assume that
the execution of the three stages is mutually exclusive. More
specifically, if the CPU is executing one of the stages, the other
two stages are halted. This is realistic considering vFWs are
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all based on an x86 architecture with a virtual CPU executing
one task at a time.

The behavior of firewall processing of incoming packets
can be modeled as a finite queueing system size with three
stages of service. As shown in Figure 5, an incoming network
packet gets first queued in a buffer of size K-1 and then gets
served sequentially in three stages with each stage having a
different mean service rate, i.e., (1, 2, 43. We assume that
incoming packets follow a Poisson arrival A. Also, the stage
service times are independent with exponential distribution.
The service discipline of packets is FCFS (First Come First
Served). At Stage 2, the mean processing rate u, depends
on the service time to interrogate a rule and how many rules
need to be interrogated before a match occurs, i.e., a rule is
triggered. On average, 1/i4> can be expressed as follows

1/pua =L-Tg,

where L is the average number of rules to be interrogated for
an incoming traffic, and Ty is the average interrogation time
per rule.

In our analysis, we assume the packet arrivals are Poisson
with fixed packet sizes, and the service times are all expo-
nentially distributed. For some other traffic types, the size of
network packets are not fixed, and arrival rates do not always
follow a Poisson process, but in many cases are classified to
be bursty [13]-[15]. Also, the service times are not necessar-
ily exponential. However, for specific types of network traffic,
assuming Poisson arrivals can be sufficient [16]. Moreover,
it was demonstrated in [17] that analytical solutions based on
these assumptions do indeed offer adequate approximation and
close results to real experimental results and measurements.
An analytical solution becomes infeasible to solve, and in
fact, intractable when assuming network packets with variable
sizes and incoming rates that follow a non-Poisson process,
or with general service times. Moreover, the assumptions, we
undertake in this article, have been widely adopted in the lit-
erature, and do, in fact, provide acceptable approximation of
real-world systems as reported in [5], [6], [18], [20], and [21].
More importantly, we show in Section IV-B that our ana-
Iytical results are valid and in good agreement with those

Fig. 6. State transition rate diagram with three stages of service.

measurements taken from real-world experiments conducted
in the popular AWS public cloud environment. It is worth
noting that there is also some work reported in [19], where
the Khazaei et al. presented a performance model and anal-
ysis of a cloud datacenter using a Poisson arrival but with a
generally distributed service times. As demonstrated in [19],
such models do not provide closed-form solutions and formu-
las that can be easily used by a cloud controller node in a
cloud environment, and can in fact be computationally expen-
sive to implement. Khazaei et al. [19] have used a software
package Maple 13 to solve numerically the balance equations,
as closed-form solution was not attainable.

Our analytical model is built on the principles of the embed-
ded Markov chain with a finite state space. The model captures
the behavior of the vFirewall processing with a state space
S = {k,n),0 < k < K,0 <n < 3}, where k denotes the
number of packets in the entire system, and n denotes the
service stage number being performed by the CPU. The queu-
ing system has a buffer size of K-1. In other words, state
(0,0) represents the special case when the system is empty or
idle, i.e., the state of system idleness. States (k,n) represent
the states where the CPU is busy executing service of stage n
with k packets in the system. The state rate transition diagram
is shown in Figure 6.

We start first by expressing the steady-state balance equa-
tions for each state (k,n). If we have py , denote the steady-
state probabilities at state (k,n).

At state (0,0):

0= —Apo,o + 13p13 (1

At state (1,3):
0=—(GA+w3)p1,3+ nopi2 2

At state (1,2):
0=—@A+u2)p12+ mipi (3)

At state (1,1):
0=~ + w1p1,1 + Apoo + u3p23 (4)

At state (k,3):
0=—GA+u3)pr3 + rpe—13 + u2pr 22 <k <K-—1) (5)
At state (k,2):

0=—(+pudpk2+rpk—12+ppk 12 <k <K-—1) (6)
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At state (k,1):
0=—A+pu)pr1 +Ape—1,1+ m3pi+132 <k <K-—-1)

(7

At state (K,3):
0= —u3Pk3 + Apx—1,3 + wopk 2 )

At state (K,2):
0= —p2Pk 2+ Apk—1,2 + H1pPk,1 9)

At state (K,1):
0= —pipk1 +Apx-1.1 (10)

Therefore py , can be recursively written in terms of pg o
as follows:
From Equation (1)

A

P13 = —P0,0 (11)
"3
From Equation (2)
A+ U3
P12 = < >P1,3 (12)
w2
From Equation (3)
A+ po
P11 = < >P1,2 (13)
1
From Equation (4)
A+ A
P23 = ( )Pl,] - (—)Po,o (14)
3 w3

From Equation (5)

A+ U3 A
Dk2 = ( )Pk,3 - (—)1%1,3(2 <k<K-1)
M2 n2

15)

From Equation (6)

) A
Pkl = ( )Pk,z - <—)Pk—1,2(2 <k<K-1)
I m

(16)

From Equation (7)

A+ A
Dk+1,3 = ( )Pk,l - (—)Pk1,1(2 <k<K-1)
n3 M3

(17)
From Equation (8)
n3 A
PK2 = <_>PK,3 - <_>PK—1,3 (13)
n2 n2
From Equation (9)
2 A
PK.1 = <M_)PK,2 - <_)PK—1,2 (19)
Mn1 31
And from Equation (10)
A
PK,1 = <_>PK—1,1~ (20)
n1

Algorithm 1 Computing Steady-State Probabilities
1: Input: A, p1, po, u3, K

2: Output: py, Matrix P[1..K, 1..3]
3 po=1
4: P[i,j] =0 for i=1 to K and for j=1 to 3
5: Cr=2/u3; Co = (A+u3)/u2; C3 = A+ p2)/p1; Co =
(A+wm1)/m3; Cs = Afpa; Co = Afpy; C7 = u3z/p2; Cg =
M2/
: P[1,3]=C

. P[1,1] = C3 x P[1, 2]

: P[2,3]=C4 x P[1,1] — C4
10: for i=2 to K — 1 do
11:  Pli,2] = Cy x P[i,3] — Cs x P[i — 1, 3]
122 Pli, 1] =C3 x P[i,2] — C¢ x P[i — 1, 3]
132 Pli+1,3]1=Cs x P[i,1]—Cy x P[i — 1, 1]
14: end for
15: P[K,2] = C7 x P[K,3] — Cs x P[K — 1, 3]
16: P[K, 1] = Cg x P[K,2] — Ce x P[K — 1, 2]
17: po = 1/(1 4+ sum(P))
18: P=po x P
19: return po and P

6
7: P[1,2] = Cy x P[1, 3]
8
9

Please note that pg; can be derived from either
Equation (19) or (20). Both of these equations are numerically
equivalent. Now, pg o can be obtained using the normalization
condition in the following form:

1
3
Z Pk.n
1n=1 Po,0

All state probabilities {pr,;1 < k < K,1 < n < 3} can
be computed recursively using Equations (11)-(19), as shown
in Algorithm 1, which can be converted easily to a MATLAB
or another similar package script. As shown, the algorithm
first computes the loop invariants (C7 to Cg) in Line 05,
and then uses the Equations (11)—(19) to determine all state
probabilities.

Now, we show how to derive formulas for important
performance metrics of the system. First, the metric for the
mean system throughput y is fundamentally the departure rate,
i.e., the rate at which packets leave Stage 3, that is

K
Y=y prs
k=1

The mean system throughput y can equivalently be
expressed as

Po = Po,o0 = 2D

1+

M=

k

(22)

y = -po)/X,
where py is given by Equations (21), and X is the mean service
time. X is actually the sum of the mean service time for the
three stages, and hence, X can be written as

3
X=5" 1/ 23)
n=1
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The departure rate y can also be expressed as the effective
arrival rate A’ which is A(1 — Pj,,). Therefore,

Y = (1 —PO)/X = A1 = Pioss),

where P, is the loss (or blocking) probability. P, can be
expressed from (24) as

(24)

I—po po+p—1
Ploss:pKzl_ = s
o p

(25)

where p = AX is referred to as the offered load, and also
known as the traffic intensity. We can also express Pj,gs as the
probability of being in states (K,1), (K,2) or (K,3), that is

3
Pluss = ZpK,n-
n=1

Both of Equations (25) and (26) are equivalent.
The mean number of packets that can be found in the entire
system can be written as

K 3
EKI1=) "> kpin

k=1 n=1

(26)

27)

The mean number of packets in the queue can be
expressed as

E[K]) =D (k= Dpew = EK] = (1 —po).  (28)

K
k=1 n=1

Note that the term (1 — pg) is the mean number of packets
in service.

And finally, the mean time spent in a single vVFW T,y can

be written, using Little’s formula, as

K 3
TVFW = @ = ! szpk,w

— (29)
Y V=t nm

We can now estimate the overall response time 7'¢jy,qrw for
a cloud-based firewall system considering multiple M vFire-
walls with a load balancer (LB) as shown in Figure 2. The
LB system can be modeled as a simple finite queuing system
M/M/I/K with a service rate of urp. Basically, Tciouarw 1S
composed of the service time incurred at the LB and the vFW,
that is:

Tciouarw = Tyrw + T8, (30)

where Trp formula is given in [22], and T,rw is given in
Equation (29) but with substituting A with A/M.

IV. RESULTS AND DISCUSSION

In this section, we validate our analytical model and show
how it can be used to provide elasticity and efficient design for
cloud-based network firewalls. Validation is done using simu-
lation, as well as real experiments conducted in an AWS cloud
environment. The section also provides a practical example to
show how elasticity of cloud firewalls can be accomplished
according to the mean incoming workload and the mean depth
of triggered rules of a firewall rulebase.
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Fig. 7. Impact of vFWs and incoming rate on response time.

A. Validation Through Simulation

To validate our analytical model, we report and compare
numerical results obtained from analysis and simulation. The
analytical curves were obtained by MATLAB implementation
of the equations derived from the analytical models. The sim-
ulation results were obtained using a discrete-event simulation
written in C. Details on how to develop a DES simulator in
C can be found in [23]. There are a number of publically
and commercially available network simulation tools. Some
of these simulators are designed specifically for cloud envi-
ronments (e.g., CloudSim, iCanCloud, EMUSIM, MDCSim),
and some are generic in natures (e.g., OPNET, NS, OMNeT,
J-Sim, JMT). All of these available simulators did not have
the capabilities to capture accurately the internal behavior and
dynamics of the firewall-particularly, the processing of pack-
ets in three stages of services in a mutually exclusive manner
and with the middle stage interrogating rules sequentially. Our
simulation code was verified carefully and checked to give cor-
rect output for pseudorandom number generator, and also to
give correct results for known queueing cases as that for a
service of single stage (i.e., M/M/1/K). Moreover, the simu-
lation followed carefully the principles and recommendations
outlined in [23]. To validate our analytical model, we consid-
ered the same assumptions for our analysis model as that for
simulation. We then compared the analytical results with the
simulation results. As depicted in Figures 7 and 8, red cir-
cles represent the simulation results, and the solid blue curves
represent the analysis results. Clearly, both figures show that
the results obtained from both analysis and simulation are
in good agreement-thus, implying the correctness of the ana-
lytical model. For our numerical examples, we have chosen
K=300 packets, 1/u; = 5.3us, 1/us = 200us, T = 0.1us
and 1/uzp = 100us. These values for the processing time
are realistic and roughly twice as much as the experimen-
tal measurements reported in [17] for a high-end quad core
physical machine. In the cloud, we approximately doubled
the processing time to account for the overhead introduced
by the virtualization of the underlying network and compute
infrastructure.
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Fig. 8. Impact of vVFWs and the number of interrogated rules on response

time.

Figure 7 illustrates the impact of incoming traffic A on the
Tciouarw Which is the mean response time incurred at both
the load balancer and vFWs. Incoming traffic A is expressed
in packets per seconds (pps). In the figure, we fixed the average
number of interrogated rules L to 2500. The figure illustrates
how the response time is affected by both incoming traffic rate
as well as the number of allocated vFWs. The figure shows
the response time curves increase under high traffic load, and
also are highly impacted by the number of vFWs used. More
importantly, the figure illustrates how to determine the minimal
number of VFWs required to meet a given mean response time
so that the end-to-end SLA latency of a hosted application
or service can be achieved. For Example, the SLA latency
threshold for a firewall service, shown in the red horizontal
dashed line, is 1.0 ms and given an incoming arrival rate of
4000 pps, the figure shows that a total of 5 vFWs is required
to keep the mean SLA firewall latency under 1.0 ms. Another
important observation to be made is that the number of VFWs
does not need to change as the workload changes within a
certain range. For example, a single vVFW would suffice for a
workload ranging from 0 to 1000 pps. Also, two VFWs would
suffice for a workload ranging from 1000 to 2000 pps, and
three VFWs would suffice for a workload ranging from 2000
to 3000 pps.

The impact of L, which is the average number of rules to
be interrogated for an incoming traffic, on the mean response
time is shown in Figure 8. For all performance curves shown
in the figure, we fixed the incoming traffic rate to 2000 pps.
The shows how the response time increases as the average
number of interrogated rules increases. This is expected since
the deeper the interrogation of the firewall rulebase, the more
processing and interrogation the VFW has to undertake. The
figure also shows that as the interrogation and processing gets
distributed among multiple vFWs, the response time is reduced
significantly. The figure also shows how we can determine the
minimal number of VFWs required to satisfy a given SLA
latency. At a rate of 2000 pps, only three VFWs are needed

Small size EC2 Linux
Netfilter firewall instances
-

Elastic Load
Balancer (ELB)

»

Traffic Generation

Large size EC2
Linux instance

Large size EC2
Linux instance

Fig. 9. Experimental setup using Amazon AWS Cloud.

to satisfy an SLA latency of 1.0 ms. It can be seen from the
figure that there is no change required in the number of VFWs
if the average number of interrogated rules lies between 2500
to 3500. Similarly, we can see that only four vFWs are needed
if the average number of interrogated rules lies between 3500
to 4000.

B. Experimental Validation

To validate further our analytical model, we compare our
analytical results against measurements collected from an
experimental testbed deployed in an AWS cloud environment
shown in Figure 9. Our experiments are comprised of differ-
ent sizes of EC2 VMs with an ELB (Elastic Load Balancer)
that auto-scales its processing capacity according to incom-
ing workload and traffic [29]. We selected EC2 VMs that
are optimized for networking and processing power capacity
that would meet our requirements. For that, we specifically
used two large size EC2 Linux instances for generating and
receiving network traffic using the open-source D-ITG 2.8.1
traffic generator [31], [32]. D-ITG has two major components.
ITGSend for sending traffic, and ITGRecv for receiving it.
For our vFWs, we used small size EC2 Linux instances with
Netfilter firewall installed. Small size Linux firewall was suf-
ficient to process thousands of rules with acceptable delay.
The ELB was configured to distribute equally (in a round
robin manner) incoming network packets to all running vFW
instances. The aforementioned cloud instances were all hosted
in the same AWS VPC [33] to provide logical isolation from
other tenants VMs. For all of these instances, we used Ubuntu
Linux Server 13.10 as the base operating system.

As shown in Figure 9, D-ITG traffic generator had to be
configured to have ITGSend EC2 instance generate a single
unidirectional flow to ITGRecv instance [31], [32] where pack-
ets are received, and statistics are collected. NTP (Network
Timing Protocol) service was used for time synchronization
between the two instances required for precise computation
of statistics. This notably ensures accurate measurements for
the one-way packet delay calculation. For our measurements,
the CPU utilization was measured by the sar Linux util-
ity, whereas the throughput and one-way response time were
measured by D-ITG. It is worth noting that we configured
ITG-Send to send the smallest packet size of 64 bytes for
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UDP flows in order to generate high traffic rates. More impor-
tantly, we used the popular Puppet automation software [34]
to configure, coordinate, and execute the various commands
and tasks for D-ITG, NTP, and sar. Puppet ran on a different
small size Linux instance in our testbed setup.

We followed the guidelines in the experiment described
in [35] to set up a Linux Netfilter firewall. We constructed
a ruleset of 5,000 rules using iptables commands. We also
added specific rules for D-ITG traffic being generated from
ITGSend instance. For this type of D-ITG traffic, we set up
Netfilter to accept, log and pass D-ITG traffic so that it can be
received and recorded by ITGRecv. Other traffic types would
be dropped. In the dummy rules, we added matching condi-
tions for source MAC addresses to add noticeable processing
overhead for each rule. According to [30], the matching of
MAC address conditional was found to be computationally
more expensive when compared to other header fields.

To measure the average service times for 1/u1, 1/u3 and
Tr, we instrumented the Linux code at different positions to
measure the difference in time using rdtscl macro which
uses the machine instruction rdtsc (read time stamp counter)
to return the number of CPU cycles accumulated since
system bootup. For example, for measuring the mean ker-
nels pre-processing time 1/ of Stage 1, we instrumented the
Linux code with rdtsc at the start of function #g3_interrupt()
found in 7g3.c file (the start of receiving a packet in the device
driver) until the entry point of delivery to Netfilter processing
(specifically, in ip_local deliver_finish() found in ip_input.c
file). For Tg, we instrumented the Linux code with rdtsc at
the start and finish points of Netfilter processing, specifically
in the Linux kernel function ip_local_deliver_finish found in
ip_input.c file as discussed in [31]. As for 1/u3, we measured
the difference in time between ip_local_deliver_finish and the
point before sending the packet to the NIC in #g3_tx() in #g3.c
file. Since this instrumentation requires the modification of
Linux kernel and 7g3 driver, we had to create a customized
Amazon Machine Image (AMI) for Linux with instrumenta-
tion embedded. This required to first create a VMware Linux
image with these instrumentations embedded into the Linux
kernel, and then export it to Amazons AMI image [36] in
order to perform the real measurements using Amazon small
size EC2 Linux instances.

To perform the measurements, we had ITGSend instance
send traffic directly (i.e., without passing through the ELB)
to the vVFW Linux instance which will forward it further to
ITGRecv instance. We had ITGSend send a low constant UDP
traffic rate A of 1000 pps for a duration of one full second,
targeting rule number 5000, with a log and pass actions. We
took 1000 reads of the difference between the start and fin-
ish timestamps. All of these differences were then added up
in memory into a single variable, and then the mean value
was obtained by dividing this total value by 1000. This gives
us the mean values for 1/ and 1/u3 as 12us and 342us,
respectively. We note that 1/u3 is relatively large when com-
pared with 1/ . This is due to the extra overhead involved in
logging and then passing the packets. The mean value 1/u2
of interrogating 5000 rules was 700, or 0.14 ps per rule, i.e.,
Tg = 0.14 ws. Finally, we set the default buffer size K to 512

packets, which is the same value defined for Rx DMA Ring
in header file definition /net/drivers/tg3.h

For measuring 77 p, which is the mean delay attributed to the
ELB, we first had ITGSend send 1000 UDP packets at a low
constant rate directly (without passing through the ELB) to
ITGRecv. Second, we repeated the same but with ELB placed
in the middle between the ITGSend instance and ITGRecv
instance. We then computed the differences between the two
averages to determine the true delay Typ attributed to ELB.
Trp was approximately 121 ps. Lastly, all generated traffic
flows by ITGSend were designed to target rule number 3500,
ie., L = 3500.

Table I provides comparative results from real-world exper-
iments and analysis, for the three key performance metrics
of response time, throughput, and CPU utilization. For the
experimental results, we record the minimum, maximum, and
average values of five runs, with each run having traffic flows
being generated for a duration of 15 minutes. Adding more
experimental runs than five would yield little difference, and
we found that five runs are adequate and yield acceptable
results. All of these runs were carried out approximately at
midnight GST time in an AWS zone located in Ireland. We
believe this time might corresponds to the lightest workload
in the Amazon cluster. We opted to run the traffic flows for
15 minutes to offset the variability and fluctuation that occur
within the cloud environment as a result of network and work-
load activities induced by co-tenant machines or cloud-hosted
services and apps.

In our experiment, we measured the performance with dif-
ferent incoming traffic rates and with different numbers of
vFWs. A few observations can be made from Table 1. First,
the average experimental measurements, in general, are in
line with those of the analysis results-which further validates
our analytical model. Second, the response times obtained
from experimental measurement, for the most part, are slightly
bigger (by approximately 1.6 ms) than those in the analy-
sis results. This is due to the fact that the average response
time in the analysis does not consider the additional process-
ing delays encountered by ITGSend or ITGRecv, since both
of these programs run as applications in the user space (not
in the kernel). Third, the experimental results for through-
put are slightly smaller than their analysis counterparts. This
can be attributed to the processing capacity of the various
cloud instances, and the ability of ITGSend to accurately send
the specified traffic rate. Finally, in general, the experimen-
tal measurements have large standard deviations examining
the difference between the min and max values. The reason
for such large deviations can be attributed to the considerable
fluctuation and variability encountered in the cloud environ-
ment, including: the overheads introduced by the underlying
virtualization technology; the activities and workload gener-
ated by co-tenant instances and cloud-hosted applications and
services co-existing on the same cloud infrastructure. If com-
plete isolation in a VPC environment with the cloud-based
firewall is required to obtain fully predictable network delay
and performance, the more expensive option of running the
testbed instances on single-tenant dedicated hardware within
AWS can be used.
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TABLE I
COMPARATIVE RESULTS FROM ANALYSIS AND EXPERIMENTS
Response Time (ms) Throughput (pps) CPU Utilization (%)
Analysis Experiment Analysis Experiment Analysis Experiment
Avg Avg | Min Max Avg Avg Min Max Avg Avg | Min | Max
I VEW at a rate 162 | 212 | 101 | 622 500 495 | 461 | 500 42 4 | 38 | 47
of 500 pps
2 VEWSs at a rate 185 | 344 | 235 | 681 1200 | 1182 | 1110 | 1200 51 53 | 44 | 59
of 1200 pps
3 VEWs at arate 302 | 458 | 289 | 921 | 2500 | 2479 | 2463 | 2500 70 74 | 64 | 81
of 2500 pps
4 VEWs at a rate 196 | 361 | 211 | 677 2500 | 2482 | 2468 | 2500 53 58 | 49 | 68
of 2500 pps
4 VEWSs at a rate 564 | 7.12 | 427 | 1089 | 4000 | 3901 | 3821 | 4000 84 8 | 74 | ol
of 4000 pps
6 VEWS at a rate 585 | 742 | 411 | 1102 | 6000 | 5867 | 5701 | 6000 84 87 | 71 | 94
of 6000 pps
OVEWs atarate |y o3 | 636 | 3.19 | 1292 | 10,000 | 9879 | 9711 | 10,000 84 89 | 77 | 98
of 10,000 pps
[
g . Two important observations can be made from Figure 10.
gzm First, the example shows that the latency specified in the SLA
g | is always satisfied with a mean response time less than the
. required 1 ms. In some cases, the response time is close to
L : L L : L L L L L 1 1 ms, and in some other cases (at adjustment periods of 0, 2,
, . 6, and 8 minutes), the mean response time is between 0.5 and
2 wo) O------0._ 0.8 ms. This all depends on the processing capacity of each
émo_ \o\ _Q o vFW in relationship to the processing need presented in terms
§ e o o /,—0”' of workload and rule interrogation overhead. Second, the fig-
§ o o’ ure shows that required VMs to satisfy a response latency of
= F ¢ . . . .
S 2 s . s s 7 s o o 1 ms is clearly impacted by both incoming workload as well as
depth of triggered rules. For example, at 3 minute adjustment
g period, the required number of vFWs increased from 1 to 3 to
2 meet the increase of the processing overhead attributed to the
% increase of the depth of triggered rules from 2000 to 4000. At
£ this period, there was no change in the mean workload from
the previous adjustment period. Also, at 4 minute adjustment
7 period, the required number of VFWs increased from 3 vFWs
g to 10 in response to the noticeable sharp increase of workload
g from 1000 pps to 4000 pps. Similarly, there was no change at
- this adjustment period for the mean depth of triggered firewall
z | ) | , 1 rules. Conversely, at adjustment periods of 2 and 6 minutes,
[ 1 2 3 5 6 7 8 9 10 . .
Time (mi) the number of required VFWs is decreased when the average
workload or depth of triggered rules decreases. At adjustment
Fig. 10. Impact of incoming workload and depth of interrogated rules on

required VFWs.

C. Achieving Proper Elasticity

In this section, we give a numerical example to illustrate
how to achieve elasticity for cloud-based firewalls. Figure 10
illustrates how the analytical model can be used to determine
the minimal number of vFWs required to satisfy a given SLA
latency, taking into account the fluctuation of incoming work-
load and the depth of triggered rules. For our example, we
selected to perform auto-scaling every minute, i.e., the adjust-
ment period to be 1 minute. At the end of this period, the
mean workload A, and the mean depth of triggered firewall
rules L are calculated and used as input to Algorithm 1 and
Equation (30) in order to determine the minimal number of
vFWs required to satisfy an SLA latency of 1 ms.

period of 2 minutes, a decrease in the workload results in
reducing the required number of vVFWs from 3 to 1. At adjust-
ment period of 6 minutes, a decrease in the depth of triggered
rules results in reducing the required number of vVFWs from 5
to 3. It is also observed, when both of the workload and the
depth increase, as is the case at adjustment period of 7 minutes,
the required number of VFWs sharply increases.

From the figure, it can also be noted that the largest required
number of VFWs needed to satisfy an SLA latency of 1 ms
happens at adjustment period of 4 minutes, with a relatively
high mean workload of 4000 pps and mean rule depth of 4000.
Also, the least required minimal needed number of VFWs
occurs at adjustment period of 2 minutes, with a relatively
light mean workload of 1000 and a mean rule depth of 2000.
As the figure shows, an increase or decrease in either work-
load or rule depth does impact the required number of needed
vFWs, as depicted for other adjustment periods.
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It is worth noting that the adjustment period can be a
key design factor for achieving proper elasticity for cloud-
based network firewalls. In reality, the elasticity or adjustment
period for determining the required VFWs has a minimum
bound which is governed by a VM provisioning time. That
is, this period has to be at least larger than the provision-
ing time for a VFW instance. Provisioning (or spin-up time)
includes the time to allocate, configure, launch, reboot, and
connect the vVFW with the LB. According to measurements
performed by [24] and [25], the provisioning time of one VM
takes in the order of 30 seconds to 100 seconds. For our
numerical example, we chose a realistic adjustment period
of 1 minute, which is in line with these reported mea-
surements, and also in line with our experimental findings
when using AWS cloud-whereby the provisioning time for
a Linux-based small instance vFW takes on average less than
50 seconds.

The adjustment period can be chosen to be larger than
this minimal period in order to reduce the amount of elas-
ticity overhead attributed to computing the average workload
and that of the depth of triggered rules. However, selecting
large adjustment period can result in SLA latency violation
or improper provisioning (i.e., over or under provisioning) as
workload or rule depth may have sharp increase or decrease
during large adjustment periods. Hence, we argue that the
adjustment period should be slightly larger (i.e., a few or
ten seconds more) than the minimum provisioning time. Even
though, SLA violation can still happen when the system is
subjected to an abrupt and sharp increase of incoming work-
load or depth for rule interrogation. If these abrupt conditions
are very frequent, a possible solution is to slightly overpro-
vision vFWs (by one or two instances) beyond the required
minimal vFWs.

The computation of the average workload as well as
the provisioning or de-provisioning of VFWs can be imple-
mented as a specific agent within the LB or at the edge
router of the VPC. However, the computation of the aver-
age depth of triggered rules has to be computed locally at
each running vVFW through agents and this individual aver-
age must be relayed back through the deployed agents to
the Elasticity Orchestrator where the average of the received
averages is computed. Since the number of firewall rules
and the number of received packets by each firewall are the
same for all individual vFWs (as workload gets evenly dis-
tributed), the overall average depth L for the triggered rules
of the individual averages L; of N vFWs can be calculated
as follows

N
> L
j=1
N

L= 31)

Both of the average workload and the average of rule
depth are moving averages that are calculated over the adjust-
ment period. The average workload can be computed in
multiple ways. Cockcroft [26] and Salah ez al. [27], [28] show
how to estimate the mean workload A using moving average
techniques.

V. CONCLUSION

In this article, we showed how elasticity can best be
achieved for cloud-based firewalls. To do so, we developed
an analytical model useful for the efficient design of cloud-
based firewalls, which are essential in VPC services. Given
the offered means for workload, depth of targeted rules, and
the processing capacity of each firewall and load balancer
instances, the model can estimate accurately the minimal num-
ber of VMs needed to meet a specific SLA criterion such as
response time, delay or throughput. We validated our analyti-
cal model by comparing analytical results with results obtained
through discrete-event simulation and real-world measure-
ments taken from an experimental testbed deployed in Amazon
AWS cloud environment. Although, an obvious degree of fluc-
tuation was exhibited in the experimental measurements, the
overall mean recorded measurements were in good agreement
with results obtained from analysis. The fluctuation in mea-
surements was attributed to the overhead from virtualizing and
sharing of the various cloud physical infrastructure elements of
compute, storage, and network resources, and also attributed
to the workload generated from the various activities of other
co-located cloud-hosted services and applications. As a final
remark, we believe that using our derived analytical formulas,
algorithm, and guidelines presented in this article, an elastic
cloud-based firewall system can be designed, implemented,
and deployed efficiently in any cloud environment with VPC
configuration.
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