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Abstract— A service-function chain, or simply a chain, is an
ordered sequence of service functions, e.g., firewalls and load
balancers, composing a service. A chain deployment involves
selecting and instantiating a number of virtual network func-
tions (VNFs), i.e., softwarized service functions, placing VNF
instances, and routing traffic through them. In the current
optimization-models of a chain deployment, the instances of
the same function are assumed to be identical, while typical
service providers offer VNFs with heterogeneous throughput and
resource configurations. The VNF instances of the same function
are installed in a single physical machine, which limits a chain
to the throughput of a few instances that can be installed in
one physical machine. Furthermore, the selection, placement, and
routing problems are solved in isolation. We present distributed
service function chaining that coordinates these operations, places
VNF-instances of the same function distributedly, and selects
appropriate instances from typical VNF offerings. Such a deploy-
ment uses network resources more efficiently and decouples a
chain’s throughput from that of physical machines. We formulate
this deployment as a mixed integer programming (MIP) model,
prove its NP-Hardness, and develop a local search heuristic called
Kariz. Extensive experiments demonstrate that Kariz achieves a
competitive acceptance-ratio of 76%–100% with an extra cost of
less than 24% compared with the MIP model.

Index Terms— Service function chaining, network function
virtualization, virtual network function, placement, routing.

I. INTRODUCTION

ASERVICE-FUNCTION chain, or simply a chain, is an
ordered sequence of service-functions composing a ser-

vice [37]. For example in a typical data-center network, traffic
from a server passes through an IDS, a firewall, and a NAT
before reaching to the Internet [5]. Until recently, functions
have been vertically integrated in dedicated hardware mid-
dleboxes, i.e., a chain of pricey middleboxes are provisioned
to provide throughput for peak-load, and traffic must be
routed through fixed locations in which these middleboxes are
placed [36].

Network function virtualization decouples network func-
tions from underlying hardware and implements them as soft-
ware appliances on virtualized commodity hardware. These
appliances are called Virtual Network Functions (VNFs).
In this way, a chain of inexpensive VNFs provide same packet-
processing functions at a desired throughput, and we can route

Manuscript received April 1, 2017; revised September 12, 2017; accepted
September 25, 2017. Date of publication October 5, 2017; date of current
version December 1, 2017. (Corresponding author: Raouf Boutaba.)

M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba are with
the University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
eghaznav@uwaterloo.ca; nshahria@uwaterloo.ca; r5ahmed@uwaterloo.ca;
rboutaba@uwaterloo.ca).

S. Kamali is with the University of Manitoba, Winnipeg, MB R3T 2N2,
Canada (e-mail: shahin.kamali@umanitoba.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2017.2760178

traffic through appropriate locations in which VNF-instances
are dynamically placed. Such a deployment reduces capital
and operational costs and optimizes network operations.

A chain deployment involves selecting and instantiating a
number of VNFs, placing these VNF-instances, and routing
traffic through them. An optimal chain deployment coordinates
the selection, placement, and routing to minimize resources
allocated while satisfies the resource capacity and loca-
tion constraints. Existing VNF chaining models have several
limitations as follows.

A. Gaps in Selection

Most of the optimization models [8], [10], [45] do not
consider the typical VNF offerings and assume that VNFs of
a same function are identical in their resource consumption
and throughput. Service providers offer VNFs with differ-
ent configurations to provide predictable quality of service.
For example, HP offers virtual IPSec [3] that provides
throughputs of 268, 580, and 926 Mbps assuming respec-
tively 1, 4, and 8 CPU cores. Similarly, Riverbed offers
WAN-optimizers [6] with throughputs of 10 and 50 Mbps
given respectively 2 and 4 CPU cores. Note that the correlation
between the throughput and resource consumption is not
necessarily linear. In practice, predicting the performance of
service-functions is not trivial [9], [13], [25].

B. Gaps in Placement and Routing

To process a traffic flow, some models use a single physical-
machine to place VNFs of a same function [8], [10], [27],
[29], [32] or even all VNFs of a chain [39]. However, doing
so severely limits throughput of the function and chain to
a few VNFs that can be instantiated in a physical-machine.
The throughput of these instances might not be sufficient to
process the total traffic routed through them, and this problem
is exacerbated by the fact that traffic volume through functions
has an increasing trend [23], [47].

C. Gaps in Coordination

A VNF cannot be selected if there is not sufficient resources
to place its instances. Further, it is impractical to place
an instance in a given location when adequate bandwidth
is not available to route traffic from/to the location. To
achieve an optimal deployment of service chains, selection,
placement, and routing must be performed in a coordinated
manner; otherwise, the deployment results in sub-optimal
utilization of network resources and quality of service. Most
of existing solutions solve the placement and routing in isola-
tion [15], [17], [36], [46]. There are few solutions [10], [32]
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that coordinate the placement and routing; however, they treat
the selection of VNFs separately.

To fill the above gaps, we present distributed service
function chaining (DSFC). For each function of a chain,
DSFC selects from provided VNF offerings and determines
the appropriate number of VNF-instances to be placed. DSFC
places these instances in a way that VNFs of a same function
can be installed distributedly in multiple machines. Such
a placement decouples a chain’s throughput from physical-
machines. Further, DSFC, utilizing the global knowledge of
the network, routes traffic and distributes the load among the
VNF-instances. DSFC coordinates selection, placement, and
routing operations in such a way that network resources are
utilized more efficiently.

Specifically, our contributions in this paper are: i) we model
and solve DSFC using mixed integer programming (MIP), and
prove its NP-Hardness. ii) for larger networks, we propose
Kariz, a local search heuristic that employs a tuning para-
meter to balance the speed-accuracy trade-off; iii) we perform
extensive simulations to evaluate Kariz against the MIP imple-
mentation for various chain-lengths and throughput-demands.
The results demonstrate that Kariz achieves the competitive
acceptance ratio of 76-100% at an extra cost of less than 24%,
in comparison to the MIP implementation.

The rest of the paper is organized as follows. In § II,
we study related works. § III discusses the system implemen-
tation and deployment challenges. We present our problem
formulation in § IV. Our solution is proposed and evaluated
in § V and § VI, respectively. Lastly, § VII concludes this
paper.

II. RELATED WORK

A. Selection

VNF-P [32] studies a hybrid deployment scenario using
hardware-middleboxes and VNFs to provide a requested ser-
vice. VNF-OP [10], [22], JoraNFV [44], and [29] model batch-
deployments of multiple chains. Reference [34] is a scheduling
framework for deploying VNFs. These papers assume that
VNFs of the same function are identical. Slick [8] is a
framework that allows users to write fine-grained elements to
perform custom packet-processing. Predicting the performance
of such arbitrary packet-processing element is not trivial.
In contrast to these studies, we select appropriate VNFs from
different typical offerings providing predictable performance.

B. Placement

Split/Merge [38] and OpenNF [18] redistribute packet-
processing across a collection of VNF-instances. In contrast to
DSFC, they do not focus on placement optimization models.
Stratos [17] orchestrates VNF-instances on a remote cloud.
It uses a rather simple technique that places VNFs of a chain
as closely as possible to each other. JVP [27] considers the
relation of bandwidth usage and host resource usage in the
deployment of chains. However, JVP instantiates a single
VM for each VNF. VNF-OP [10] and VNF-P [32] place all
VNF-instances of a function on a single machine. In contrast
to these works, we place multiple VNF-instances of each

function distributedly. CoMb [39] is an architecture designed
to consolidate the chain deployment. In contrast to DSFC,
CoMb places all VNFs of a chain that deal with the same
session at a fixed location. [30] only optimize the placement
of VNFs and does not consider the routing.

C. Routing

Unlike our work, [15], [36], [46] optimize only band-
width usage. In processing a network flow, Slick [8] uses
a single instance for each function. On the contrary, DSFC
routes traffic among multiple VNF-instances for each function.
Stratos [17] solves the routing separately after placing VNF
instances. LightChain [22] optimizes the number of switches
between ingress and egress points of chains. The authors
of [19] solve the joint placement and routing problem using a
dynamic programming algorithm. E2 [34] instantiates VNFs
in certain servers to optimize the inter-server communication.
Although [10], [19], [32], [34] coordinate the placement and
routing, they still treat the selection separately. We jointly
optimize routing, placement, and selection that was not the
focus of these studies.

III. CHALLENGES

A chain specifies that the traffic originating from a source,
is processed by an ordered sequence of functions, and finally
is delivered to a target. To deploy a chain distributedly, several
system and optimization challenges have to be addressed.

A. System Implementation Challenges

Service-functions often operate on data-packets at a flow
granularity and maintain state information on the flows and
sessions they process [41], [43]. State information consists
of configuration and statistical data, and differs from one
function to another. If a function is replaced with multiple
VNF-instances, the functionality should not change, and these
instances must act in concert. Further, the traffic processed
by a single function, should now be processed by multiple
VNF-instances. Thus, consistent state distribution and consis-
tent traffic distribution among the VNF-instances are essential.

1) Consistent State Distribution: Deployment of multiple
VNF-instances to provide a function requires distribution of
the state information. Hence, we need to model the state infor-
mation and distribute it among the VNF-instances consistently.
The state information can be classified as internal or exter-
nal. The internal state is stored and used only by a single
instance, while the external state is distributed and shared
across multiple instances. Since the state information is stored
in a key-value store [24], [41], data structures like distrib-
uted hash-tables and technologies like remote direct memory
access (RDMA) can fulfill this challenge efficiently. Moreover,
it might be required to modify the functions to cope with the
defined model. There are abstraction models and system imple-
mentations that address this challenge. Rajagopalan et al. [38]
introduce a system-level abstraction called Split/Merge that
stores the internal state exclusively inside each VNF-instance,
while the external state is distributed and accessible by other
instances. As a proof of concept, they implemented FreeFlow
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Fig. 1. Distributed deployment of a chain.

as a Split/Merge system, and ported Bro IDS [35] inside it.
Further, they analyzed and confirmed the compatability of two
other functions, i.e. application delivery controller and stateful
NAT64. In addition, Joseph and Stoica [24] provide a model
to describe different functions. As concrete examples, firewall,
NAT and layer4 and layer 7 load-balancer are described
using the proposed model. Further, Gember et al. [16] and
OpenNF [18] introduce a unified framework to manage state
information.

2) Consistent Traffic Distribution: Replacing a single func-
tion with multiple VNF-instances requires splitting and distrib-
uting the traffic load among these instances. Per-flow traffic
splitting distributes the traffic in the granularity of flows, and
packets of a flow have to be routed along the same path.
Split/Merge [38] utilizes a similar approach. However, this
approach does not support accurate load-distribution and is
not always applicable. For instance, if the load of a flow is
higher than the throughput of an assigned VNF-instance, that
instance cannot handle the load and we have to split the traffic
into a smaller granularity. Flowlet switching [7], [40] can be
leveraged to split the traffic into a finer granularity. A flowlet
is a “burst of packets from the same flow followed by an idle
interval” [40]. If the interval between two flowlets is greater
than the maximum delay difference between parallel paths,
the second flowlet—and consequently following flowlets—
can be sent through different paths. Thus, a single flow
can be split into multiple paths without packet-reordering.
Furthermore, accurate load balancing is achieved using short
flowlet intervals ([50, 100]ms) [40]. Specifically, flowlets are
abundant in data-center networks since the latency is very low
and the traffic is intensively bursty [26]. In addition to these
distributed methods, the central schemes leveraging SDN and
OpenFlow capabilities [28] can also be used. For instance,
group tables [4] can be used to split and balance the traffic.

We have shown the feasibility of distributed deployment of
VNF-instances to provide a function and distributing traffic
among these instances. Next, we state the assumptions that
ground our optimization model:
• The state information of a function can be consistently

distributed among multiple VNF-instances. This assump-
tion holds for the state information of a single flow.

• The traffic can be consistently distributed into multiple
paths among multiple VNF-instances. This assumption
holds for a single flow.

B. Optimization Challenges

The optimization challenge is in computing an optimal
allocation of host and bandwidth resources to a chain.

TABLE I

VNFS

Each function in a chain is replaced with a number of
VNF-instances providing the requested throughput. These
instances are placed in a set of chosen hosts. In addition,
the traffic is split and routed among the instances. Thus, certain
decisions have to be made optimally: number of VNF-instances
(selection), placement of these instances, and routing the
traffic through the placed instances. These decisions are inter-
dependent and must be made in a coordinated manner.

Fig. 1 shows a chain deployment. The network of Fig. 1a
includes 6 hosts, each with an 8-core CPU and 64 GB
residual memory. For simplicity, switches are not shown, and
the presented paths are disjoint in this example. All paths
have 130 Mbps available bandwidth. The chain of Fig. 1b
includes 2 functions with 210 Mbps throughput: an IDS and
a firewall (FW). The flow comes from the host A, the source,
is processed by IDS and FW, and then sent to host F ,
the target. As listed in Table I, there are 4 VNF types for IDS
and FW. Fig. 1c depicts the chain deployed in the network, and
Fig. 1d shows the logical representation of this deployment:
with 3 instances for IDS (1×IDS1+2×IDS2) and 2 instances
for FW (1×FW1+1×FW2). The IDS instances are installed
in hosts B and D. The flow splits, and 80 Mbps and 130 Mbps
are routed from the source to hosts B and D, respectively. FW
instances are installed in hosts B and E . In host B , the flow
after being processed by IDS2 is sent to FW1. IDS1 and IDS2
forward the flow to host C in which instance FW2 is placed.
Finally, the flow from the FW instances is sent to the target.
Note that it is possible to place the VNF-instances in the source
and target if sufficient host resources are available.

IV. DISTRIBUTED SERVICE FUNCTION CHAINING

With the assumptions and challenges established, we now
introduce the formal definitions and the mathematical model.
Table II lists important notations used in this paper.

A. Definitions

1) Physical Resources: R = {CPU, memory, storage, …}
represents a set of available physical resources.

2) Network: Graph G = (N, E) is the substrate net-
work, where N and E are substrate nodes and links, respec-
tively. cmr ∈ R

+ is the residual capacity of node m for
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TABLE II

NOTATION

resource r ∈ R. Set Em denotes incident links on node m.
Moreover, mn ∈ E is the link between node m ∈ N and node
n ∈ N and has a residual bandwidth capacity of cmn ∈ R

+.
3) Chain: Symbols with over-line are for chain definitions.

Forwarding graph G = (N , A) denotes a chain. N includes
functions V ⊂ N , and two endpoints s and t . Traffic flow
coming from s ∈ N is processed by functions in the chain,
and is forwarded to t ∈ N . Respectively, s and t are the
source and target of the traffic. The corresponding substrate
nodes for source and target are respectively s ∈ N and t ∈ N .
Function v = f (u) follows function u. We define ring uv ∈ A
as 2 consecutive functions u and v , where v = f (u).
We assume that u generates traffic type u and v consumes
this traffic type. Each ring uv has the throughput demand b
denoting integer traffic volume flow generated or consumed
by the ring nodes.

4) VNFs: Set V denotes VNFs. A VNF u ∈ V has
throughput qu ∈ R

+ showing the maximum traffic that u
can process. dur ∈ R

+ is the demand of u for resource r .
These demands include the overhead of accessing distributed
state information. For s and t , we assume that there are VNFs
us and ut , respectively. These VNFs have throughput b and
no demand for any resource. Finally, VNFs of type u are
identified by Vu .

B. Mathematical Model

Variable xu
mn ∈ R is the traffic volume of type u ∈ N/{t} on

substrate link mn. Target t is excluded since it only consumes
traffic; thus, no traffic of this type exists in the network. Vari-
able ymu ∈ Z is the number of instances of VNF u in substrate
node m. VNF instances of Vu installed in node m provide
throughput of type u. Variable zmu ∈ R denotes the allocated
throughput of these VNF instances. A solution for the problem
is shown by a tuple of allocation vectors (X, Y, Z), defined
as follows. Let vector Xu = {xu

mn : ∀mn ∈ E} be allocated

bandwidth of links to traffic type u, and X = ⋃
u∈N/{t} Xu .

If Yu = {ymu : ∀m ∈ N,∀u ∈ Vu} identifies the VNF
instantiated for function u, let Y = ⋃

u∈N Yu . Finally, Zu =
{zmu : ∀m ∈ N} denotes the allocated throughput of type u in
every node, and Z =⋃

u∈N Zu .
1) Node Capacity Constraint: Eq. 1 ensures that instances

are placed with respect to the substrate nodes capacities.

∀m ∈ N : ∀r ∈ R :
∑

u∈V

ymudur ≤ cmr (1)

2) Location Constraint: Equalities in Eq. 2 ensure that an
instance of us and an instance of ut are placed only in s ∈ N
and t ∈ N , respectively.

ysus = 1,
∑

m∈N/{s}
ymus = 0

ytut
= 1,

∑

m∈N/{t}
ymut
= 0 (2)

3) Substrate Link Capacity Constraint: Eq. 3 makes sure
that the capacities of substrate links are not violated.

∀mn ∈ E, m < n :
∑

u∈N

(xu
mn + xu

nm) ≤ cmn (3)

4) Throughput Constraint: Eq. 4 ensures that the aggregate
throughput capacity of instances of type u placed in substrate
node m is more than allocated throughput zmu .

∀m ∈ N : ∀u ∈ N :
∑

u∈Vu

ymuqu ≥ zmu (4)

5) Throughput Demand Constraint: Eq. 5 guarantees that
for each function u, throughput b is allocated by instances Vu .

∀u ∈ N :
∑

m∈N

zmu = b (5)

6) Flow Conservation Constraint: Eq. 6 is a modified
version of the flow-conservation constraint [42]. Let us say
that in node m ∈ N , VNF instances of types u and v = f (u)
are installed. Therefore, VNF instances of Vv locally process
a volume of traffic type u generated by instances of Vu . This
volume is zmv . Unprocessed traffic volume should exit the
node m. This constraint ensures this phenomenon.

∀m ∈ N : ∀u ∈ N/{t} : v = f (u) :
∑

mn∈Em

(
xu

mn − xu
nm

) = (
zmu − zmv

)
(6)

7) Bandwidth Allocation Cost: Eq. 7 is the bandwidth
allocation cost. Coefficient β ∈ R

+ identifies the relative
importance of bandwidth resources. The communication over-
head to access the distributed state information is negligible vs.
the actual service traffic volume.

B(X) = β
∑

u∈N/{t}

∑

mn∈E

xu
mn (7)

8) Host Resource Allocation Cost: Eq. 8 is the cost of
allocating host resources to place VNF instances. Coefficient
αr ∈ R

+ is the relative importance of resource r ∈ R.

H (Y ) =
∑

u∈V

∑

r∈R

αr dur ymu (8)
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Fig. 2. Layers.

9) Objective Function: Eq. 9 minimizes the aggregate cost
of allocating host and bandwidth resources.

min
(

B(X)+ H (Y )
)

(9)

In Appendix A, we use a reduction from the dominating set
problem to prove our problem, as stated above, is NP-Hard.
Our reduction technique is of independent interest and can
be potentially applied to analyze the complexity of other
problems related to service function chaining.

V. KARIZ: HEURISTIC SOLUTION

Before explaining our solution, we construct a visualization
tool to simplify our description. Let us assume that each u ∈ N
is deployed in a layer. Each layer contains a set of nodes in
which VNF-instances of a corresponding type can be installed.
In other words, in the layer corresponding to u, we initially
place a subset of nodes in which at least a VNF v ∈ Vu

can be instantiated. L(u) denotes this layer. Fig. 2c depicts
the layers for the chain of Fig. 2b. As shown in Fig. 2c,
s and t are the only nodes present in layers L(s) and L(t),
respectively. Further, nodes {s, m} and {n, t} are respectively
included in layers L(u) and L(v) because these nodes have
sufficient resources to host VNF-instances of these functions.
Fig. 2d presents a sample solution for the chain of Fig. 2b.

Inspired by [21] and [33], we develop a local search heuris-
tic, Kariz, which routes traffic layer by layer. We introduce
the process first, and then provide a detailed overview. Kariz
is shown in Alg. 1 and works as follows. We first initialize
layers as described above and set solution as empty (line 1).
Starting from layer L(s) (line 2), iteratively route b volume
of traffic from layer S = L(u), the source-layer, to the next
layer T = L(v), the sink-layer (lines 3-11). After finding
the optimal route between two layers (line 5), compute the
number of VNF-instances of Vv by considering the allocated
throughput (line 6). Add the solution of the sink-layer to the
earlier solution (line 7). Improve the current solution (line 8),
and update layers (line 9). Now, traffic has reached the
sink-layer; consider this layer as new source-layer (line 10).

Algorithm 1 Kariz Algorithm
1: ini t-layers(); (X, Y, Z)← (∅,∅,∅);
2: u ← s; zss ← b; zt t ← b; S ← L(s);
3: do
4: v ← f (u); T ← L(v);
5: Xv , Zv ← route(S, T, b);
6: Yv ← vn f -instances(Zv);
7: (X, Y, Z)← (X ∪ Xv , Y ∪ Yv , Z ∪ Zv );
8: improve(X, Y, Z);
9: update-layers();

10: u ← v ; S ← L(v);
11: while

(
u 
= t and S 
= ∅);

Fig. 3. Routing as single-source single-sink MCFP.

Repeat this procedure if traffic has not reached the last layer
yet, and there are nodes in the new source-layer (line 11).

Still to clarify are the traffic routing between two layers
and the number of VNF-instances in the sink-layer, how the
solution is improved, and how the layers are updated.

A. Route and VNF Instances

Procedure route(.) in Alg. 1 computes the route between
two layers by solving the multi-source multi-sink minimum
cost flow problem (MCFP) [20]. MCFP is the problem of
routing a volume (say b) of a commodity (in our case traffic of
type u) from multiple sources (say a source-layer) to multiple
sinks (in our case a sink-layer). Any multi-source multi-sink
MCFP can be modeled as a single-source single-sink MCFP
that is solvable in polynomial time [20]. For our problem, this
is achieved by representing the source- and sink-layers with
imaginary nodes super-source and super-sink, respectively.
Fig. 3 depicts this model for layers S and T in Fig. 2. The
procedure is as follows. Add a super-source and connect it
to every node m ∈ S in the source-layer with a directed-link
whose capacity is zmu . For the sink-layer, add a super-sink
node and connect every node n ∈ T using a directed-link.
The capacity of the directed-link connecting node n to the
super-sink is the maximum throughput max(znv ) of the VNF-
instances that can be installed in node n. There is no cost to
sending the traffic via these links. As the result, the minimum
cost route of traffic from super-source to super-sink gives the
optimal routing between the two layers. If p denotes the super-
sink, the throughput allocation in each n ∈ L(v) is znv = xu

np .
Finding the capacity of directed-links from the sink-layer to

the super-sink is similar to the problem of vn f -instances(.).
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The former is finding the maximum throughput max(znv ) out
of VNF-instances that can be installed in node n. The latter is
finding the minimum allocation of resources to VNF-instances
providing throughput of at least znv in each node n ∈ L(v).
In fact, these problems are dual and can be modeled as a
multidimensional knapsack problem [12]. Think of the node as
an |R|-dimensional knapsack, each dimension corresponding
to a resource r ∈ R. The items to be packed are VNF-instances
with the profits of their throughputs and weights of their
host resource demands. Though this problem is known to
be NP-Hard [12], since the resources of a single machine,
especially the number of CPU cores, are limited, the problem
size is small. Thus, we can solve it efficiently. Instead, as CPU
cores are the most pricey and restricted resources, a feasible
solution optimizing the number of allocated cores is a good
optimum.

B. Solution Improvement Rounds

Routing between two layers focuses on the cost of traffic
routing and does not consider the cost of host resource alloca-
tion. Doing so may lead to high host resource cost. Hence,
we need to improve the solution. Procedure improve(.),
as shown in Alg. 2, facilitates this: repeatedly search for some
actions to improve the solution (lines 2-8). If no such action
is found, report the current solution (line 4-6). Otherwise,
perform the action with the greatest drop in cost, the best
admissible action (line 7), and continue with the adjusted
solution. We define actions and admissibility in § V-B1 and
§ V-B3, respectively.

Algorithm 2 Procedure improve(.)
1: procedure improve(X , Y, Z )
2: loop
3: a← best-action(X, Y, Z);
4: if not admissible(a) then
5: return (X, Y, Z);
6: end if
7: per f orm-action(X, Y, Z , a);
8: end loop
9: end procedure

1) Actions: An action is a local transformation intended to
reduce the solution’s cost. Let (X ′, Y ′, Z ′) be the modified
solution after performing an action on a current solution
(X, Y, Z). The cost difference before and after performing an
action is regarded as the action cost, as defined in Eq. 10. The
best action has the lowest cost.

(
B(X ′)+ H (Y ′)

)− (
B(X)+ H (Y )

)
(10)

We define the below actions variants of actions used by [33]:

• add(n, L(v), δ): Include node n ∈ N in L(v) and allocate
more δ > 0 units of throughput in this node (znv ← znv+
δ). Then, find the minimum cost routing from layer L(v)
to the next and previous layers in the current solution,
given allocated throughputs of L(v)/{n}. The next and
previous layers are L(w) and L(u) if w = f (v) and

Fig. 4. Actions.

v = f (u), respectively. Finally, tune the allocated
throughput of nodes L(v). This action is shown in Fig. 4a.

• open(n, M, L(v), δ): Add node n ∈ N into layer L(v),
remove nodes M ⊆ L(v), and allocate more δ > 0 units
of throughput in node n (znv ← znv + δ). Finally, reroute
the traffic either received or originated in layer L(v). This
action replaces a set of fragmented VNFs installed in
different nodes M with VNFs collocated in one node n.
This action makes sense only if δ ≥∑

m∈M (zmv ). Fig. 4b
depicts an example of this action.

Traffic routing in the above actions is a bit different from
routing in route(.). The difference lies in routing two different
traffic types. Considering each traffic type as a commodity, still
this problem can be modelled it as a multi-commodity MCFP
(real flows) that is solvable in polynomial time [14].

We also need to examine actions and select the best in poly-
nomial time and ensure that the number of performed actions is
not exponential. Particularly, we need to select the best action
with sufficient improvement efficiently. These criteria, efficient
action selection and sufficient improvement, are essential to
assure that the algorithm terminates in polynomial time.

2) Efficient Action Selection: The number of add(.) actions
is less than |N | × |V | × b under the assumption of integrality
of b. Thus, it is possible to check all actions and select the
best in polynomial time. We can even do better and select
the value of δ considering the throughputs of VNFs Vv .
However, the number of possible open(., M, L(v), .) actions
is equal to the number of subsets M ⊆ L(v) which is
exponential (2|L(v)|). Thus, we need an efficient procedure to
select a good open(.) action. For a fixed layer L(v), fixed node
n ∈ N and fixed δ, we find this subset in a greedy procedure
working as follows. Starting from empty set M , iteratively
remove a node m from L(v) and add it to M . Removing
this node has the minimum cost vs. other nodes L(v)/m.
Continue this procedure while such a node m ∈ L(v) exists,
the removal of m decreases the cost, and m’s throughput is
less than δ−∑

p∈M z pv . This procedure repeatedly removes a
node m ∈ L(v) whose removal results in the greatest decrease
in both bandwidth and host resource allocation costs.

3) Sufficient Improvement: If we allow performing actions
that yield minor improvements, the number of actions can
be large. Thus, only actions with sufficient cost improvement
are allowed. An action yielding sufficient improvement is said
admissible. More precisely, we define an action as admissible
if it improves the solution no less than ε

5|N |
(
B(X)+H (Y )

)
for

some tuning parameter ε > 0 [31]. Using ε, we can control
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Fig. 5. Acceptance ratio.

the trade-off between the accuracy and speed of our solution.
Let (X∗, Y ∗, Z∗) be the optimal solution. The number of
actions performed will be at most 5|N |

ε ln B(X)+H(Y )
B(X∗)+H(Y ∗) because

the optimal solution is the lower bound for our solution. Since
ln

(
B(X)+H (Y )

)
is polynomial in the size of the network and

chain, the number of actions performed is also polynomial.

C. Update Layers

As the last piece of the puzzle, procedure update-layers()
updates nodes in layers as shown in Alg. 3. From a
layer L(u) that traffic has already reached, every node
m ∈ L(u) is eliminated if this node does not allocate through-
put of type u (lines 3-4). From other layers, nodes whose
resources are allocated and hereafter cannot host corre-
sponding VNF-instances are excluded (lines 5-7). Layers
L(s) and L(t) are not updated.

Algorithm 3 Procedure update-layers()
1: procedure update-layers()
2: for u ∈ V do
3: if traffic has reached L(u) then
4: L(u)← {m|m ∈ L(u), zmu > 0}
5: else
6: L(u)← {m|m ∈ L(u), ∃v ∈ Vu,∀r : cmr ≥ drv}
7: end if
8: end for
9: end procedure

Through §V-A to V-B, we show that the running
times of all route(.), vn f -instances(.), improve(.), and
update-layers(.) are polynomial in the size of the network
and chain. Hence, Kariz terminates in a polynomial time.
Appendix B analyzes the time complexity of our algorithm.

VI. EVALUATION

A. Experimental Setup

1) Simulated Network: The 6-ary Fat-tree, a common data-
center topology, is used as the simulated network, and con-
tains 99 nodes (54 hosts and 45 switches) and 162 links
providing full bi-sectional bandwidth. Hosts are equipped
with a 20-core CPU and 2 Gbps network-adapter. The link
capacities are 2 Gbps. This network is the largest network that
we could run the implementation of DSFC model, as explained
in § VI-A5, in a manageable time. The relative importance of

TABLE III

OFF-THE-SHELF VNFS

allocating 1 Mbps of bandwidth over one link vs. one core
CPU is 1% (i.e., number of CPU cores of a host

bandwidth capacity of a host ).

2) VNFs: We select the firewall, IDS, IPsec and WAN-opt.
as functions. Table III reveals the VNFs used in the simulation.
Since the CPU is the most restricted host resource and domi-
nates the cost, we ignore memory and storage requirements.

3) Chains: Sources and targets are uniformly distributed in
the network. Poisson distribution with the average of 1-chain
per 100-seconds simulates the arrival rate. Chain lifetimes
follow exponential distribution with an average of 3 hours.

4) Parameters: We asses Kariz in respect to
throughput-demand and length of chains. In each
experiment, the throughput-demand is fixed to one of
{200,250,300,…,500} Mbps, and one of the following chains
is selected. Note that Len-i contains all functions of Len-i -1.

• Len-1: {firewall},
• Len-2: {firewall → IDS},
• Len-3: {firewall → IDS → IPSec}, and
• Len-4: {firewall → IDS → IPSec → WAN-opt.}

5) Evaluation Method: We compare Kariz with the model in
§ IV-B reffered as MIP. We implemented MIP using CPLEX.
Note that MIP optimally deploys a single chain. Moreover,
the tuning parameter of Kariz is set to ε = 32. Thus, an action
is performed if it improves the current solution by ∼ 6%. With
fixed parameters, we repeat each experiment 10 times for every
1000 chains generated, and report the average.

B. Acceptance Ratio

Fig. 5a and Fig. 5b depict the acceptance ratios of Kariz and
MIP, respectively. The values are the average acceptance ratios
from 10 experiments. As expected, the longer chains with
higher throughput-demand have less chance to be accepted.
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Fig. 6. Comparison of resource utilization.

Fig. 7. Operational costs.

The low acceptance ratio for Len-4 is due to the resource
hunger of these chains, especially for WAN-opt. VNFs.

The range of numbers of chains accepted by Kariz vs. MIP
in Fig. 5c are: 100-100% for Len-1, 82-99% for Len-2,
76-96% for Len-3, and 89-97% for Len-4. Considering the
chain length and throughput-demand impacts in Fig. 5c, Kariz
performs closely to MIP. It might be expected that increasing
the length of chain and throughput-demand should cause Kariz
to have a lower acceptance ratio than MIP. However, Kariz has
better results for Len-4 than Len-3 and Len-2, especially for
500 Mbps throughput-demand. Recall from § V-B that Kariz
attempts to improve the solution after deployment of every
function of a chain. Since, Len-4 includes all functions of
Len-3 and Len-2 chains (see § VI-A4), the expense of more
improvement rounds increases the chance of adjusting the
earlier solution. All in all, Kariz has a competitive acceptance
ratio, within 76-100% of MIP.

C. Resource Utilization

Fig. 6 compares the resource utilization of Kariz with
MIP’s. Bandwidth/CPU utilization for Kariz and MIP are
the ratio of allocated bandwidth/CPU resources over aggre-
gated bandwidth/CPU capacities in the network. For VNF
resources, the reports are the average of per-function through-
put utilization.

The bandwidth utilization ratios as depicted in Fig. 6a
are 100-101% for Len-1, 86-102% for Len-2, 83-104% for
Len-3, and 125-134% for Len-4. Fig. 6a and Fig. 5c show
that Kariz efficiently utilizes the bandwidth resources for
Len-1, Len-2, and Len-3 for various throughput-demands.

Regarding Len-4, Kariz’s efficiency in utilizing bandwidth
resources decreases.

The CPU utilization ratios are in the range of 100-100% for
Len-1, 82-98% for Len-2, 76-96% for Len-3, and 98-101%
for Len-4, as observed in Fig. 6b. According to Fig. 6b and
Fig. 5c, Kariz utilizes CPUs efficiently, close to MIP’s.

Finally, the VNF utilization ratios vs. MIP are shown
in Fig. 6c. The following ranges are reported: 100-100%
for Len-1, 99-100% for Len-2, 98-106% for Len-3, and
102-107%. Kariz utilizes VNF instances with an efficiency
close to that of MIP for different lengths and throughput
demands.

D. Operational Costs

Fig. 7 shows Kariz’s costs vs MIP’s. We collect Kariz’s and
MIP’s average of per-chain costs. The reported values are the
ratio of Kariz’s and MIP’s costs.

As shown in Fig. 7a on average, Kariz allocates bandwidth
resource vs. MIP in the range 100-101% for Len-1, 104-108%
for Len-2, 108-113% for Len-3, and 132-141% for Len-4.
Regarding CPU as presented in Fig. 7b, on average, the same
number of CPU cores is allocated for Len-1, Len-2, and Len-3.
For Len-4, Kariz allocates 3-8% more CPU cores.

Finally, in respect to the total operational cost in Fig. 7c,
the following cost ratios vs MIP are observed: 100-101%
for Len-1, 103-105% for Len-2, 105-108% for Len-3, and
117-124% for Len-4. Kariz is more cautious to allocate
CPUs than to allocate bandwidth showing that improve-
ment rounds (see § V-B) optimize the total cost by releas-
ing CPUs while allocating more bandwidth. In summary,
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Kariz incurs a competitive per-chain cost that is less than 124%
of MIP’s.

VII. CONCLUSION AND FUTURE WORK

The limitations of current optimization models restrict a
chain’s throughput to resources of a physical-machine and
result in sub-optimal resource utilization and service per-
formance. In this paper, we presented distributed service
function chaining (DSFC) to overcome these limitations.
DSFC decouples a chain’s throughput from physical-machines
by placing VNF-instances of a function in multiple machines.
Further, DSFC optimizes network utilization by coordinating
the deployment operations. We formulated DSFC using a
mixed integer programming (MIP) model and proved its
NP-Hardness. For larger scales, we proposed and evaluated
a heuristic called Kariz. The experimental results for various
chain lengths and throughput demands demonstrate that Kariz
achieves competitive cost and acceptance ratio compared to
the MIP model. In future, we plan to analyze the lower bound
of approximation algorithms for DSFC problem. We aim to
devise an approximation algorithm close to the lower bound.

APPENDIX A
NP-HARDNESS PROOF

In this section, we prove that the Distributed Service Func-
tion Chaining (DSFC) problem is NP-Hard. We use a reduc-
tion from the NP-Hard minimum dominating set problem.
A dominating set of a graph is a set of nodes so that each node
is either a member or adjacent to at least a member of this
set. The goal is to find a dominating set with minimum size.

Given a graph GGG with nnn nodes as an instance of the
dominating set problem, we create an instance of DSFC and
prove that there is a dominating set of size kkk if and only if
there is a solution of cost 3nnn + kkk in the DSFC instance.

Recall from § IV-A, an instance of DSFC is defined with
resources, a network, a service chain, and VNFs. In our
reduced instance, CPU is the only host resource. We define
the network to be the same as GGG with two extra nodes s and t .
These two nodes are connected to all nodes of GGG. Nodes
s and t have 1 CPU-core, and others have 2 CPU-cores.
Incident links on s have the capacity nnn, and the capacity of
other links is 1. The chain is defined as s → FW → t .
Endpoints s and t respectively correspond to source s and
target t in the network, and FW is a firewall SF. Moreover,
there is a single firewall VNF demanding 2 CPU-cores and
providing throughput capacity nnn. On this instance of DSFC,
the goal is to install firewall VNFs to process a flow of size nnn
from s to t . Note that these VNFs require 2 CPU-cores and
cannot be placed in s or t . Here, by ‘flow’, we mean the
traffic that is to be sent from s to t . We define αr (r = CPU)
and β to be 1, hence the total cost of DSFC is the total
number of allocated CPU-cores (resource cost) and bandwidth.
Fig. 8 depicts this reduction. Clearly, the DSFC instance can
be constructed in polynomial time from the dominating set
instance.

To prove the hardness, we show that there is a dominating
set of size kkk if and only if there is a solution for the DSFC
instance with cost 3nnn + kkk. We start with the easy direction:

Fig. 8. To send a flow of size nnn = 6 from s to t , a flow of size 3 is sent to
nodes 1 and 5. These nodes then send a flow of size 1 to any node that they
dominate. Firewalls are placed at dominating nodes 1 and 5.

Lemma 1: If there is a solution of size kkk for the dominating
set problem, then there is a solution of cost 3nnn+kkk for the DSFC
problem.

Proof: Let vvv1, . . . , vvvkkk denote the nodes in the dominating
set, and aaaiii (1 ≤ iii ≤ kkk) denote the number of nodes vvviii
dominates. If a node is dominated by more than one node,
we count it only once (arbitrary assign it to one node in the
dominating set). Note that we have

∑
iii aiaiai = nnn − kkk.

In the DSFC instance, we send a flow of size aiaiai+1 from s to
any vivivi . Doing so results in bandwidth cost of nnn. We also send
a flow of size 1 from vivivi to any of the nodes that it dominates;
this requires a bandwidth of aiaiai for vivivi and in total bandwidth
of nnn − kkk for all dominating nodes. Finally, we send a flow of
size 1 from all nodes (except s) to t . This results in bandwidth
cost of nnn (see Fig. 8b). We install a FW for the service chain
in each node in the dominating set, resulting in resource cost
of 2kkk. In total, the cost is nnn + (nnn − kkk)+ nnn + 2kkk = 3nnn + kkk. �

To prove the other side of the reduction, we start with
Lemma 2.

Lemma 2: Given a solution of the DSFC problem with
cost ccc, one can achieve a solution of cost no more than ccc in
polynomial time, for which the following properties for each
node other than s, t hold: (1) the total inflow received through
nodes other than s is at most 1; (2) the inflow is through s or a
node that receives inflow through s; moreover, (3) FWs are
placed at nodes receiving some flow directly from s; (4) each
node receives either all or none of its inflow from s.

Proof: We modify the solution to satisfy properties (1)-(4)
in the same order without affecting previously satisfied proper-
ties. In this process, the cost of the solution is never increased.
To satisfy (1), assume there is node uuu with inflow xxx > 1 from
node(s) other than s. This assumption implies a bandwidth cost
of at least 2xxx for the flow passing at least another node between
s and uuu. In the new solution, we remove this flow and send a
flow of size xxx from s to uuu and place a FW at uuu. Doing so gives
a bandwidth cost of xxx and resource cost of 2. The increase
in cost is no more than xxx + 2− 2xxx ≤ 0. Property (2) follows
directly from (1). To satisfy (3), note that by (1), the flow
between nodes excluding s and t form a forest. Placing FWs
only in the roots in the forest does not increase the cost.
For (4), assume a node receives an inflow of xxx through s and
an inflow of 1 through another node. By (3), there is a FW
at uuu. In the new solution, we send a flow of xxx+1 from s to uuu
and remove the flow from the other node. �
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We use Lemma 2 to prove the other side of the reduction:
Lemma 3: If there is a solution of cost 3nnn+kkk for the DSFC

problem, then there is a solution of size kkk for the dominating
set problem.

Proof: First, we apply Lemma 2 to achieve a solution with
the desired properties. We refer to the nodes that receive flow
through s as critical nodes. By property (4), a node receive
all or none of its inflow from s. By (3), there is a FW located
in critical nodes. By (1), each non-critical node has inflow of 1
and by (2), such node receives this inflow through a critical
node. In other words, the graph formed by flows (excluding t),
is a tree of diameter 2 rooted at s. Let mmm denote the number
of critical nodes; the resource cost for FWs would be 2×mmm.
The bandwidth cost is 3nnn−mmm: a cost of nnn for the outflow of s,
another cost of nnn for the inflow of t , and an extra bandwidth
cost of nnn −mmm for the flow from critical nodes to non-critical
ones (recall that the inflow of each non-critical node is 1).
In conclusion, the total cost of the solution is 3nnn+mmm, i.e., we
have 3nnn+mmm = 3nnn+ kkk. In other words, the number of critical
nodes is kkk. On the other hand, by (1) and (2) each non-critical
node has an inflow of exactly 1 through a critical node. Hence,
critical nodes form a dominating set of size kkk. �

From Lemmas 1 and 3, Theorem 1 is direct.
Theorem 1: Finding the solution with minimum cost for

DSFC is NP-hard.

APPENDIX B
TIME COMPLEXITY ANALYSIS

Kariz routes traffic and installs VNF instances layer by
layer. For each layer, Kariz (i) finds a feasible initial solu-
tion, (ii) improves this solution, and (iii) updates layers
accordingly. One can verify that the second step dominates
the time complexity for the computation performed in each
layer. In this step, Kariz performs repeatedly either best
add(.) or best open(.). The number of performed actions
depends on the quality of the initial solution and is at most
5|N |

ε ln B(X)+H(Y )
B(X∗)+H(Y ∗) . At the worst case, the initial solution is

O(|N |) worse than the optimal solution (placing an ‘almost’
idle VNF in each subtrate node). Thus, the number of per-
formed actions is in O(|N | log |N |). Finding the best add(.)
action is examining at most b|N ||V | actions each of which
entails MCFP problem. Let �(G) be time complexity of
solving an instance of MCFP problem [11]. The complexity of
finding the best add(.) action is b|N ||V |�(G). Each open(.)
action also involves solving MCFP problem. For the best
open(., M, L(v), .), Kariz finds a subset M in L(u) that at
worst is in O(|N |2). Thus the complexity of finding the
best open(.) action is in O(|N |2)�(G). In total, the time
complexity of running the second step for each layer is
O(|N |2 log(|N |))�(G). All in all, since the second step
is performed for |V | layers, Kariz’s time complexity is in
O(|V ||N |3 log |N |�(G)). We note that this complexity does
not reflect the typical time complexity of the algorithm, and
in most cases Kariz runs much faster than this upper bound.
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