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Abstract—Network functions virtualization (NFV) continues
to gain attention as a paradigm shift in the way telecom-
munications services are deployed and managed. By separating
network function from traditional middleboxes, NFV is expected
to lead to reduced capital expenditure and operating expen-
diture, and to more agile services. However, one of the main
challenges to achieving these objectives is how physical resources
can be efficiently, autonomously, and dynamically allocated to
virtualized network function (VNF) whose resource require-
ments ebb and flow. In this paper, we propose a graph neural
network-based algorithm which exploits VNF forwarding graph
topology information to predict future resource requirements
for each VNF component (VNFC). The topology information of
each VNFC is derived from combining its past resource utiliza-
tion as well as the modeled effect on the same from VNFCs
in its neighborhood. Our proposal has been evaluated using
a deployment of a virtualized IP multimedia subsystem, and
real VoIP traffic traces, with results showing an average pre-
diction accuracy of 90%, compared to 85% obtained while
using traditional feed-forward neural networks. Moreover, com-
pared to a scenario where resources are allocated manually
and/or statically, our technique reduces the average number of
dropped calls by at least 27% and improves call setup latency by
over 29%.

Index Terms—Network functions virtualisation, dynamic
resource allocation, topology-awareness, prediction, machine
learning, graph neural networks, virtual network functions.

I. INTRODUCTION

SERVICE provision in the telecommunications industry
has traditionally been based on the use of specialised

Network Appliances (NAs) for each NF. This tight coupling
usually means that even slight changes in the operation of
a given Network Function (NF) could necessitate replace-
ment of the (NA) on which it runs. This short lifetime of
the NAs leads to increased Capital Expenditure (CAPEX).
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In addition, the fact that NAs are specialised calls for spe-
cialised maintenance and limits flexibility, leading to increased
Operating Expenditure (OPEX). These issues, combined with
the need for strict adherence to regulations, stringent network
stability and service quality targets, usually lead to extended
product development cycles. Moreover, due to the fierce and
ever increasing competition from services provided over-the-
top, Telecommunications Service Providers (TSPs) have found
themselves with consistently reducing average revenue per
user, and therefore declining profitability. Therefore, TSPs are
faced with an urgent need to find innovative and less expensive
ways to increase and/or efficiently utilise network capacity and
functionality, and achieve better service agility.

NFV [1], [2] has been proposed as a possible path towards
this end. The main idea of NFV is to take advantage of recent
advances in virtualisation technologies to decouple NFs (e.g.,
firewalls, load balancers) from dedicated NAs so as to run
them in generic servers that may be located in datacenters
or at centralised TSP points of presence. Thanks to NFV,
different NFs can evolve independently of each other, and
of hardware. Furthermore, by running VNFs in virtualised
resources (e.g., Virtual Machines (VMs)), network resources
can be efficiently allocated through dynamic scaling. Finally,
NFV promises to lead to more efficient operations through
automated and centralised management of networks and ser-
vices. Because of these prospects, NFV has been identified as
an essential enabler of the fifth generation (5G) of communi-
cation networks [3]. This means that in the near future, VNFs
will be building blocks for critical application domains such
as smart grid, smart cities, connected automotive, and eHealth.

However, NFV is still in infancy and making its antici-
pated gains a reality still requires overcoming a number of
challenges. One of the most important of these challenges
relates to efficiently and autonomously managing resources
that are allocated to VNFs while also ensuring reliability of
services that run on them [4]. Reliable and efficient resource
management is especially important for the future 5G net-
works which will require a very high amount of resources,
and whose expected applications (such as connected vehi-
cles) will demand highly reliable networks. Specifically, there
is need for algorithms to determine how resources from the
Network Functions Virtualisation Infrastructure (NFVI) are
shared among the VNFs. These algorithms should have capa-
bilities of scaling VNF resources vertically and/or horizontally
while meeting two conflicting objectives. On one hand, VNFs
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Fig. 1. NFV service function chain. VNF 1 has a single VNFC while VNF 2 has multiple VNFCs. The VNFCs may be horizontally or vertically scaled.
While VNFs are connected to each other by directed links in a chain, the VNFCs may contain both directed and un-directed links, in a vendor-specific
topology.

should be allocated enough resources at all times to meet
service quality requirements (i.e., reliability). On the other
hand, only the needed amount of resources should be allo-
cated to the VNFs to ensure efficiency. Given that network
traffic and hence the load of such VNFs vary over time, and
since spinning-up new resources (horizontal scaling) may take
some time (in case the VNFs run in VMs), there is need for
an automated way of determining such resource needs ahead
of time so that resources are available when needed, without
causing system outages or inefficiently using them.

In this article, we propose a topology-aware, dynamic and
autonomous system for managing resources in NFV based
on the concept of GNNs [5]. Our proposal is motivated by
the fact that in NFV, services are composed of one or more
VNFs arranged in a specific order to create what is known as
a Service Function Chain (SFC). Network traffic traverses the
VNFs in a given SFC sequentially. This implies that resource
requirements of a given VNF may be predicted by observ-
ing those of other VNFs in the chain. Therefore, the proposed
GNN approach involves modelling each VNFC in a SFC as
two parametric functions, each implemented by a Feedforward
Neural Network (FNN). The task of each pair of FNNs rep-
resenting a given VNFC is to learn (in a supervised way)
the trend of resource requirements of the VNFC. This is
achieved by combining historical local VNFC resource util-
isation information with the information collected from its
neighbours to forecast future resource requirements of the
VNFC. In particular, the first FNN expresses the dependence
of the resource requirements of each VNFC on the resource
requirements of VNFCs in its neighbourhood. This is input
into the second FNN which forecasts the resource require-
ments of the VNFC. The resource requirement forecast is in
turn used to automatically spin-up and configure new VNFCs
or turn them off as required. To the best of our knowledge,
dynamic and automated management of resources in NFV is
still an open research problem, and learning techniques based
on artificial intelligence are particularly interesting possible
solutions.

This article extends the results presented in our earlier
paper [6] in several ways. First, we give a more detailed
motivation of the proposed approach by use of recent results
regarding the time needed to spin up VNFs in the most com-
monly used Virtual Infrastructure Managers (VIMs). We also
give a more realistic example of a SFC early on in the article.
We have also improved the description of the state computation

TABLE I
SUMMARY OF ACRONYMS FREQUENTLY USED IN THE ARTICLE

step as well as the learning process. Most significantly, we
have performed extra experiments to compare our proposal
with a simple FNN approach, and to evaluate the performance
with different changes in a number of parameters. Acronyms
that have been frequently used in the paper are summarised
in Table I.

The article is organised as follows. We describe the prob-
lem in Section II and introduce GNNs in Section III. The
proposed GNN-based resource allocation model and the corre-
sponding learning algorithm are detailed in Sections IV and V
respectively. Our proposal is evaluated in Section VI, related
work discussed in Section VII, and the article concluded in
Section VIII.

II. PROBLEM DESCRIPTION AND MOTIVATION

The delivery of end-to-end services often requires packets,
frames, and/or flows to traverse an ordered or partially ordered
set of abstract NFs in what is known as an SFC. In NFV,
such NFs are deployed in virtualised resources, and are hence
known as VNFs. An example of such a SFC is shown in Fig. 1,
in which the SFC is composed of 4 VNFs each connected to
others by a directed link. Each VNF may be composed of
one or more VNFCs, each hosted in a virtualisation container
(virtual machines, linux containers, etc.).
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A. Virtual Network Function Components

Big instances of VNFs − such as an IMS − may be com-
posed of smaller instances of software components, called
VNFCs. A VNFC is an internal component of a VNF which
provides a defined sub-set of that VNF’s functionality, with
the main characteristic that a single instance of this compo-
nent maps 1:1 against a single virtualisation container [7].
According to the European Telecommunications Standards
Institute (ETSI), while VNF implementations must be standard
and hence expose standard interfaces, VNFC implementations
may be VNF provider specific. The ability to split VNFs into
smaller VNFCs gives providers the flexibility with regard to a
number of factors [7], e.g., the prioritization of performance,
scalability, reliability, security and other non-functional goals;
the integration of components from other VNF Providers;
operational considerations; the existing code base, etc. This
means that even for a VNF with the same functionality, differ-
ent VNF providers might have a different number and topology
of constituent VNFCs. The VNFCs in a VNF are linked to
each other by a combination of directed and undirected links,
and work together to provide the required functionality of the
VNF. It is worth noting that it is possible to change the inter-
nal topology of VNFCs (as part of the continuous innovation
process, for example, to improve performance) without neces-
sarily changing the interfaces external to the overall VNF.

B. VNF Example

An example of a practical VNF which is composed from
VNFCs is Clearwater’s cloud IMS [8], an open source IMS
core, developed by Metaswitch Networks. As shown in 2, it is
composed of five core nodes named Bono, Sprout, Homestead,
Homer, and Ralf. Bono is a Session Initiation Protocol (SIP)
edge proxy which provides a Web Real-Time Communications
(WebRTC) interface to UEs. It is the anchor point for UEs to
the Clearwater system. Sprout is a SIP registrar and author-
itative routing proxy which handles UE authentication. It
includes a memcached cluster storing client registration data.
Homestead provides a Web services interface to sprout for
retrieving authentication credentials and user profile informa-
tion. It runs as a cluster using Cassandra as the store for
mastered/cached data. Homer is a standard XML Document
Management Server (XDMS) used to store multimedia tele-
phony (MMTEL) service settings documents for each user of
the system using Cassandra as the data store. Ralf provides
Rf Charging Trigger Function (CTF), which is used in IMS to
provide offline billing. Bono and Sprout report P-CSCF and
I/S-CSCF chargeable events respectively to Ralf, which then
reports these over Rf to an external Charging Data Function
(CDF). It uses a memcached to store and manage session state.
As shown in the figure, communication is initiated by the
UE attaching to Bono. Bono then requests for UE authenti-
cation from Sprout, which does this by querying the database
in Homestead. During a call, Sprout uses user media settings
stored in Homer, and the calls are charged by Ralf. From this
flow of communications (for just one VNF), it is clear that if
Bono is over-loaded caused by too many UEs trying to attach
to the system, then Sprout would likely get more requests as

Fig. 2. VNF 2: Clearwater cloud IP multimedia subsystem.

well, and so would Homestead. Moreover, if each of these
UE attachments is successful, both Homer and Ralf would
also get overloaded. It is these interactions between VNFCs
that motivate our approach. While this illustration considers
mainly control plane signalling, a similar effect is expected
by considering the data plane, for example, in a SFC where
user packets have to be processed by one VNF before they
move to the next.

Throughout this article, Fig. 1, and in particular VNF 2 and
its internal structure (which also represents the topology of the
Clearwater VNF in Fig. 2) will be used as a running example
to illustrate various aspects of our proposal. However, we use
such specific and simple illustrations only to enhance clarity for
the reader. Our proposal can be applied with ease to any SFC
whose topology can be represented in the form shown in Fig. 1.

C. Motivation

In order to have the SFC shown in Fig. 1, a number of
problems should be solved. First, physical infrastructure must
be deployed. Then, there must be algorithms to optimise the
placement of virtual containers (or VNFs) onto the available
physical servers. Finally, throughout the lifetime of the SFC,
it is necessary to determine the actual amount of resources
allocated to each virtualisation container and/or how many
virtualisation containers are used for each VNFC. These three
problems are refered to as server placement, function place-
ment, and dynamic resource allocation respectively [4]. Server
placement and function placement have already attracted a lot
of attention, for example in [9]–[13] respectively, and are out
of scope for this article.

In this article, we focus on dynamic resource allocation. We
consider that the VNFs (and hence VNFCs) have already been
placed/mapped in the respective virtual resources on which
they run. This work is motivated by the fact that the resource
requirements of each VNF change over time with changes
in traffic, which calls for ways of increasing and reducing
resources allocated to the VNFCs as needed. Even more, since
there is a non-negligible delay in spinning-up new resources
(such as VMs), waiting until the system is over-loaded so as
to scale resource up could negatively impact user QoS.

As an example, in Fig. 3, we show results from a recent
study that considers the boot up times (and their scalabil-
ity) of three of the most commonly used VIMs OpenStack,
Eucalyptus, and OpenNebula. As can be noted, even for a
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Fig. 3. VM provisioning time for 3 of the most common virtual infrastructure
managers (VIMs). This is the total time taken to provision VMs in the most
mature, widely deployed VIMs. This figure has been adapted from a recent
study published in [15].

single VM, the time needed for boot and basic provisioning is
in the order of tens of seconds. This time grows very quickly
if a higher number of VMs is required. While Linux contain-
ers [14] can boot up faster than the times shown in the figure,
they are not yet widely used, in part due to some of open
issues (such as isolation) with them. Therefore, we believe
that the VIMs shown in the figure will remain a very impor-
tant part of NFV for the foreseeable future. Considering that
NFV will be an essential building block of 5G systems, and
given that most of the applications (such as automated driv-
ing, smart grid, etc.) which are expected to be supported by
5G require real-time response in case there is a need for more
resources, it is clear that state-of-the-art solutions fall short.
The objective of this article is to fill this gap. In particular,
our aim is to take advantage of the topology of the VNFs so
as to predict the resource requirements of each VNFC, and to
use this prediction to scale in/out in time so as to have the
resources available when they are needed. The next two sec-
tions introduce the concept of GNNs and how it has been used
to develop a system that forecasts the resource requirements
of each VNFC, in order to obtain advance information of the
VNFC’s upcoming resource needs, allowing an orchestration
entity to satisfy such needs just in time.

III. GRAPH NEURAL NETWORKS

GNNs [5] are a supervised learning model aimed at solving
problems in the graphical domain. The main idea of GNNs is
to define each node n in the graph based on its features, fn, and
to complement this by the information (features) observed in
the neighbourhood, n�, of the node. While there may be differ-
ent definitions of neighbourhood, what is used in this article is
a set of nodes directly connected to node n. Using these two
information sources, the GNN model determines a state sn for
each node n, which is then used to determine an output on for
the same node. The determination of the state and output for
each node is governed by equations (1) and (2) respectively.

sn =
∑

m∈n�

hw(fn, fm, sm), ∀n (1)

on = gw(sn, fn), ∀n (2)

TABLE II
SUMMARY OF KEY NOTATIONS

where fm and sm are the features and state of neighbour m ∈ n∗
respectively. It is possible to also include the features fmn of
the direct link between n and m in equation (1) only resulting
in a problem with more dimensions. hw and gw are parametric
functions which express, respectively, the dependence of the
state at each node on the state of its neighbourhood, and the
dependence of the node output on its state, respectively. hw is
known as the transition function while gw the output function.
Equations (1) and (2) represent the activity of a network con-
sisting of units which compute hw and gw for each node. This
is the main idea of GNNs, an information diffusion mecha-
nism, in which a graph is processed by a set of units (hw and
gw), each one corresponding to a node of the graph, which
are linked according to the graph connectivity. These units
update their states and exchange information until they reach
a stable equilibrium. Interested readers are referred to [5] for
more details about the model. It should suffice to say here
that by directing the diffusion process, the model is expected
to converge exponentially fast, and be stable while determin-
ing the node states, and hence the GNN output. In Table II, we
summarise all the key notations used throughout the article.

IV. GNN-BASED DYNAMIC RESOURCE MANAGEMENT

Since neighbouring VNFCs will usually be part of the same
SFC, resource fluctuations at one VNFC are expected to influ-
ence resource requirements at its neighbours as traffic flows
from one VNFC to the other. This dependency of VNFCs on
their neighbourhood makes the connectionist approach derived
from the GNN model an interesting fit as an approach for man-
aging resources in NFV. Therefore, the GNN-based dynamic
resource management system proposed in this article is derived
from equations (1) and (2), and is shown in Fig. 4 for a single
VNFC. As can be seen, the system is comprised of four main
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Fig. 4. GNN-based resource forecasting model for a single VNFC.

Fig. 5. SFC modelling: VNFC directed graph.

components: (1) SFC features, (2) VNFC states, (3) state com-
putation, and (4) output computation. In what follows, these
components are described.1

A. SFC Features

The SFC features are the observations or monitoring data
from the VNFCs, and consitute the input to both hw and gw.
In an NFV environment, these features represent the network
parameters (such as CPU or RAM utilisation levels) that can
be measured. As proposed by ETSI [16], the SFC in Fig. 1 may
be represented as a VNF-FG. In this article, we consider the
resulting VNF-FG at the granularity of VNFCs, i.e., the nodes
represented in the VNF-FG are VNFCs rather than VNFs.

Specifically, we model a SFC as a directed graph G(N, L),
where N represents the set of VNFCs and L the set of links
between these VNFCs. An example of such a representation
is given in Fig. 5 which is based on the SFC in Fig. 1. As
can be seen in the figure, subsets of VNFCs make up a VNF
(e.g., n1, n2, n3, n4 and n5 make up VNF 2 from Fig. 1). Each
VNFC n ∈ N has a set of features fn ∈ R

DN which represent
a measurable resource for the VNFC, such as VNFC memory
mn, CPU cn, processing delay dn, etc. In the same way, each
link lnm ∈ L which connects VNFC n to m is characterised
by a set fnm ∈ R

DL of features, which could represent link
delay dnm, bandwidth bnm, etc. DN and DL refer to the dimen-
sions of the feature sets for VNFCs and links respectively.
Equations (3) and (4) show example feature sets for VNFC n
and link lnm respectively, for which DN = 3 and DL = 2.

fn =
⎡

⎣
cn

mn

dn

⎤

⎦ (3)

1It is worth noting that Fig. 4 only shows the model for a single VNFC.
Such a system would have to be duplicated for each VNFC in a given
SFC, with the resulting topology being based on that of the Virtual Network
Function Forwarding Graph (VNF-FG).

fnm =
[

bnm

dnm

]
(4)

The objective is to monitor the features of each VNFC over
time, and to use such historical observations, as well as the
historical observations from the VNFC’s neighbours to predict
its subsequent features, which − in this case − represent future
VNFC resource requirements. In order to define both historic
and future resource utilisation, we refer to the VNFC and con-
nected link features at (discrete) time step t by fn(t) and fnm(t)
respectively. At any time t, we should be able to predict future
resource utilisation using a finite horizon of past resource
utilisation measurements. We denote the number of past mea-
surements included in such a horizon as π . An example of
current (cn(t), mn(t) and dn(t)) and π previous measurements
is shown by the vectors in equations (5) and (6). Using the
observations represented by equations (5) and (6), the objec-
tive is to predict − say − the CPU requirement cn(t + τ) of
VNFC n at a time τ time steps after t. In the rest of this
article, wherever fn or fnm is used, it should be interpreted to
mean the set containing fn(t) or fnm(t) plus the full history of
features over the period π .

It is important to note that modelling of links and their fea-
tures is only included here for completeness of the model,
as the link features will not be used as neighbourhood infor-
mation for VNFCs. The reason is that we consider that the
resource utilisation profile of a directed link is directly depen-
dent on that of the VNFC at its source from which the traffic
originates, and hence, the information obtained from a VNFC
would be similar to that obtained from the link.

fn(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn(t)
mn(t)
dn(t)
·
·
·

cn(t − π)

mn(t − π)

dn(t − π)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

fnm(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bnm(t)
dnm(t)

bnm(t − 1)

dnm(t − 1)

·
·
·

bnm(t − π)

dnm(t − π)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

B. VNFC States

In line with the VNF design patterns proposed by ETSI [7],
we consider that VNFCs can be stateful, with each VNFC
n ∈ N having a state sn ∈ R

SD of dimension SD. The state
sn is derived from combining the features of a given VNFC
with those from other VNFCs in its neighbourhood using the
function hw. This implies that the state of a given VNFC is
dependent on the topology or connectivity of the VNF-FG.
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Fig. 6. States and features from VNFC neighbourhood. Each VNFC receives
as input the state and features from all VNFCs that have a directed edge
towards it. It is worth noting that the neighbourhood effects of VNFs 1 and 3
on 2 have been omitted from this figure and all the proceeding analyses only
for brevity, and keeping the representations simple. However, the proposed
solution takes into account the dependencies of all the VNFCs in the SFC.

Fig. 7. GNN-based model for VNF 2: Each VNFC is replaced by a h(w)

function. The functions are connected to each other following the topology
of the original VNF. For example, VNFC n1 is connected to all other VNFCs
while n3 is only connected to n1 and n2. Observe that the number of hw
functions representing each VNFC is equal to the number of neighbours it
has, such that the effect (state and features) of each neighbour is processed
by the corresponding hw function.

Such topology-awareness is represented in Fig. 6 which shows
the dependencies of VNFCs in VNF 2 on each other. The Fig.
depicts that, for example, the state s1 of VNFC n1 is dependent
on the states s2, s3, s4, and s5 of all directly connected VNFCs,
as well as the corresponding features f2, f3, f4, and f5. The
state sn is determined using equation (1). This means that,
considering Fig. 6, the state s3 of VNFC n3 is given by (7).

s3 = hw(f3, f2, s2)+ hw(f3, f1, s1). (7)

C. State Computation

State computation involves using equation (1) to deter-
mine the state for each VNFC. However, as can be observed
from the equation, for any given pair of directly connected
VNFCs, the state of each of them depends on that of the
other. Therefore, the main task of state computation is to find
a method to solve equation (1). The existence and uniqueness
of a solution to (1) is guaranteed by Banach’s fixed-point the-
orem [5], [17]. However, this requires that the global function
hw is a contraction map with respect to s, i.e., equation (8)

Fig. 8. First iteration. Fig. 7 has been transformed into a single vertical
representation representing the first iteration.

Fig. 9. First and second iterations. Fig. 8 has been extended to include the
second iteration, with the VNFC states from the first iteration being input into
the second iteration as the states of the VNFCs.

must hold for some constant 0 ≤ ρ < 1 and any two state
vectors sa, sb ∈ R

SD , where ||.|| represents a vector norm.

‖hw(sa)− hw(sb)‖ ≤ ρ‖sa − sb‖ (8)

When equation (8) is satisfied, state computation is achieved
using a classic iterative scheme given in equation (9) where
s(i) is the ith iteration of the computation. This way, the func-
tion hw stores the current state s(i), and when called, calculates
the next state s(i+ 1). It can be observed that this makes the
current state sn(i) of a VNFC n dependent on the previous
state sm(i− 1) of its neighbour m.

sn(i+ 1) =
∑

m∈n�

hw(fn, fm, sm(i)), ∀n (9)

To illustrate the iterative state computation process, con-
sider Fig. 8 which is the same as Fig. 7, except that it has
been transformed into a single iteration of the state compu-
tation process. This is the first layer of the GNN. It can be
observed that the input to this layer is a set of initial states for
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Fig. 10. Final GNN model including the encoding network to iteratively determine the states of VNFCs, and the gw functions to determine the VNFC
resource prediction.

each VNFC (which maybe initialised to zero), as well as the
observed features. These are processed by the respective (for
each neighbour) hw functions in each VNFC and their outputs
summed (in accordance with equation 9) to give the output of
the first layer. As can be observed in Fig. 9, these outputs are
fed into the second layer in the second iteration. The states
are fed into the proceeding layer following the topology of
the original VNF. For example, the first output state s3(1)

from VNFC n3 is only fed to its neighbouring VNFCs −
n1 and n2. The iterative process is continued for an appro-
priate number, T of iterations to obtain what is known as
the encoding network shown in Fig. 10. Each layer i in the
encoding network corresponds to an iteration in which the
state s(i + 1) is computed for each VNFC. The hw units of
any two consecutive layers are connected following VNF-FG
connectivity.

It is worth remarking that the iterative process described
above converges exponentially fast to the solution of equa-
tion (9), i.e., convergence to the fixed point [5]. The solution
is equal to the convergence point of equation (9) for any ini-
tial value s(0) of the VNFC states. In this article, a FNN
is used as hw. This way, we can ensure that hw is a con-
traction map by limiting its parameters, i.e., the range of
values that the weights w of the FNN can take on [18].
As will be discussed in the next section, this is achieved
by using an error function designed with this requirement
in mind.

Algorithm 1 GNN-Based Model for NFV G(N, E)

1: Initialise: w, iteration i = 0, state s(i) = 0 ∀n ∈ N

2: procedure OBSERVATION
3: Observe f for all VNFC’s and their neighbourhoods
4: end procedure

5: procedure STATE COMPUTATION
6: while (i < T) do
7: Compute s(i+ 1) using equation (9)
8: i = i+ 1
9: end while

10: end procedure

11: procedure OUTPUT COMPUTATION
12: Compute o(i) using equation (10)
13: end procedure

D. Output Computation

Output computation involves taking as input the states cal-
culated by the hw functions in the iterative process described
in the previous subsection, and combining it with the feature
set of the VNFC to forecast a future resource requirement.
This is shown in Fig. 10. The final output (forecast resource
requirement) of a given VNFC is produced by another unit,
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which implements gw for all VNFCs using equation (10).

on(i) = gw(sn(i), fn), ∀n (10)

The function gw can be any general parametric function
as long as it can be trained in a supervised manner, and the
gradient of its output with respect to its input can be calculated.
The original model proposed by [5], which is also adopted in
this article, uses a FNN for gw.

E. Summary

To summarise, the proposed model is defined by equa-
tions (9) and (10) and represented in Fig. 10 for a specific
example of VNF 2. It takes as input the resource utilisation
observations (features) of a SFC and outputs, for each VNFC,
a forecast for the specified resource requirement. It can be
observed that the model involves computing the state of each
VNFC. This is achieved through an iterative process involving
as many hw functions for each VNFC as its neighbours in the
SFC. The outputs of the state computation are used for the out-
put computation state to determine the resource requirement
prediction. As already discussed, each hw or gw is implemented
by a FNN. This process is summarized in algorithm 1. As can
be seen, the process consists of three main steps: (1) observ-
ing the resource utilisation of the VNFC as well as that in
its neighbourhood, (2) using the observed resource utilisation
to determine the state of the VNFC, and (3) using results
from the first two stages to determine the forecasted resource
utilisation.

V. LEARNING AND ADAPTATION

In order to achieve forecasts that correctly approximate
actual resource requirements, the two functions hw and gw

must be trained. This involves using data that has both inputs
f and target outputs ξ , to adapt the weights w of the FNNs
to the task under consideration. In the case of the problem
addressed in this article, we need to have sample data, that
shows for a given resource utilisation profile (i.e., historic and
current features fn(t − π), . . . , fn(t)), the resource utilisation
on(t+ τ) at a given time in the future. This learning task can
be posed as the minimisation of a penalised quadratic cost
function (11).

ew =
∑

n∈N

(
1

2
(on − ξn)

2 + βL(on)

)
(11)

The first term in equation (11) is the standard error term
usually used for training FNNs [19]. The second term is a
penalty function which is added to the error function to ensure
that the function hw is a contraction map. The relative impor-
tance of the second term can be adjusted using the constant β.
The second term, which has been adapted from the one used
in [18], is meant to limit the values that can be assumed by
the weights w to low values. This is achieved by using the
function L (defined below) to penalise the FNN whenever its
output is above a given threshold μ, known as the contraction
constant. In this article, since all inputs to the system are first

Algorithm 2 Learning and Adaptation
1: procedure LEARNING AND ADAPTATION

2: Initialise: w, k = 0
3: while (stopping criterion not satisfied) do
4: Compute state s and output o using algorithm 1

5:
∂ew

∂w
←− Back Propagation Through Time

6: Update w using equation (12)
7: k = k + 1
8: end while
9: end procedure

scaled to the range (0, 1), the constants μ and β are both set
to 1.

L(y) =
{

(y− μ)2 if y > μ

0 0

The learning objective is to find the weights w for each
hw and gw such that the cost function (11) is minimised. The
learning algorithm used in this article is based on gradient-
descent, and involves four main steps:

1) STEP 1: At iteration k = 0, the weights w of hw and gw

respectively are initialized randomly between −0.5 and
+0.5.

2) STEP 2: At each iteration k = k + 1, state and out-
put computation is done using equations (9), and (10)
respectively,

3) STEP 3: The gradient
∂ew

∂w
of cost function (11) with

respect to the parameters w for all hw and gw is
computed,

4) STEP 4: The weights w for all hw and gw are updated
using equation (12), where α is the learning rate.

w(k + 1) = w(k)− α
∂ew

∂w
(12)

Steps 1 and 4 are obvious, while step 2 has been dis-
cussed in Sections IV-C and IV-D. Step 3 is realised by
using backpropagation-through-time (BPTT) [5], [20]. BPTT
involves carrying out the traditional back propagation [20] on
the encoding network (Fig. 10) to compute the gradient of
the cost function for each hw and gw and summing all the
gradients up. The learning and weight adaptation algorithm
is summarised in Algorithm 2. In the algorithm, the learn-
ing steps 1−4 above are carried out on lines 2, 4, 5, and 6
respectively.

VI. EVALUATIONS

A. Experimental Setup

The proposed system has been evaluated using the setup
shown in Fig. 11. The deployment is comprised of 6
main components: The Clearwater cloud IMS described in
Section II, OpenStack, User Equipments (UEs), Monitoring,
Domain Name System (DNS), and the algorithms being tested.
In our implementation, UEs are realised using SIPp [21].
SIPp is an open source test tool/traffic generator for the SIP
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Fig. 11. NFV implementation used for evaluations.

protocol. Two SIPp instances were created each running in a
VM. Each SIPp instance has 50,000 unique registered users.
Calls originate from users on one SIP instance to users on the
other. In order to monitor the resource utilisation of the VNFCs
in the system, we used Cacti [22] an open-source, Web-based
network monitoring and graphing tool which polls all system
nodes using Simple Network Management Protocol (SNMP).
Finally, we use BIND [23] an open source implementation of
DNS to allow Clearwater nodes identify each other, and for
load distribution when any of the nodes has more than one
instance.

In the experiments, each of the Clearwater nodes repre-
sents a VNFC,2 and is hosted in a VM running in OpenStack.
Therefore, the basic evaluation system deployment included
10 VMs running in OpenStack (5 for Clearwater nodes, 2
for UEs, 1 for DNS, 1 for Cacti monitoring, and 1 hosting
the system under test (the proposed algorithms). These VMs,
and additional ones (for horizontal scaling of Clearwater) were
automatically deployed in OpenStack using Heat Orchestration
Templates (HOTs) [24].

B. Setup Parameters

Each VM used in the tests has 1vCPU, 2GB RAM and
8 GB Storage, each running Ubuntu 14.04. Calls were gener-
ated from one UE to the other following a Poisson distribution
with an average arrival rate of 10 calls per second, and each
call lasting an average of 180 seconds following a nega-
tive exponential distribution. To model a time of day effect
on traffic arrivals, the above arrival pattern is repeated after
every 50,000 calls, with the arrival rate and call duration
parameters being halved and doubled alternately. During the
duration of each call, real voice and video media are trans-
mitted between the UEs. The voice/video content is derived
from VoIP (Skype) traces [25] which contain network traffic
captured on the main link of Politecnico di Torino involving

2 It is important to note that while our experimental setup involves multiple
VNFCs that make up a single VNF, it does not limit our proposal to a sin-
gle VNF. This is because irrespective of the number of VNFs or constituent
VNFCs, for as long as a topology of the functions in a SFC can be created,
then the GNN-based model can be used. This also includes situations where
the VNF may be a blackbox, in which case it would considered as having a
single VNFC.

Skype traffic from students, researchers, professors and admin-
istration staff. The original 3.75 GB of end-to-end voice only
and voice+video calls traces with about 40 million packets
was split into 40 .pcap files, each with about 1 million pack-
ets. For each established call, one of these media files (chosen
at random) was played to simulate real voice or video media.

C. Experiments

Three sets of experiments were done. In each experiment,
measurements of resource parameters (CPU, RAM, latency,
Call drops) for all Clearwater nodes were taken every 15s.
The first experiment was used to collect 10,000 data points
which were used to train the FNNs. The history and fore-
casting periods used were π = τ = 20, implying that for
each VNFC, the last 20 observations were used to predict the
resource requirement 20 time units in the future. In the sec-
ond experiment, The trained system was tested to determine its
prediction accuracy over 1,000 measurements, in which case,
every 15s, the system was run to determine an output, and
its output compared to the actual resource requirements 20
time units later. This was used as a prediction accuracy test
without performing any resource allocations. Finally, in the
third set of experiments, the system predictions were used to
actually effect resource allocations in the Clearwater system.
In this case, the system was programmed to effect a deploy-
ment of a new VNFC whenever it predicted that the % CPU
utilisation of a given VNFC would exceed 40%, and where
possible (if more than one are available), to reduce the num-
ber of deployed VNFC’s when the predicted utilisation is 20%.
The motivation behind using 40% and 20% respectively as the
thresholds is VNF specific. In our monitoring of the normal
operation of the Clearwater VNF, we observed that the VMs
had a relatively low CPU utilisation most of the time, but
that beyond 40% of CPU utilisation, performance (call drops)
would degrade, while below 20% of CPU utilisation, the call
drop rate remained almost unchanged. It is worth noting that
these thresholds may be different for a different VNF.

D. Comparisons

The proposed system was compared with two alternatives: a
static approach in which the resources were not changed at all,
and a manual approach where VNFC deployments were pro-
grammed to be performed when the system crossed the (40%)
resource utilisation threshold. The main difference between the
manual programming and the proposal given in this article is
that in the manual approach, the process of scaling resources is
only started after a given threshold is reached, while in our pro-
posal, the reaching of this threshold is predicted ahead of time,
and the scaling process started before the threshold is actually
reached. In addition, the prediction accuracy of the proposed
system was compared with that resulting from a simple FNN.
In order to compare the differences in prediction accuracies
between the FNN and the GNN, the mean absolute percentage
error (MAPE) defined using equation (13) was used.

MAPE =
(

1

k

k∑

t=1

∣∣∣∣
ξn(t)− on(t)

ξn(t)

∣∣∣∣× 100

)
. (13)
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TABLE III
NEURAL NETWORKS’ ARCHITECTURE PARAMETERS

Fig. 12. Total forecasting error.

E. Neural Network Architectures

The evaluations include three neural network architectures.
The first is the basic FNN whose performance is compared
against that of the GNN. The other two are also FNNs, but
with their architectures designed in line with the requirements
of the functions hw and gw. The hw, gw, and FNN neural net-
works were implemented in architectures with (i) one hidden
layer, and (ii) a number of neurons in the hidden layer equal
to the average of the neurons in the input and output lay-
ers. Such an architecture has been shown to produce universal
approximators [26], [27]. With these guiding rules, the result-
ing neural network parameters are given in Table III. It can be
observed that each architecture has 3 layers. Since we consider
3 VNFC features (i.e., CPU, memory and processing delay -
see Section IV-A for details), the dimension of the state is 3
(one for each feature). This is the reason why the output layer
for each of the architectures is 3. The number of neurons in
the input layer is determined based on the inputs that should
be accepted. For example, for the FNN, since we have 3 SFC
features and since we consider both the current value of each
of the parameters plus the 20 previous values, the total num-
ber of inputs is 3× (20+ 1) = 63. For hw, the inputs contain
two sets of the features (one from a neighbouring VNFC) as
well as the state from the neighbouring VNFC. This gives
(3+ 3)× (20+ 1)+ 3 = 129. For gw, the inputs contain one
set of features (from the VNFC under consideration) as well
as the state of the VNFC. This gives (3)× (20+ 1)+ 3 = 66.
Finally, the number of neurons in the hidden layers for each
architecture is determined as the average of the number in the
input and output layers.

F. Results

The evaluation results are shown in Figs. 12–26. Fig. 12
shows results from the first set of experiments (training), while

Fig. 13. Ralf RAM utilisation.

Fig. 14. Homer CPU utilisation.

Fig. 15. Homestead processing delay.

Fig. 16. Percentage error on delay prediction.

Fig. 17. Percentage CPU for homer.

Figs. 13–16 evaluate the prediction accuracy of the trained
system. Figs. 17–20 are based on 100 period moving averages.
Results from evaluating the effect of the resulting system are



116 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 18. Effect on processing latency.

Fig. 19. Effect on calls dropped.

Fig. 20. Cumulative call drops.

Fig. 21. Effect of deployment threshold.

shown in Figs. 17–20. Figs. 21–26 present a comparison of
the proposed approach with a traditional neural network, as
well as the effect of changing the different experimentation
parameters.

From Fig. 12, it can be observed that the total prediction
error (computed using equation (11)) is initially high, and falls
almost exponentially until it becomes stable after about 700

Fig. 22. Effect of number of state computation layers.

Fig. 23. Training and prediction times.

Fig. 24. Comparison with other approaches.

Fig. 25. Effect of number of past measurements.

iterations (each with 10,000 training examples) of the learn-
ing and adaptation algorithm.3 With a final error of about 5
as shown in Fig. 12, and considering this is the total error for
10,000 examples and 5 VNFCs, it can be concluded that the

3It should be mentioned here that the stopping condition in algorithm II is
1000 iterations.
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Fig. 26. Forecasting different horizons.

system achieves an approximate accuracy of about 99% per-
cent on the training data set. However, this level of accuracy
is not realised when the system is tested on a new data set as
shown in Figs. 13–15, which show the prediction accuracy of
the RAM utilisation for ralf, CPU utilisation for homer, and
request processing latency for homestead respectively. First,
it can be noted from Fig. 16 that the accuracy on latency
prediction is about 90%. This loss in accuracy can be explained
by the error term used during the weight learning phase which
attempts to prevent the weights from assuming large values. By
limiting the value of the weights, the FNNs may be prevented
from generalisation with high accuracy, i.e., the capability to
use acquired knowledge on new tasks.

In Fig. 17, we show the evolution of % CPU utilisation
for homer for the three scenarios described above. It can be
observed that the proposed automated approach correctly fore-
casts the trend in resource utilisation, and deploys an additional
homer VNFC, leading to a reduction in the load of the cur-
rent VNFC as the load is now shared. When the utilisation
reaches 40%, the manual scenario also triggers the deployment
of an additional homer VNFC, which takes some time to start
taking up load, but when it eventually does, the resource util-
isation of the original VNFC reduces compared to the static
scenario in which the number of VNFCs is not altered. Similar
profiles can be seen in the other two cases when the utilisa-
tion crosses the 40% mark. It is also worth noting that there
is not a very big difference in the performance of the man-
ual and automated scenarios when the resources have to be
scaled down (when utilisation is below 20%). This can be
explained by the fact that since it does not require any prepa-
ration to shutdown resources (VMs in this case), predicting
the need to shutdown in the use case under consideration does
not give any advantage since in any case both scenarios have
to wait until a certain point is reached before scaling down.
However, both approaches would still perform better than the
static approach in which resources would be left allocated,
even when unutilised.

The performance results discussed above can still be
observed in Figs. 18–20 in which the automated approach out-
performs the other two approaches. In fact, it can be seen that
the total number of calls dropped due to the system being
overloaded over the entire testing period is 29% lower for the
proposed approach compared to the manual one. Moreover, it
is important to state that our prediction is mainly based on

system load, and does not take into consideration the effect
of traffic arrivals. It is possible that by attempting to pre-
dict traffic arrivals, and incorporating this into the model may
yield better results. However, since we used synthetic traffic
arrivals (because we could not get more practical data), trying
to predict this could have been trivial. This could be an inter-
esting future consideration.

In Fig. 21, we evaluate the effect of the threshold used to
effect resource deployments. It can be noted that the number
of dropped calls for all the three approaches is initially low
and comparable but increases as the deployment threshold is
increased. This can be explained by the fact that when the
threshold is low, all the approaches deploy new VNFs even
before they are actually required, making all approaches have
comparable performance. Such a configuration would however
result into an inefficient utilisation of resources. However, this
changes as the threshold is increased since at higher values,
all VNFs are in urgent need for resources that a prediction
or just-in-time deployment produces significant improvements.
Fig. 22 shows the effect of varying the number of layers used
in the state computation process. We observe that as the num-
ber of layers is increased, the mean average percentage error
first reduces and then becomes almost constant. This implies
that beyond a certain value, the increased layers become redun-
dant without contributing to the prediction accuracy of the
system.

Figs. 23–26 compare the performance of GNN with FNN.
In Fig. 23, we show the time taken to train the neural net-
works and to make predictions. It can be observed that in
each case, GNNs take significantly more time than FNNs. This
is expected, since each GNN is made up of multiple FNNs.
It should be noted that as shown in the figure, in the GNN
experimental setup, each iteration takes about 45s to com-
plete, giving a total training period (for 1,000 iterations) of
about 45,000s. However, since the learning/training phase is
an offline process, this does not affect the online performance
of the system. After the training period, the weights of all
the FNNs in the model are saved in a file, from where they
can be loaded every time a prediction is needed. Therefore, we
observed that each online prediction required about 2s, includ-
ing the time required to read the weights from a file. Moreover,
in systems that are time critical, the prediction system could
be kept running (online results in Fig. 21), in which case the
time needed to load the weights from file can be saved. This
way, our evaluations showed that a prediction can be obtained
in about 5ms. These prediction times are comparatively low,
given that predictions are performed for resource requirements
300s ahead of time.

Fig. 24 shows the MAPE for GNN and FNN. It is evident
that the GNN-based approach performs better than the FNN.
This can be attributed to not only the topology-awareness of
the GNN approach, but also the fact that GNN have a higher
number of layers and neurons. Moreover, it can be observed
from Fig. 25 that the prediction accuracy of both approaches
improves as the number of historical measurements used is
increased, before it becomes almost constant. Finally, for a
given number of historical measurements, the prediction hori-
zon (i.e., how far into the future resource requirements can be
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predicted) leads to different prediction accuracies. For short
prediction horizons, the MAPE is surprisingly high, and keeps
reducing as the horizon is increased. This can be explained
by the fact that the neural networks were trained to make
predictions at different horizons and are therefore unable to
effectively adapt to the new horizons without retraining. The
errors reduce until when τ = 20, the point for which the
networks were trained, and then start rising again.

VII. RELATED WORK

Resource Management in NFV involves a number of sub-
problems [4]. However, until now most current approaches
have concentrated on the placement of servers [10] and
VNFs [28]. These approaches do not consider the need to
autonomously and dynamically scale the resources allocated
to VNFs whose load may vary over time. As stated in the first
NFV white paper [2] the automation and efficiency of such
processes is of paramount importance to the success of NFV.
This requires efficient and timely deployment and tear-down
of resource containers on which VNFs run to match changing
traffic. OpenStack - one of the most widely used VIMs pro-
vides Heat [24]. Heat is an orchestration engine that can be
used to automatically launch multiple SFCs based on templates
(the Heat Orchestration Templates (HOT)) which define the
features of each VNF and the overall SFC topology. However,
unlike our proposal, Heat does not provide any capability to
predict the resource requirements of the deployed VNFs so
as to automatically (ahead of time) scale in or out. The auto-
mated scaling capabilities provided by Heat use Ceilometer
to create alarms based on instance CPU usage and associate
actions like spinning up or terminating instances based on
CPU load. While this process is able to automatically deploy
a given number of machines, the scaling is based on previ-
ously set thresholds similar to the manual case used in the
comparisons. Therefore, our proposal may be used to com-
pliment Heat by providing information on when the scaling
threshold is about be reached, and in so doing, to trigger the
scaling process ahead of time, such that the resources are
available just when needed. As explained in the implemen-
tation setup, we used Openstacks Heat in the evaluation of
our proposal. While Linux containers may be used to achieve
significantly lower spin-up times, there are still a number of
open questions on their applicability for VNFs which require
isolation [1].

Dynamic resource management is usually aimed at finding a
compromise between two competing objectives: efficiency and
reliability. In order to increase reliability, redundant resources
should be provided as backup, which reduces resources util-
isation efficiency. With regard to efficiency, a number of
approaches based on control theory [29], [30], performance
dynamics modeling [31] and workload prediction [32], [33]
may be followed. However, such generic resource management
approaches cannot be trivially applied to NFV environments
due to the additional challenges that result from the need
to simultaneously consider multiple resource types (such as
CPU, memory, latency). Moreover, these resource types are
not only segmented into many VNFCs and their connecting

links, but the VNFCs may also require different quality of
service guarantees.

With regard to reliability, MLDO [34] is an adaptive live
migration approach which uses machine learning techniques to
predict VM failures and hence perform migrations over a wide
area network so as improve reliability. Similarly, Autonomic
Cloud Manager (ACM) Framework [35] is an autonomic
framework which uses machine learning to predict failures
of virtual machines and to pro-actively redirect the load to
healthy virtual machines in similar or different cloud regions.

In [36], an approach for VM workload prediction based
on deep learning was proposed. The authors designed a
deep belief network (DBN) composed of multiple-layered
restricted Boltzmann machines (RBMs) and a regression layer.
The DBN was used to extract high level features regarding
the loading of a VM and the regression layer was used to
predict the workload of the VMs in the future. However, the
model is applicable to resource prediction for just a single
VM without temporal or spatial interactions with other VM,
which is not practical for most real applications. In previous
related work [37] we proposed machine learning techniques
for dynamic allocation of resources in network virtualisation
environments. The authors model the nodes and links in a
physical network as agents which use reinforcement learning
to allocate resources to virtual nodes and links as requirements
change. However, the nature of SFCs in NFV present addi-
tional challenges since the graphs that represent the VNFs are
directed, which makes the VNFCs dependent on each other,
and hence the GNN approach proposed in this article more
suitable in such a scenario. Moreover, since NFV is expected
to be a building block for future communications systems
where both resource utilisation efficiency and reliability are
mandatory requirements, there is a need to provide automated
solutions which are able to provide resources just-in time.
Most previous approaches are either driven by efficiency or
reliability but not both as is the case in this article.

In summary, our proposal enhances the state-of-the-art in
that it complements VNF placement which is quite well stud-
ied, with a way to autonomously and dynamically scale up and
down the initially allocated resources. This way, resources can
be reserved for VNFs only when they are needed. Moreover,
GNNs as used in our proposal are well suited for such a
problem due to the ability to take advantage of topology
dependencies which result when the load of VNFs is depen-
dent on that of its neighbours. To the best of our knowledge,
this is the first attempt to automate resource management in
NFV through machine learning, and by taking advantage of
the topology of the VNF-FG.

VIII. CONCLUSION

In this article, we have proposed an automated, dynamic
and topology-aware resource management approach for NFV
environments. The proposal models each VNFC in a SFC as
a pair of parametric functions which combine the observed
resource utilisation profile at a given VNFC with that observed
at its neighbours so as to predict future resource requirements.
The predicted resource requirements can then be used to spin
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up new resources or plan global resource availability for the
whole system. Through evaluations using a deployment of a
virtualised IMS, and using real VoIP traces, we have evalu-
ated our proposal, and showed that it can achieve a prediction
accuracy of about 90%, and is able to enhance the process-
ing delay and call drop rate by 27% and 29% respectively.
In addition, comparisons with a FNN show that the proposed
approach achieves a 5% higher prediction accuracy.

However, there might be some room to improve the cur-
rent system so as to have even better generalisation accuracy
by considering error functions with different penalty terms.
Moreover, the backpropagation through time algorithm used
for training the SFC encoding network requires to store the
states of each parametric function. If the SFC is large, this
might require a considerable amount of memory. Therefore,
future work will attempt to find more efficient ways of training
the encoding network.
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