
Computer Networks 125 (2017) 26–40

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

TCAM space-efficient routing in a software defined network

Sai Qian Zhang

a , 1 , ∗, Qi Zhang

b , 2 , Ali Tizghadam

a , Byungchul Park

a , Hadi Bannazadeh

a ,
Raouf Boutaba

c , Alberto Leon-Garcia

a

a Department of Electrical and Computer Engineering, University of Toronto, Canada
b Amazon Inc., United States
c David R. Cheriton School of Computer Science, University of Waterloo, Canada

a r t i c l e i n f o

Article history:

Received 15 October 2016

Revised 4 March 2017

Accepted 20 June 2017

Available online 5 July 2017

Keywords:

Software defined networking

Ternary Content-Addressable Memory

Traffic engineering

a b s t r a c t

Software Defined Networking (SDN) enables centralized control over distributed network resources. In

SDN, a central controller can achieve fine-grained control over individual flows by installing appropriate

forwarding rules in the network. This allows the network to realize a wide variety of functionalities and

objectives. However, despite its flexibility and versatility, this architecture comes at the expense of (1)

laying a huge burden on the limited Ternary Content Addressable Memory (TCAM) space, and (2) limited

scalability due to the large number of forwarding rules that the controller must install in the network. To

address these limitations, we introduce a switch memory space-efficient routing scheme that reduces the

number of entries in the switches, and at the same time guarantees the load balancing on link resources

utilization. We consider the static and dynamic versions of the problem, analyzing their complexities and

propose respective solution algorithms. Moreover, we also consider the case of fine-grained control for

the flows, and develop a 2-approximation algorithm to achieve load balancing on the TCAM space usage.

Experiments show our algorithms can reduce TCAM usage and network control traffic by 20% − 80% in

comparison with the benchmark algorithms on different network topologies.

© 2017 Elsevier B.V. All rights reserved.

o

M

s

e

l

o

M

h

q

c

h

e

s

r

p

i

T

1. Introduction

Software Defined Networking (SDN) is an architecture that en-

ables logically centralized control over distributed network re-

sources. In SDN, a centralized controller makes forwarding deci-

sions on behalf of the network forwarding elements (e.g. switches

and routers) using a set of policies. Based on given high level de-

sign requirements, the source and the destination node of each

flow is dictated by the Endpoint Policy and the flow path is decided

by the Routing Policy [1] . For example, the shortest-path routing

policy asks the network to forward packets along the shortest path

between two nodes. Other routing policies that improve resource

utilization, quality of service and energy usage have also been pro-

posed in the literature [2–4] . These features make SDN an attrac-

tive approach for realizing a wide variety of networking features

and functionalities.

Implementing routing policies in SDN may require fine-grained

control over flows, which can place a huge burden on switch mem-
∗ Corresponding author.

E-mail address: sai.zhang@mail.utoronto.ca (S.Q. Zhang).
1 The author is now at Harvard University.
2 The work is conducted during the author’s post-doctoral fellowship at Univer-

sity of Toronto.

i

o

t

e

s

http://dx.doi.org/10.1016/j.comnet.2017.06.020

1389-1286/© 2017 Elsevier B.V. All rights reserved.
ry space. Of particular interest is the Ternary Content Addressable

emory (TCAM), a special type of high speed memory that can

earch the entire memory space within a single clock cycle. How-

ver, TCAM has a well known problem on limited capacity and

arge power consumption [5] . The largest average memory space

n TCAM chip is far less than that of Binary Content Addressable

emory (CAM). For example, HP ProCurve 5406zl TCAM switch

ardware can support 1500 OpenFlow rules, while each host re-

uires dozens of OpenFlow rules on average, which means 5406zl

an support only 150 users [6] . Moreover, TCAM is also energy-

ungry, it consumes 30 times as much energy as SRAM with the

qual number of entries [7] . As shown in Fig. 1 , the energy con-

umption of the TCAM can contribute to up to 25% of total power

equired for a high-end switch ASIC [8] . Given that the amount of

ower consumption is proportional to the number of entries used

n TCAM, a wealth of research literature is focused on reducing

CAM usage [1,5,9] .

Scalability is another issue resulting from fine-grained central-

zed control. For every subtle change on the network topology

r routing policy, the controller must deliver a control message

o each network element that implements the policy. As the av-

rage flow size in both wide-area and data center networks is

mall (around 20 packets per flow [7]) and the inter-arrival rate

http://dx.doi.org/10.1016/j.comnet.2017.06.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.06.020&domain=pdf
mailto:sai.zhang@mail.utoronto.ca
http://dx.doi.org/10.1016/j.comnet.2017.06.020

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 27

Fig. 1. Power breakdown of high-end switches ASIC.

o

(

a

b

i

c

r

t

i

a

b

n

s

a

a

[

i

o

l

r

b

fl

o

p

s

T

b

i

t

m

t

s

t

t

l

t

i

t

s

S

a

W

l

g

v

d

p

g

l

s

s

2

t

t

e

w

P

w

fi

t

T

t

e

t

r

w

a

I

f

c

t

w

P

t

s

m

a

b

[

i

a

t

s

a

e

t

e

a

d

w

b

a

b

3

o

n

F

h

t

d
f the flows in the high-performance network is extremely high

less than 30 ms [7]), a huge workload is imposed on the controller

s the network size grows. Since each switch typically has limited

andwidth on the path to the controller, and incurs moderate rule

nsertion time, the high workload received by the controller often

auses large rule installation overhead and leads to low flow set up

ate. In modern data center networks, 1ms additional latency for

he delay-sensitive flow can be intolerable [10] . Therefore, the lim-

ted flow set up rate can dramatically hurt the overall performance

nd the quality of service. It is important to reduce the interaction

etween control plane and data plane in order to achieve better

etwork scalability and performance.

To address the issues of switch memory space limitation and

calability, recent work has proposed to control flows collectively

t an aggregated level. This allows the use of prefix aggregation

nd wild card rules to minimize the number of stored entries

1,9] . These works have focused on compressing the entries of each

ndividual switch, while preserving the routing policy (i.e. with-

ut changing the forwarding paths) [6] . However, we find that in

arge networks, multiple candidate paths are usually available for

outing each individual flow while still satisfying performance and

usiness constraints. Therefore, if we can additionally control the

ow forwarding paths, we can achieve substantial gains in terms

f TCAM space savings and controller scalability. To this end, we

ropose a new routing scheme that minimizes TCAM space con-

umption in SDN networks without causing network congestion.

he proposed routing scheme takes advantages of the large num-

er of available forwarding paths and routes traffic in a way that

mproves network scalability and reliability. The main objectives of

his new routing scheme are:

• Minimize the switch memory space utilization for a given the

end point connection request.

• Reduce control traffic by decreasing the interaction between the

controller and network.

To this end, we show that by appropriately using the subnet

asks on the address field, we can achieve significant saves in

he TCAM space while guaranteeing the load balancing on link re-

ources.

In this paper, we first introduce the TCAM space minimiza-

ion problem and analyze its complexity. We then propose heuris-

ic algorithms for both static and dynamic versions of the prob-

em. Through experiments, we show that our algorithms reduce

he TCAM space usage and network control traffic by 20% − 80%

n comparison with the benchmark algorithms.

The rest of the paper is organized as follows. Section 2 reviews

he related works. Section 3 motivates our problem through a de-

criptive example. Section 4 presents the problem statement, and

ection 5 formulates a corresponding a traffic engineering problem,

nd show the problem is NP-hard and inapproximable in general.

e then propose a heuristic to solve the traffic engineering prob-
em. Section 6 introduces partitioning of all the demand pairs into

roups to achieve minimum TCAM space utilization. Section 7 pro-

ides an online algorithm to deal with the dynamic entry and

eparture of the demand pairs. Section 8 presents and solves the

roblem of the efficiently placement of the rules to realize fine-

rained control. Section 9 presents performance results from simu-

ations of the proposed algorithms. Section 10 evaluates the routing

cheme on real testbed and discusses potential implementation is-

ues. Section 11 presents conclusions.

. Background and related work

OpenFlow is a popular and efficient means for realizing a cen-

ralized control framework [11] . It allows the controller to choose

he paths of packets across a set of switches. An OpenFlow table

ntry in a switch can be represented by a triplet (M, P, A) [11] ,

here M is the matching field which is used to match the packet,

 is the matching precedence of the entry and A is the action field

hich contains operations on the matched packet. The matching

eld usually includes source IP address, source MAC address, des-

ination IP address, destination MAC address, input port number.

he action field includes common operations such as forwarding

he packet to a specific output port, modifying the packet header,

tc. Upon receiving a packet, the switch searches for the rule with

he highest priority that matches the packet, then executes the cor-

esponding actions defined by that rule. OpenFlow also supports

ildcard over the input port region and subnet mask in the IP

nd MAC address to represent a group of source and destination

P/MAC addresses [11] , for instance, 01 ∗∗ in the address field stands

or 0100, 0101, 0110 and 0111.

To deal with the TCAM space issue, previous works have fo-

used on compressing the entries of a single switch, guaranteeing

hat the overall forwarding logic of that switch keeps the same,

hile preserving the routing policy [5] . One Big Switch [1] and

alette [9] decompose network access policies into small parts and

hen distribute these to use TCAM space. Moshref et al. [12] de-

igns routing algorithms to distribute access policies across inter-

ediate switches with minimum switch memory consumption in

 datacenter network. Rami et al. [25] study the effect of flow ta-

le size on the maximum number of flows supported. CacheFlow

26] develops an algorithm for placing rules in a TCAM with a lim-

ted space.

Scalability is a key issue in SDN. DevoFlow [6] presents a scal-

ble SDN framework by using wildcard entries to decrease the con-

rol plane visibility on the microflows. However, it does not offer

ufficient quantitative analysis about how to use the wildcard to

chieve optimal performance. DIFANE and Kandoo [13,14] propose

fficient and scalable SDN frameworks which split the workload of

he central controller to distributed authorized components. How-

ver, the problem of global visibility has not been tackled. The

uthors of [15,16] solve the scalability issue by using multiple in-

ependent controllers to consistently manage the whole network,

hile minimizing the amount of communication between them,

ut they do not address how these controllers are coordinated

nd communicate with each other, and they ignore the overhead

rought by distributing the control protocol.

. A motivating example

We provide a motivating example to demonstrate the benefit

f the proposed switch memory space-efficient routing scheme. A

etwork topology and port numbers between nodes are shown in

ig. 2 (a) and the end point policy is shown in Fig. 3 (a). Two source

osts with the IP address 0 0 0 and 001 send traffic to two destina-

ion hosts 100 and 101 respectively. We call a pair of source and

estination address a demand pair, and so there are four demand

28 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Fig. 2. Motivation example.

Fig. 3. Example of flow tables.

4

e

F

m

T

i

d

c

n

t

s

t

c

m

t

s

W

T

E

(

g

d

c

[

g

t

1

i

r

d

u

pairs in this example. The bandwidth consumption of each demand

pair equals 1 and the capacity of each link is 10. Traditional traffic

engineering (e.g. ECMP) spreads the flows evenly in the network to

balance network link utilization, which gives one feasible solution

in Fig. 2 (b).

The OpenFlow table of each switch is shown in the Fig. 3 (b). A

total of 11 entries are installed. To set up these new flows, 11 ad-

ditional control packets are sent from the controller, since at least

one initial packet in each new flow is processed by the controller.

In total 11 + 2 × 4 = 19 packets are transmitted between the con-

troller and the switches. In contrast, the proposed routing scheme

produces the solution in Fig. 2 (c) and the forwarding tables shown

in Fig. 3 (c). Instead of routing the traffic of each demand pair re-

spectively, this routing scheme aggregates the flows and uses sub-

net masks to reduce the number of entries in each table. The max-

imum bandwidth consumption of the solution given by the new

scheme is also 2, and 8 additional entries are installed on nodes

A − E, which requires 8 control packets sent from controller. A to-

tal 8 + 2 × 4 = 16 packets are transmitted between controller and

switches. This reduces TCAM space and control traffic by 27.2% and

15.8% respectively. From the above example, we draw the following

conclusions:

1. If fine-grained control is not required on specific flows, TCAM

space consumption and control traffic can be reduced by using

subnet masks on the source and destination addresses to ag-

gregate flow entries.

2. As the network size increases, the number of control packets to

set up a flow is approximately equal to the number of entries

installed in the TCAM (ignoring the initial packet of the flow

that is sent to the controller). So minimizing TCAM usage can

also indirectly save control traffic indirectly.

3. In addition to finding a path which minimizes TCAM consump-

tion, the constraint on link capacity must also be met. For ex-

ample, the two solutions above have the same maximum link
utilization.
. Problem overview

The design objective of the proposed switch memory space-

fficient routing scheme is to minimize the total number of Open-

low entries installed in all the switches, which is equivalent to

inimizing the average number of entries installed in each switch.

o keep the problem generic, we assign a weight to each switch

n the network, where this weight is the cost of installing an ad-

itional rule in the switch. For the choice of w (v), in the simplest

ase, we can set w (v) = 1 to achieve the goal of minimizing total

umber of forwarding entries in the switches. However, adjusting

he value of w (v) allows us to model other objectives. For instance,

ince power consumption of a switch is linearly proportional to

he TCAM space usage [5] , by setting w (v) to the average power

onsumption per rule for switch v , we can model the problem of

inimizing total energy consumption in the network. The objec-

ive then would be to minimize the total weighted cost, given a

et of demand pairs and constraints on link resource utilizations.

e call this the TCAM Space Minimization Problem (TSMP) .

TSMP is a rather complex problem to analyze and solve directly.

o simplify our analysis, we divide TSMP into two sub-problems:

fficient Partitioning Problem (EPP) and Efficient Routing Problem

ERP) . The EPP focuses on partitioning all the demand pairs into

roups. We call these groups the routing groups . The source ad-

resses and destination addresses in the same routing group have

ommon prefixes. For example, the four demand pairs [0 0 0, 10 0],

0 0 0, 101], [001, 100], [001, 101] in the Fig. 3 (a) form a routing

roup with prefix 0 ∗∗ and 1 ∗∗, where we use [s k , d k] to represent

he demand pair.

We can use the addresses with subnet mask s u = 0 ∗∗ and d u =

∗∗ to represent all the source addresses and destination addresses

n the routing group u . When partitioning is complete, for each

outing group there will be a corresponding ERP, and we route all

emand pairs in that routing group to minimize total TCAM space

sage.

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 29

Table 1

Definitions of parameters.

Name Description Name Description

G A network topology G = (V, E) V Set of nodes in G

E Set of links in G S Set of addresses of source hosts

D Set of addresses of destination hosts U denote the set of routing groups

K Set of demand pairs K u Set of demand pairs in the routing group u ∈ U
m Number of bits in the source address and destination address size (u) The number of demand pairs in routing group u

s k the source address of demand pair k d k the destination address of demand pair k

s u The source address of routing group u with the subnet mask d u The destination addr. of routing group u with the subnet mask

a (v) Number of OpenFlow rules installed on switch v w (v) Cost of inserting a single OpenFlow rule in switch v

r v The TCAM space capacity of switch v π (v) Set of port numbers associated with switch v

p (v) Set of port number pairs of switch v β Threshold of link utilization rate

B k The bandwidth consumption of k ∈ K C e C e the capacity of each link e ∈ E
x ijk A binary variable, x i jk = 1 if an 4-tuple (s u , i, d u , j) is installed

to direct traffic of demand pair k from port i to port j ,

x i jk = 0 otherwise

y ij A binary variable, y i j = 1 if a 4-tuple (s u , i, d u , j) is installed to

direct the flow of s u ∈ S from port i to port j and y i j = 0

otherwise

l ek A binary variable, l ek = 1 denotes edge e ∈ E is used to direct

the flow of demand pair k

K fine The set of demand pairs required to gather statistics

L Maximum number of demand pairs in each routing group z vk A binary variable, z v k = 1 if the rule is installed on switch v to

gather the statistics for specific flow of k ∈ K fine

λ The TCAM space utilization rate q v The initial number of rules installed on switch v before the

rules for collecting specific flow statistics is added

H (k) The path of the demand pair k ∈ K fine

l

o

u

d

r

m

s

p

d

s

a

r

5

r

m

w

v

a

s

4

r

s

t

o

t

n

m

F

a

r

p

t

Fig. 4. Labelling port example.

t

2

2

t

p

t

p

s

i

m

w

i

r

mand pairs whose flows traverse through v .
Based on the description of ERP and EPP above, we can formu-

ate TSMP: let U denote the set of routing group, K denote the set

f routing pairs and K u (u ∈ U) denote the set of demand pairs in

 (Table 1 provides a quick glossary of definitions). Furthermore,

efine TCAMcost (K u) to be the minimum cost returned by ERP to

oute the demand pairs in K u . TSMP can be formulated as:

inimize
u

∑

u ∈ U
T C AMcost (K u) (1)

.t. ∩

u ∈ U
K u = K (2)

The main challenge here is that the EPP and ERP are not inde-

endent. The routing groups given by the solution of the EPP will

etermine the input of ERP, which determines the total amount of

witch memory space consumed.

In the next two sections we first discuss our algorithm for ERP,

nd then the solution for EPP, which relies on the solution algo-

ithm for ERP to make partitioning decisions.

. Efficient routing problem

The goal of ERP is to connect each demand pair for a given

outing group while consuming minimum weighted sum of switch

emory space and satisfying the load balancing on links. Formally,

e model the network as a graph G = (V, E) , where each node

 ∈ V represents an OpenFlow switch and each switch v is assigned

 cost w (v) per rule inserted. Without loss of generality, we as-

ume each flow entry in the flow table can be represented by a

-tuple (s, i, d, j), where s, i, d constitute the matching field: s, d

epresent the source and destination address information, such as

ource/destination IP/MAC address, i is the input port number of

he switch where the packet comes in. j is the output port number

f the switch that the packet is directed to, and which constitutes

he action field of the OpenFlow entry. We neglect rule priority for

ow and consider it later.

Let s k and d k denote the source and destination addresses of de-

and pair k . We use a 4-tuple (s u , i, d u , j) to represent the Open-

low rule installed for the routing group u ∈ U , where s u and d u
re the source and destination addresses with the subnet masks

espectively.

Let π (v) be the set of port numbers of switch v. We make the

ort number equal to the label of the links that the port connects

o (Fig. 4). Then we denote p(v) = { (x, y) : x ∈ π(v) , y ∈ π(v) } as
he set of port pairs of switch v . For example π (A) in Fig. 4 is {1,

, 4} and p(A) = { (1 , 2) , (2 , 1) , (1, 4), (4, 1), (2, 4), (4, 2), (1, 1), (2,

), (4, 4)}. Let y ij ∈ {0, 1} represent whether a 4-tuple is installed

o direct the flow of routing group u from input port i to output

ort j . Let x ijk ∈ {0, 1} denote whether a 4-tuple entry is installed

o direct traffic of a demand pair k ∈ K u from input port i to out-

ut port j . Let a (v) denote the total number of rules installed on

witch v . Our goal is to minimize the total weighted sum of rules

nstalled in the switches:

inimize
x i jk ,y i j ∈{ 0 , 1 }

∑

v ∈ V
w (v) a (v) (3)

here a (v) represents the number of 4-tuples (s u , i, d u , j) installed

n v . To compute a (v), note that for the same switch v and same

outing groups, three conditions may occur:

• No 4-tuple (s u , i, d u , j) needs to be installed on v . That is,∑

j∈ π(v) μ(
∑

i ∈ π(v) y i j) = 0 and therefore a (v) = 0 , where μ is

the step function, μ(x) = 0 if x ≤ 0 and μ(x) = 1 if x > 0.

• All the flows installed on v are forwarded to one output port,

i.e.,
∑

j∈ π(v) μ(
∑

i ∈ π(v) y i j) = 1 . One entry (s u ,
∗, d u , j) is enough

to direct the flows of K u , with s u and d u in the address field and

wildcard in the input port field, so a (v) = 1 .

• All the flows installed on v are forwarded to more than one

output port. That is, �j ∈ π (v) μ(�i ∈ π (v) y ij) > 1, therefore, the

source and destination fields must be fully specified to differ-

entiate each flow and so that the flows can be directed to cor-

responding output ports. Hence the total number of entries in-

stalled is
∑

i ∈ π(v)
∑

j∈ π(v)
∑

k ∈ K u x i jk , which is the number of de-

30 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Fig. 5. Flow Table of s1.

T

E

N

t

s

s

h

T

P

l

t

t

a

β

s

t

i

b

e

c

t

t

a

T

E

a

n

P

l

w

o

a

t

t

f

s

fl

o

s

o

a

o

s

s

s

e

T

l

s

i

i

p

3 The partition problem is the task of deciding whether a set of positive integers

can be partitioned into three subsets X, Y and Z such that the sums of the numbers

in X, Y, Z are equal.
4 Given a set of elements {1,2,...,m}, and a set A of n sets whose union equals the

element set, the set cover problem is to find the smallest subset of A whose union

contains every single element.
The conditions can be illustrated by the following example: As-

sume a set of rules {(00, 1, 10, 4), (01, 2, 10, 5), (00, 1, 11, 3), (01, 2,

11, 6)} is installed on s 1. The flow table of s 1 is shown in Fig. 5 . As

the table shows, the source and destination address must be fully

specified so that each flow can be identified by the intermediate

switch to direct to its corresponding output port.

By combining the 3 cases, a (v) can be defined as follows:

a (v) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

0 if
∑

j∈ π(v)
μ(

∑

i ∈ π(v)
y i j) = 0

1 if
∑

j∈ π(v)
μ(

∑

i ∈ π(v)
y i j) = 1

∑

i ∈ π(v)

∑

j∈ π(v)

∑

k ∈ K u
x i jk if

∑

j∈ π(v)
μ(

∑

i ∈ π(v)
y i j) > 1

We can ensure that the number of rules installed in each switch

does not exceed its TCAM space capacity: let r v be the capacity of

switch v , we then require:

a (v) ≤ r v ∀ v ∈ V (4)

Next, we relate x ijk to y ij . Eq. (5) ensures that 4-tuple rule (s u , i, d u ,

j) is installed if any flow of demand pair k is sent from input port

i to output port j, and so : ∑

k : k ∈ K u
x i jk ≤ y i j ∀ (i, j) ∈ p(v) , v ∈ V (5)

Next we build the path between each source host to the destina-

tion host. Let l ek ∈ {0, 1} denote whether edge e ∈ E is used to di-

rect the flow of demand pair k . Define Q k = { Q k ⊆ V : s k ∈ Q k , d k /∈
Q k } (∀ k ∈ K) and define π (Q k) the set of edges in the cut defined

by Q k , that is, the set of edges in G which have ingress node in the

set Q k . Then we have: ∑

e : e ∈ π(Q k)

l ek ≥ 1 ∀ k ∈ K u (6)

By max-flow/min-cut theorem, Eq. (6) ensures there exists at least

one path between s k and d k [17] . Next the following equations

make sure OpenFlow entries are installed to direct the flow to each

used link:

l ek ≤
∑

v ∈ V

∑

i :(i,e) ∈ p(v)

x iek ≤ 1 ∀ e ∈ E, k ∈ K u (7)

l ek ≤
∑

v ∈ V

∑

j :(e, j) ∈ p(v)

x e jk ≤ 1 ∀ e ∈ E, k ∈ K u (8)

∑

(i, j) ∈ p(v)

x i jk ≤ 1 ∀ k ∈ K u , v ∈ V (9)

Eqs. (7) –(9) ensure that if link e is used to direct the flow for k ,

then there exists exactly one flow entry in the ingress switch of e

to direct the flow of k to e and there exists one flow entry in the

egress switch of e to accept the flow of k from link e . Finally, we

must consider the constraint on maximum bandwidth utilization

rate on all links. Define B k as the bandwidth consumption for the

demand pair k, C e the capacity of each link e ∈ E , and let β be the

limit on link utilization rate. we have: ∑

k : k ∈ K
B k l ek ≤ βC e e ∈ E (10)
he goal of ERP is to minimize objective function (3), subject to

qs. (4) –(10) .

Next we consider the complexity of ERP. Theorem 1 shows the

P-completeness and inapproximability of the ERP which implies

he NP-completeness and inapproximability of TSMP . Theorem 2

hows that even without the load balancing guarantee (10), or

ome other performance guarantee than (10), the ERP is still NP-

ard and (1 − ε) ln | V | inapproximable for any ε > 0.

heorem 1. ERP is NP-complete and inapproximable.

roof. The proof is based on reduction from the 3-partition prob-

em

3 . Consider a part of a hierarchical tree topology in a datacen-

er in Fig. 6 (a). Four source hosts inject packets to A, B, C, D , and

he bandwidth consumption B k of the traffic injected on A, B, C, D

re b 1 , b 2 , b 3 , b 4 respectively. The maximum usage on bandwidth

C e of link (E, H), (G, H) and (F, H) equal 1
3 (b 1 + b 2 + b 3 + b 4) . To

atisfy (10), the flows from the four source nodes must be parti-

ioned into three subsets with the same total amount of bandwidth
1
3 (b 1 + b 2 + b 3 + b 4) . Therefore by knowing whether the problem

s feasible or not, we know whether the set of numbers { b 1 , b 2 ,

 3 , b 4 } can be partitioned into three subsets with the equal sum of

lements. Since the decision version of 3-partition problem is NP-

omplete, then any polynomial-time approximation algorithm for

his problem would solve the 3-partition problem in polynomial

ime, which is not possible unless P = NP . �

Following the same arguments, we can also show that TSMP is

lso NP-complete and inapproximable.

heorem 2. Even without the link capacity constraints (i.e., Eq. (10)),

RP defined by (3) − (9) is NP-hard, and there is no (1 − ε) ln | V | -
pproximation algorithm for any ε > 0, where | V | is the number of

odes in G.

roof. The proof is based on a reduction from the set cover prob-

em

4 . Consider a multi-root hierarchical tree topology in Fig. 6 (b),

here each node on layer 3 does not fully connect to every node

n layer 2 due to link failure. 4 source hosts form a routing group,

nd each connects with the switches A, B, C, D and sends traffic

o the core switch H . Assume r v is large and the weight of all

he switches on layer 3 and layer 1 is small, then the objective

unctions (3) is equivalent to minimizing the number of entries in-

erted on layer 2 switches.

Since each additional switch used in layer 2 to direct the

ow from A − D corresponds to an additional flow entry inserted

n that switch, then minimizing number of entries on layer 2

witches is equivalent to minimizing the number of switches used

n layer 2. Define the universal set U = { A, B, C, D } to consist of

ll the layer 3 switches, and assign a subset of U to each switch

n layer 2. The subset for each switch on layer 2 consists of the

witches on layer 3 that the switch connects to. For example, the

ubset for E = { A, C} and the subset for F = { B, D } . In order to make

ure there is a path from A − D to destination H , we need to ensure

ach switch on layer 3 connects to at least one switch on layer 2.

herefore, minimizing the number of additional flows inserted on

ayer 2 switches is equivalent to minimizing the number of layer 2

witches used to direct the flow, which is equivalent to minimiz-

ng the number of subsets used to cover the universal set U , which

n turn is the definition of set cover problem. Since the set cover

roblem is NP-hard and cannot be approximated with in a factor

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 31

Fig. 6. Proof of inapproximability.

o

E

0

p

g

b

r

r

G

a

e

D

o

r

d

n

D

t

c

e

o

o

o

o

b

i

c

F

h

n

n

e

o

p

q

t

c

l

e

i

r

o

t

p

fl

b

t

A

w

d

c

c

t

l

9

f

i

n

6

t

I

s

t

0

i

m

s

p

c

b

e

s

[

f (1 − ε) ln n for any ε > 0 (where n is the size of the set), the

RP is also NP-hard and (1 − ε) ln | V | inapproximable for any ε >

. �

Since ERP is both NP-complete and inapproximable, we pro-

ose a simple and efficient heuristic to solve ERP. Without loss of

enerality, given an undirected topology G = (V, E) the graph can

e made directed by replacing each undirected link e by two di-

ected links e ′ with opposite directions, where we mark both di-

ected links by e ′ evolved from e . We define a new directed graph

′ = (V ′ , E ′) , and in (e ′)(e ′ ∈ E ′) as the ingress switch (head) of e ′
nd out (e ′)(e ′ ∈ E ′) as the egress switch (tail) of e ′ . An directed link

′ is a link from its egress switch (tail) to its ingress switch (head).

efine C e ′ (e ′ ∈ E ′) as the capacity of the link e ′ , which equals that

f C e , where e is the undirected link from which e ′ is created. We

elate the cost of inserting rules on switches to the weight of the

irected links of the switches. First, we provide the following defi-

ition:

efinition 1. Link e ′ is ready for routing group u if: 1. out (e ′) con-

ains a 4-tuple (s u , i, d u , e
′), i ∈ π (out (e ′)) or (s u ,

∗, d u , e
′). 2. in (e ′)

ontains a 4-tuple (s u , e
′ , d u , j), j ∈ π (in (e ′)) or (s u ,

∗, d u , j).

In other words, a link is ready for u if there already exists an

ntry on its ingress switch and egress switch to forward the flow

nto this link. Next we calculate the cost of activating the links e ′
n switch out (e ′). Let t (v)(v ∈ V) be the number of demand pairs

f u that v carries after the e ′ is activated. Define θu
v the number

f egress links of v used to direct the traffic of demand pairs of u

efore e ′ is added. Then the cost of activating this link e ′ , cost (e ′)
s shown below:

ost(e ′) =

{
w (out(e ′)) if θu

out(e ′) = 0 or θu
out(e ′) > 1

(t (out (e ′)) − 1) w (out(e ′)) if θu
out(e ′) = 1 (�)

or each newly activated link e ′ , the corresponding OpenFlow rule

as to be installed to the out (e ′) to direct the traffic. If initially

o other link of out (e ′) is used, one OpenFlow entry (s u ,
∗, d u ,

 (e ′)) will be installed on out (e ′), so cost(e ′) = w (out(e ′)) . How-

ver, if previously one egress link has been activated on switch

ut (e ′), then initially all the flows are forwarded to single output

ort. To activate a new link with a new output port, we now re-

uire the all the flows carried by the switch to be fully specified so

hat they can be directed to the corresponding output ports. Hence

ost(e ′) = (t(v) − 1) w (out(e ′)) . Finally, if previously more than one

ink has been activated on switch out (e ′), for each new activated

gress link, a new corresponding entry (s k , i, d k , n (e ′))(k ∈ K u) is

nstalled to direct the flow.

An example is given in Fig. 7 (a): Assume initially switch s 1 car-

ies two demand pairs [00, 10] and [01, 11] of u that have the same

utput port 4 (θu
v = 1) , therefore one entry is installed to route

he flows as shown in Fig. 7 (b). Now assume one more demand
air [00, 10] is added and another egress link is used to direct this

ow (output port is 5), then number of entries in the routing ta-

le increases by t(v) − 1 = 3 − 1 = 2 . Therefore the cost to activate

his new link is 2 w (v), the new flow table is shown in Fig. 7 (c).

lgorithm 1 Incremental routing algorithm (IRA).

1: for each demand pair k ∈ K u do

2: for each link e ′ ∈ E ′ do

3: if e ′ is ready for k then

4: Set the cost of link e ′ to 0, cost(e ′) = 0

5: if e ′ is not ready for k then

6: Update the link cost cost(e ′) according to (�)

7: if βC e ′ ≤ B k or a (out(e ′)) > r out(e ′) then

8: Set the cost of link e ′ to infinity, cost(e ′) = ∞

9: Find shortest path between s k and d k , if there are more than

one shortest paths, randomly select one. Install the 4-tuple

rules along the path. Update a (v) .
10: Set βC e ′ = βC e ′ − B k

Algorithm 1 reuses the links which are ready by setting the

eights of these links to 0. The weights of other links are up-

ated according to (�). If the bandwidth consumption on e ′ ex-

eeds the maximum limit βC e ′ , the cost of e ′ is set to be infinity,

ost(e ′) = ∞ . Finally the solution path can be calculated by finding

he shortest path between the source and the destination hosts.

We now analyze the complexity of IRA . The for loop between

ine 3 to 8 in IRA determines the cost for each edge e ∈ E . In line

, the shortest path is calculated between each s k to d k . There-

ore, the overall complexity is O(| K u | (| V | + | E | log | E |)) , where | K u |

s the size of K u , | V | is number of nodes in the network and | E | is

umber of edges in the network.

. Efficient partitioning problem

After solving ERP for each routing group, we are still left with

he problem of partitioning K demand pairs into routing groups.

n this case all demand pairs can be visualized using a 2 m × 2 m

quare, where m is the number of bits in the source and destina-

ion address. For example, Suppose there are 6 demand pairs [10,

 0], [11, 0 0], [0 0, 01], [0 0, 11], [01, 11], [01, 10], the correspond-

ng square is shown in Fig. 8 (a). The squares representing the 6 de-

and pairs are coloured in blue. One of the possible partitions is

hown in Fig. 8 (b), where the routing group G 1 covers the demand

airs [01, 10], [01, 11], [00, 11], G 2 covers [10, 00], [11, 00] and G 3

overs [00, 01].

The goal of EPP is to find the routing groups so each group can

e routed with the lowest cost as defined in Eq. (3) . We represent

ach routing group by a pair of source-destination addresses with

ubnet mask. For example, G 2 in Fig. 8 (b) can be represented by

1 ∗, 00].

32 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Fig. 7. Example on cost of link.

Fig. 8. Examples.

Fig. 9. Example of DSA .

d

W

0

r

p

r

r

b

t

d

a

a

i

2

O

6

o

a

s

s

T

l

m

f
A drawback of aggregating flow entries is that we lose visibil-

ity into the fine-grained flow characteristics, which makes elephant

flow detection and rerouting harder to achieve [6] . Consequently,

we impose a maximum routing group size L to limit the maxi-

mum flow aggregation level, which allows the trade-off between

flow visibility and TCAM space savings.

Our solution algorithm, called Detailed Search Algorithm (DSA) ,

begins with the entire square that covers all source-destination

pairs. In each iteration, it reduces the size of the routing rectangle

by replacing the wildcard bit in the address with a binary digit.

The output of each iteration is the routing group with the lowest av-

erage cost per demand pair in the group . Define the leading bit of

an address as the leftmost wildcard bit in the address. For exam-

ple, the leading bit of address 00 ∗∗ is the third bit. If there is no

wildcard bit in the address, set the leading bit to 0. Denote size (u)

the number of demand pairs in routing group g . Define l s and l d as

the leading bits of the source and destination address. The pseudo

code of Detailed Search Algorithm is described in Algorithm 2 .

The function IRAcost (u) returns the minimum cost generated by

IRA to route all the demand pairs in u . The DSA algorithm works

by searching the routing group u ′ with size (u ′) < L with the low-

est average cost in a greedy fashion, and building the paths for

that group with minimum cost. Subsequently, the demand pair is

removed from K . The algorithm terminates when all the demand

pairs in K have been routed.

Fig. 9 provides an example to illustrate DSA . Let L equal 3. Ini-

tially there are 6 demand pairs. The routing group is the region

circled by the red dash line, which is the whole square shown in

Fig. 9 (a). Assume we found that the routing group with minimum

average cost is [1 ∗, ∗∗], by setting the leading bit of source ad-
 b
ress to 1, the corresponding routing group is shown in Fig. 9 (b).

e repeat these steps until we have found the routing group [1 ∗,

0] shown in Fig. 9 (c) and 9 (d) (Note that further dividing of this

outing group will increase the average routing cost per demand

air). Then the two demand pairs in the routing group [1 ∗, 00] are

outed by using IRA. DSA then removes this routing group, and we

epeat the process until all the demand pairs are routed.

We now analyze the complexity of DSA . The inner while loop

etween lines 4 − 15 runs at most 2 m times, since in each itera-

ion of the inner while loop the leading bit of source address or

estination address decreases by 1, the iteration will stop when

ll the wildcard bits in source address and destination address

re filled with binary digits. For each inner while loop, the IRA

s called 4 times (line 5 − 8). Finally, the outer wile loop (line

 − 15) runs at most | K | times. Therefore the complexity of DSA is

(8 m | K| 2 (| V | + | E | log | E |)) .

.1. Rule priority between routing groups

It is possible that two routing groups may overlap with each

ther. For the example shown in Fig. 8 (c), two routing groups G 1

nd G 2 both cover the yellow square [11, 00]. Assume the switch

 1 carries the traffic of both routing groups, the flow of [11, 00] will

atisfy the predicates for both entries, which is shown in Fig. 8 (d).

herefore each entry in the switch must be assigned a priority

evel. Upon receiving a packet, the switch finds the entries with a

atching predicates and the highest priority level, and then per-

orms its action. One simple way to assign priorities in DSA is

ased on the order the routing group is generated by DSA . For ex-

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 33

Algorithm 2 Detailed search algorithm (DSA).

1: Set the source and destination address to the address with fully

wildcard bit, set u pre v = u curr = ∅ , set l s = l d = m .

2: while K � = ∅ do

3: Set pre v = ∞ and curr = 0

4: while curr ≤ pre v or size (u curr) > L do

5: Set [u s 0 , a v gcost(u s 0)] = F indCost(src, l s , 0)

6: Set [u s 1 , a v gcost(u s 1)] = F indCost(src, l s , 1)

7: Set [u d0 , a v gcost(u d0)] = F ind Cost(d st, l d , 0)

8: Set [u d1 , a v gcost(u d1)] = F ind Cost(d st, l d , 1)

9: Select u curr equals to u ∈ { u s 0 , u s 1 , u d0 , u d1 } with the mini-

mum a v gcost(u) , if more than one such u exist or all the

a v gcost(u) equals infinity, randomly pick one.

10: Set curr = a v gcost(u curr)

11: if (curr > pre v or l s = l d = 0) then

12: Remove all the demand pairs in u pre v from K, building

the path for each demand pair in u curr by using IRA .

13: Set the source and destination address to full wildcard

bits. Set u pre v = u curr = ∅ , l s = l d = m

14: break

15: Set the binary digit on leading bit according to u curr , up-

date the leading bit by decreasing l s or l d by 1 according to

u curr , set pre v = cur r , u pre v = u curr

16: Function F indCost (type, l, d)

17: if (type == src and l s � = 0) then

18: Set the binary digit on leading bit l of source address to d,

while keeps destination address the same. Denote the routing

group formed u .

19: if (0 < size (u) ≤ L) then

20: Reset the binary digit on the leading bit l of the source

address to wildcard bit.

21: Return [u,
IRAcost(u)

size (u)
]

22: if (size (u) > L) then

23: Return [u, ∞]

24: if (type == dst and l d � = 0) then

25: Set the binary digit on the leading bit l of the destination ad-

dress to d, while keeps the source address the same. Denote

the routing group formed u .

26: if (0 < size (u) ≤ L) then

27: Reset the binary digit on the leading bit l of the destination

address to wildcard bit.

28: Return [u,
IRAcost(u)

size (u)
]

29: if (size (u) > L) then

30: Return [u, ∞]

31: Return [∅ , ∞]

32: EndFunction

a

h

7

c

f

d

t

7

t

d

D

t

t

c

s

e

D

t

n

(

c

A

w

s

w

s

e

s

s

l

F

e

t

F

a

t

7

r

t

t

l

i

8

fi

m

F

f

c

b

t
mple, if G 1 is generated before G 2, then the entry of G 1 has a

igher priority than that of G 2 (shown in Fig. 8 (d)).

. Dynamic scheduling of demand pairs

The algorithms presented in the previous sections have been fo-

used on the static version of the problem. While they are useful

or networks that have constant network demand, in reality, the

emand pairs may join/leave the network dynamically. In this sec-

ion we propose the dynamic algorithms to deal with this scenario.

.1. Dynamic demand pairs entering

We first consider the case where a new demand pair k enters

he network. Let s k and d k denote the source and destination ad-

ress of k . We first make the following definition:
efinition 2. Let f be a full address without wildcard bits, we say

he address f ′ covers f if f ′ and f have the same bit length and all

he non-wildcard bits of f ′ are the same as f .

For example, let f ′ = 00 ∗∗ and f = 0 0 01 , then f ′ covers f be-

ause all the non-wildcard bits of f ′ (the first two bits) are the

ame as f , which is 00. Next we extend the definition of ready for

ach new demand pair k :

efinition 3. In a directed graph G

′ = (V ′ , E ′) , link e ′ is ready for

he new demand pair k if: 1. out (e ′) contains a 4-tuple (s, i, d,

 (e ′)), i ∈ π (out (e ′)) or (s , ∗, d, n (e ′)). 2. in (e ′) contains a 4-tuple

 s, n (e ′), d, j), j ∈ π (in (e ′)) or (s , ∗, d, j), where s covers s k and d

overs d k .

lgorithm 3 Dynamic algorithm for new arrivals (DANA).

1: for each new demand pair k do

2: for each link e ′ ∈ E ′ do

3: if e ′ is ready for k then

4: Set the cost of link e ′ to 0, cost(e ′) = 0

5: if e ′ is not ready for k then

6: Set the link cost cost(e ′) = w (out(e ′))
7: if βC e ′ ≤ B k or a (out(e ′)) > r out(e ′) then

8: Set the cost of link e ′ to infinity, cost(e ′) = ∞

9: Find shortest path between s k and d k , if there are more than

one shortest paths, randomly select one. Install the 4-tuple

rules (s k , i, d k , j) along the path. Update a (v) .
10: Set βC e ′ = βC e ′ − B k

Algorithm 3 (DANA) builds the paths for each new demand pair.

The intuition behind DANA is reusing existing rules in the net-

ork. For the example shown in Fig. 2 (c), the routing tables are

hown in Fig. 3 (c). Assume that there exists a new demand pair

ith source address/destination address 010/101 and ingress/egress

witches are A and E . Further assume that the every link has

nough remaining capacity to carry the flow of this demand pair

uch that (10) is obeyed. Also assume that every switch has the

ame weight and enough TCAM space. One of the possible so-

utions is routing through the path A, B, E (the black route in

ig. 10 (a)), and the new routing table is shown in Fig. 10 (b). Three

ntries are added on the switch A, B and E. DANA will generate

he red route shown in Fig. 10 (a) and the routing table shown in

ig. 10 (c). By comparison, only one entry is installed on switch D ,

nd the entries in switch A, D are reused so that no additional en-

ry is installed.

.2. Dynamic demand pairs leaving

In case of a demand pair leaving the network, if the leaving

enders the rule to be obsolete, this rule can be safely deleted ei-

her by the controller or idle timeout [11] . However, depending on

he network traffic pattern, some unused rules can be kept for a

onger time for routing future traffic flows. Details of this problem

s out of the scope of the paper [18] .

. Rule placement for statistics gathering

In the previous section, we proposed a scheme to route the traf-

c in an aggregate manner such that TCAM space consumption is

inimized and the performance is guaranteed. However, the Open-

low controller may need access to collect flow statistics and per-

orm fine-grained control on the individual flow under some cir-

umstances. For example, some flows are mice flows initially and

ecome elephant flows later, and the controller need timely access

o the detailed statistics on these flows. OpenFlow supports this

34 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Fig. 10. Example of flow tables.

Fig. 11. Example of flow tables.

b

T

t

t

λ

N

8

w

φ

T

A

T

1
by involving a counter field in each OpenFlow entry, the counter of

the entry will update when the packet matches with the entry, dif-

ferent kinds of counters are supported by OpenFlow, such as num-

ber of packets transmitted, number of bytes transmitted, etc [10] ,

the controller will collect the statistics of this flow by querying the

data in the counter field. An example is given by Fig. 11 . The flows

of three demand pairs are transmitted in aggregate manner and

the flow tables are also shown in the Fig. 11 . To gather the statis-

tics of the flow of demand pair [0 0 0, 10 0], a rule with the source

and destination addresses 0 0 0 and 10 0 must be installed, and the

controller is free to choose which switch along the path A, B, C this

rule is inserted since the traffic of [0 0 0, 10 0] will pass through all

these three switches.

8.1. Problem formulation

Unlike the objective function defined by (3), in this scenario

we are more interested in making sure that all the switches have

space to install the rules since failure to install the rule will cause

the controller to lose control on the specific flow. For the misbe-

haved flows (e.g. elephant flow) which consume the majority of

the resources, it is necessary for the controller to gather statis-

tics and perform fine-grained control timely. Consider the exam-

ple of Fig. 11 , assume the switch w (B) is lower than w (A) and w (C),

to minimize the total cost defined by (3) all the rules will be in-

stalled on B until reaching the TCAM space limit of B . Later if there

is a need to install rules to collect statistics on the other demand

pairs whose only intermediate switch is B (e.g the flow only passes

through B), then this rule will be discarded since B is already full.

Therefore, instead of Eq. (3) , we should minimize the maximum

consumption on TCAM space in each switch, that is, minimize the

maximum number of rules installed on each switch. Let k fine de-

note the set of demand pairs which are needed to collect statistics.

z vk is a binary variable, z v k = 1 indicates that the rule is installed

on switch v to gather the statistics for k. q v indicates the initial

number of rules installed on switch v , and H (k) denotes the path

carrying the traffic of demand pair k . Then the problem is shown
elow:

minimize
z v k ∈{ 0 , 1 }

λ

subject to

∑

v ∈ H(k)

z v k = 1 , ∀ k ∈ K f ine

q v +

∑

k ∈ K f ine

z v k ≤ λ, ∀ v ∈ V

he first constraint ensures that the rule for k is installed on one of

he switch along the path H (k), and the second constraint ensures

hat the total number of rules on each switch is less or equal than

. We call this problem Rule Placement Problem (RPP) , and RPP is a

P-hard problem.

.2. Approximation algorithm of RPP

Next we proposed a 2-approximation algorithm for RPP . First

e define a new variable φvk :

v k =

{
∞ if v / ∈ H(k)
1 if v ∈ H(k)

hen RPP can be redefined as follows:

minimize
z v k ∈{ 0 , 1 }

λ

subject to

∑

v ∈ V
z v k = 1 , ∀ k ∈ K f ine

q v +

∑

k ∈ K f ine

φv k z v k ≤ λ, ∀ v ∈ V

nd we cite the result from [27] :

heorem 3. Let v ij > 0 for i = 1 , . . . , m, j = 1 , . . . , n, d i > 0 for i =
 , . . . , m, and t > 0 . Let A j (t) = { i | v i j < t} and B i (t) = { j| v i j < t} , if

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 35

t

h

f

f

T

fi

‘

s

s

P

s

B

o

q

s

ε

T

T

A

P

b

t

t

R

m

a

a

r

i

9

9

W

i

u

(

n

r

a

d

1

N

1

t

a

T

o

A

u

c

t

l

i

t

l

l

3

e

s

c

n

o

s

n

s

a

l

t

i

a

t

I

i

s

t

s

a

t

C

i

t

t

t

a

T

T

9

p
he following feasibility problem:

∑

i ∈ A j (t)

x i j = 1 , j = 1 , . . . , n

∑

j∈ B i (t)

v i j x i j ≤ d i , i = 1 , . . . , m

x i j ≥ 0 , f or j ∈ B i (t) , i = 1 , . . . , n

as a solution, then any vertex x ′ of this polytope defined by the above

easibility problem can be rounded to a binary integer solution of the

ollowing problem in polynomial time.

∑

i ∈ A j (t)

x i j = 1 , j = 1 , . . . , n

∑

j∈ B i (t)

v i j x i j ≤ d i + t, i = 1 , . . . , m

x i j ∈ { 0 , 1 } , f or j ∈ B i (t) , i = 1 , . . . , n

Then we have to following conclusion:

heorem 4. Given the constants q v and φvk , for any λ > 0, we can

nd 2-relaxed decision procedure for the RPP that outputs either: 1.

no’, if there is no feasible solution to achieve this maximum TCAM

pace consumption λ or 2. z vk which generates a maximum TCAM

pace consumption at most 2 λ.

roof. For the linear programming problem given in Theorem 4 ,

et t = λ, v i j = φv k , d i = λ − q v , m = | V | , n = | K f ine | and x i j = z v k .

y Theorem 3, the problem is either: 1. infeasible. 2. there is a set

f integer solution z vk such that
∑

k ∈ K f ine
φv k z v k ≤ λ − q v + λ = 2 λ −

 v . Therefore q v +

∑

k ∈ K f ine
φv k z v k ≤ 2 λ and the maximum TCAM

pace consumption is at most 2 λ. �

Let εlow

= max
v ∈ V

(q v) and εup = max
v ∈ V

(q v) + | K f ine | , then εlow

and

up are the lower and upper bound of the optimal solution of RPP .

hen we have the following 2-approximation algorithm of RPP .

heorem 5. Algorithm 4 is a 2-approximation algorithm of RPP.

lgorithm 4 Two-approximation algorithm.

1: Set εlow

= max
v ∈ V

(q v) and εup = max
v ∈ V

(q v) + | K f ine |
2: while εlow

� = εup do

3: Set ε =
 1 2 (εlow

+ εup) �
4: Set λ = ε, apply 2-relaxed decision procedure

5: if decision procedure outputs ’no’ then

6: set εlow

= εlow

+ 1

7: else

8: set εup = εup − 1

9: output the binary integer solution found by 2-relaxed decision

procedure

roof. In Algorithm 4 , it is easy to see that εlow

is always the lower

ound of the optimal solution of RPP . The solution generated by

he above algorithm will generate a output which is less or equal

o 2 × εlow

, which is less than two time of the optimal solution of

PP . �

It is easy to see that the above algorithm will run in polyno-

ial time. Since the difference between εup and εlow

is cut by half

fter each iteration. So the 2-relaxed decision procedure is called

t most O(log| K f ine |) times. Since the 2-relaxed decision procedure

uns in polynomial time by Theorem 4 , hence Algorithm 4 will run

n polynomial time.
. Simulations

.1. Network settings

We evaluated DSA on 4 different network topologies, one is a

AN model generated by GT-ITM [19] , which simulates WANs us-

ng Transit-Stub topologies. This network has 100 nodes and 127

ndirected links. The other network topologies includes the Abilene

11 nodes, 13 undirected links), Fat Tree (4 pods, 4 core switch, 52

odes and 64 undirected links) and Sprint (52 nodes, 168 undi-

ected links). The traffic distribution for Abilene and Sprint are

vailable in [20] . We use two models proposed in [20] : Lognormal

istribution (μ = 15 . 45 , δ = 0 . 885) , and Weibull distribution (a =
 . 87 × 10 5 , b = 0 . 69) to model the traffic distribution in the Sprint

etwork. And we use the Lognormal distribution (μ = 16 . 6 , δ =
 . 04) to model the traffic distribution in the Abilene Network. For

he GT-ITM and Fat Tree , we use the Bimodal distribution (gener-

ted by mixture of two Gaussian Distributions) proposed in [21] .

he Bimodal distribution is proposed based on the observation that

nly a small fraction of Source-Destination pairs has large flows.

ssume each switch has a capacity between 300 − 500 entries. We

se the method proposed in [22] to model the link capacity, which

laims that the link capacity distribution follows the Zipf’s Law , and

he links whose end nodes with higher degree tend to have larger

ink capacity. For the purpose of simulation, we set the link capac-

ty to 39.8 Gbps (the transmission rate of optical carrier OC 768) if

he degrees of both endpoints of that link are larger than 3, set the

ink capacity to 9953.28 Mbps (OC 192) if one endpoint has degree

arger than 3 and degree of the other end point is less or equal

, set the link capacity to 2.49 Gbps (OC 48) if the degree of both

ndpoints is less or equal than 3.

We randomly generate demand pairs that correspond to a

ource machine and destination machine in the network. Each ma-

hine has been assigned a random type B IP address and are con-

ected to a switch in the network. The bandwidth consumption

f the flows follows the distributions described above. Since TCAM

pace aware routing has not been investigated before, and there is

o existing routing algorithm that aims to reduce the routing table

ize, we compare DSA with two benchmark routing schemes: ECMP

nd Valiant Load Balancing (VLB) which are widely used to achieve

oad balancing on link resources. Our purpose is to demonstrate

hat DSA can substantially reduce of TCAM space without sacrific-

ng too much in terms of load balancing of link resources. ECMP is

 routing strategy which works by splitting the traffic equally over

he multiple paths with the same length (number of hops) [23] .

n VLB , the flows of the same demand pair are first sent to some

ntermediate nodes, then forwarded to the destination [24] .

After the paths are calculated by the two benchmark routing

chemes, the corresponding rules (s k , i, d k , j) are installed to direct

he flows. All the rules contain fully specified addresses s k and d k
o that they can not be reused by the other flows. We run each

lgorithm 100 times and take the average results. All the evalua-

ion is run on a machine with 8 GB of RAM and Quad-Core Intel i7

PU(3.2 GHz). For the evaluation, we set the weight of each switch

n Eq. (3) to 1, therefore the total cost generated by Eq. (1) equals

he total number of entries installed. We compare performance of

he algorithm using a metric called Traffic Saving Ratio. Assume

he total amount of TCAM space consumed by DSA is T p , and total

mount of TCAM space consumed by the benchmark algorithm is

 b , then Traffic Saving Ratio (TSP) is defined as:

 SP = (T b − T p) /T b (11)

.2. Evaluation of the TSP

First we evaluate the relation between the number of demand

airs and TSP . We do not limit the maximum routing group size.

36 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Table 2

Mean of TSP on all the network topologies.

Network Number of flow 60 70 80 90 100

Abilene Lognormal TSP 1 0.4264 0.6331 0.7176 0.7518 0.7851

TSP 2 0.4051 0.6318 0.7015 0.7427 0.7881

Network Number of flow 80 120 160 200 240

Sprint Weibull TSP 1 0.2570 0.3740 0.5252 0.5805 0.6659

TSP 2 0.2551 0.4553 0.5038 0.6519 0.7718

Lognormal TSP 1 0.2041 0.2869 0.5437 0.5809 0.6003

TSP 2 0.2473 0.3933 0.5154 0.6715 0.7258

Network Number of flow 200 300 400 500 600

GT-ITM Bimodal TSP 1 0.4253 0.4353 0.5766 0.6107 0.6611

TSP 2 0.4542 0.4604 0.5599 0.6034 0.7912

Network Number of flow 100 150 200 250 300

Fat tree Bimodal TSP 1 0.1981 0.2986 0.4334 0.6008 0.6745

TSP 2 0.2158 0.2974 0.4298 0.6177 0.7208

Table 3

90% confidence interval of TSP on all the network topologies.

Network Number of flow 60 70 80 90 100

Abilene Lognormal TSP 1 0.3988-0.4511 0.6003-0.6289 0.6901-0.7372 0.7314-0.77 0.7701-0.8013

TSP 2 0.3537-0.4451 0.5924-0.6601 0.6705-0.7347 0.7223-0.7664 0.7606-0.8123

Network Number of flow 80 120 160 200 240

Sprint Weibull TSP 1 0.2261-0.2810 0.3437-0.3999 0.5004-0.5414 0.5605-0.6071 0.6347-0.6911

TSP 2 0.2227-0.2796 0.4257-0.4829 0.4679-0.5339 0.6307-0.6733 0.7410-0.7997

Lognormal TSP 1 0.1818-0.2301 0.2598-0.3044 0.5179-0.5771 0.5588-0.6002 0.5888-0.6268

TSP 2 0.2186-0.2735 0.3655-0.4219 0.4884-0.5400 0.6550-0.6943 0.6998-0.7445

Network Number of flow 200 300 400 500 600

GT-ITM Bimodal TSP 1 0.3979-0.4515 0.4003-0.4668 0.5501-0.5995 0.5911-0.6386 0.6332-0.6904

TSP 2 0.4222-0.4824 0.4298-0.4911 0.5345-0.5885 0.5799-0.6303 0.7649-0.8219

Network Number of flow 100 150 200 250 300

Fat tree Bimodal TSP 1 0.1771-0.2175 0.2687-0.3279 0.4040-0.4655 0.5785-0.6233 0.6550-0.6991

TSP 2 0.1965-0.2379 0.2688-0.3240 0.4030-0.4561 0.5888-0.6462 0.6975-0.7478

Fig. 12. Link utilization (Abilene).

Fig. 13. Link utilization (Sprint).

Fig. 14. Link utilization (GT-ITM).
Table 2 shows the relations between the number of flows and

mean of TSP with different networks and different traffic distribu-

tions and Table 3 shows the 90% confidence intervals of TSP. TSP 1
is the TSP of the ECMP and TSP 2 is the TSP of the VLB . The DSA

can achieve 20% − 80% saving on the TCAM space with different

network topologies and traffic distributions. The saving also grows

with the number of flows. This is because as the number of flows

increases, more flows can be aggregated for saving TCAM space.

Moreover, if we neglect the first packet of each flow which is for-

warded to the controller, the TCAM space saving almost equals

to the saving in the number of control traffic between the con-

troller and the OpenFlow switches. This is because each entry in

the switches requires a control packet for installation.

Fig. 12–15 show the relations between the number of flows and

the mean of maximum link utilization of different algorithms over

different traffic distributions. All of the standard deviations of the

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 37

Fig. 15. Link utilization (Fat Tree).

Fig. 16. Change on link utilization.

Fig. 17. TSP on GT-ITM.

m

l

s

1

u

s

t

t

T

5

f

s

a

Table 4

Performance and running time comparison.

Performance Node Abilene Sprint Tree GT-ITM

TSP 0.5979 0.5435 0.4894 0.4001

Running time Network Abilene Sprint Tree GT-ITM

DSA 0.19 ms 0.29 ms 0.32 ms 0.37 ms

g

t

s

d

9

n

s

c

t

d

t

r

a

(

S

p

A

s

n

s

9

S

d

s

p

l

o

g

fi

r

a

o

a

1

i

n

n

e

c

t

t

T

n

i

o

e

p
aximum link utilizations are less than 0.08, When calculating the

ink utilization of DSA , the threshold on link utilization rate, β is

et to 0.9. The maximum link utilization rate of DSA is on average

0 − 17% higher than that of ECMP and VLB . Despite the higher link

tilization rate of DSA , considering the huge savings on the TCAM

pace, we believe this is a fair trade-off.

As mentioned before, we can tune the value of L to balance the

rade-off between TCAM space saving and maximum link utiliza-

ion, we evaluate the impact of the limit of aggregation L on the

SP and maximum link utilization rate on the GT-ITM network with

00 demand pairs. As shown in Figs. 16 and 17 , when L decreases

rom 95 to 5, the TSP decreases from 0.6107 to 0.04665, the rea-

on is that L affects the size of the routing groups, a small L causes

 smaller size of routing groups therefore the degree of flow ag-
regation decreases. At the same time, the maximum link utiliza-

ion rate also decreases slightly from 0.79 to 0.752. This is because

mall routing group leads to fine-grained routes which in turn re-

uces maximum link utilization.

.3. Evaluation of the DANA

We generate demand pairs that are attached to some random

odes in the network. Each demand pair has a random type B

ource and destination IP address, and all the demand pairs are

onnected by installing the rules generated by DSA. To emulate

he dynamic entering of new demand pairs, we generate 50 new

emand pairs and run the DANA to add the flows. We compare

he performance of DANA with shortest path algorithm (SPA) , which

outes traffic along shortest paths. All the rules installed for SPA

re fully specified addresses. TSP is defined in a similar manner as

11), with T b and T p means the total number of rules generated by

PA and DANA to direct the new flows.

Tables 4 and 5 show the means and 90% confidence intervals of

erformance as well as the running time of the two algorithms.

s the tables shows, DANA can achieve 40% − 60% saving on TCAM

pace. The running time of DANA increases moderately with the

etwork size. But overall running time of the algorithm is still rea-

onable.

.4. Evaluation of the two-approximation algorithm for RPP

We reuse the traffic flow routing generated by EPP and ERP in

ection 9.2 on the four different network topologies. We also ran-

omly pick some flows that need to be controlled in fine-grain

cale, and run the two approximation algorithms that give the rule

lacement suggestions. We then compare it with the optimal so-

ution generated by exhaustive search method. The total number

f flows is 80, and the result generated by two-approximation al-

orithm is normalized to the optimal solution. We pick 10 and 15

ne-grained controlled flows from the 80 flows, and the simulation

esults are summarized in Tables 6 and 7 .

As it is shown from Table 6 , the total cost generated by the two-

pproximation algorithm is on average 12% − 20% higher than the

ptimal solution, which demonstrates the efficiency of the two-

pproximation algorithm.

0. Testbed deployment

We evaluated the functionality and implementability of the DSA

n a real testbed. We built an overlay network that follows Abilene

etwork topology by using a software switch (OpenVswitch) run-

ing on virtual machines. The OpenVswitches communicate with

ach other by using the virtual extensible LAN. The centralized

ontroller (Ryu) can configure the entries in the switches to build

he routing paths. We built three source VMs and three destina-

ion VMs (three demand pairs), each VM is assigned an IP address.

he routing module on top of the Ryu controller takes the con-

ection demands as the input and sends the results of DSA to the

mplementing module which installs the relative OpenFlow rules

n the switches (Fig. 18). For comparison, we also used the short-

st path algorithm (Dijkstra’s Algorithm) to connect the demands

airs. For DSA, a total 14 entries are installed on the switches, and

38 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

Table 5

90% confidence interval of TSP.

Performance Node Abilene Sprint Tree GT-ITM

TSP 0.5808-0.6102 0.5288-0.5660 0.4606-0.50 0 0 0.3768-0.4242

Table 6

Performance of two-approximation algorithm.

Mean of the ratio (10 fine grained flows) Abilene Sprint Tree GT-ITM

1.1771 1.1808 1.1345 1.1447

Mean of the ratio (15 fine grained flows) Abilene Sprint Tree GT-ITM

1.1680 1.2018 1.1677 1.1494

Table 7

Performance of two-approximation algorithm.

90% CI of the ratio(10 fine grained flows) Abilene Sprint Tree GT-ITM

1.1212-1.2016 1.1118-1.259 1.1004-1.2280 1.0642-1.2288

90% CI of the ratio (15 fine grained flows) Abilene Sprint Tree GT-ITM

1.1163-1.2089 1.1077-1.2930 1.0969-1.2335 1.0612-1.2307

Fig. 18. Real testbed experiment.

[

[

[

the total time taken for building the path is 0.028 s. For Dijkstra’s

Algorithm, total 30 entries are installed on the switches with the

total time 0.061 s. Hence, DSA clearly saves TCAM space and path

set up time.

11. Conclusions

In this paper, we proposed an efficient routing scheme to

achieve savings on TCAM space in SDN without causing network

congestions. We provide algorithms for both the static and dy-

namic scenarios. Moreover, for the purpose of statistics gathering

on the flow entries, we also propose a rule placement algorithm to

achieve load balancing on TCAM space. Experiments show that the

proposed routing scheme can achieve 20% − 80% saving on TCAM

space with 10% − 17% increase in maximum link utilization. Finally,

a preliminary version of the DSA has been implemented on the

real testbed environment.

References

[1] N. Kang , Z. Liu , J. Rexford , D. Walker , Optimizing the ‘one big switch’ abstrac-

tion in software-defined networks, in: Proceedings of ACM Conext, 2013 .
[2] C. Hong , S. Kandula , R. Mahajan , et al. , Achieving high utilization with soft-

ware-driven WAN, in: Proceedings of ACM Sigcomm, 2013 .
[3] M. Zhang , et al. , GreenTE: power-aware traffic engineering, in: Proceedings of

IEEE ICNP, 2013 .
[4] E. Oki , et al. , Fine two-phase routing with traffic matrix, in: Proceedings of

IEEE ICCCN, 2009 .

[5] X. Liu , R. Meiners , E. Torng , TCAM razor: a systematic approach towards mini-
mizing packet classifiers in TCAMs, IEEE ACM Trans. Netw. 18 (2) (APRIL 2010) .

[6] A.R. Curtis , J.C. Mogul , J. Tourrilhes , et al. , Devoflow: Scaling flow management
for high-performance networks, in: the Proceedings of ACM Sigcomm, 2011 .

[7] P. Lekkas , Network Processors : Architectures, Protocols and Platforms, McGraw
Hill Professional, 2003 . Jul 28

[8] P.T. Congdon , et al. , Simultaneously reducing latency and power consumption
in openflow switches, IEEE ACM Trans. Netw. 22.3 (2014) 1007–1020 .

[9] Y. Kanizo , D. Hay , I. Keslassy , Palette: Distributing tables in software-defined

networks, in: Proceedings of IEEE Infocom, 2013 .
[10] M. Alizadeh , A. Greenberg , et al. , DCTCP:efficient packet transport for the com-

moditized data center, in: Proceedings of ACM Sigcomm, 2010 .
[11] Openflow Spec, www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf .
[12] M. Moshref , M. Yu , A. Sharma , R. Govindan , Scalable rule management for data

centers, in: Proceedings of USENIX NSDI, 2013 .

[13] M. Yu , J. Rexford , M.J. Freedman , J. Wang , Scalable flow-based networking with
DIFANE, in: Proceedings of Sigcomm, 2010 .

[14] S. Yeganeh , Y. Ganjali , Kandoo: a framework for efficient and scalable offload-
ing of control applications, in: Proceedings of ACM HotSDN, 2012 .

[15] A.S. Tam , et al. , Use of Devolved Controllers in Data Center Networks, Infocom
Computer Communications Workshops, 2011 .

[16] K. Phemius , M. Bouet , J. Leguay , DISCO: Distributed multi-domain SDN con-

trollers, in: Proceedings of IEEE NOMS, 2014 .
[17] D.P. Williamson, D.B. Shmoys, The design of approximation algorithms, Cam-

bridge university press, 2011 . http://www.designofapproxalgs.com/ .
[18] H. Zhu , H. Fan , X. Luo , Y. Jin , Intelligent timeout master: Dynamic timeout for

SDN-based data centers, in: Proceedings of IEEE IM, 2015 .
[19] GT-ITM website: www.cc.gatech.edu/projects/gtitm/ .

[20] A. Nucci , et al. , The problem of synthetically generating IP traffic matrices: ini-

tial recommendations, ACM Sigcomm CCR, July 2005 .
[21] A. Medina , N. Taft , et al. , Traffic matrix estimation: existing techniques and

new directions, in: Proceedings of Sigcomm, 2002 .
22] T. Hirayama , S. Arakawa , S. Hosoki , M. Murata , Models of link capacity distri-

bution in ISP’s router-level topologies, JCNC, 2011 .
23] C. Hopps, Analysis of an equal-cost multi-path algorithm, (20 0 0).

[24] R. Zhang-Shen , Valiant Load-Balancing: Building Networks That Can Support

All Traffic Matrices, Springer, 2010 .
25] R. Cohen , L. Lewin-Eytan , J. Naor , D. Raz , On the effect of forwarding table size

on SDN network utilization, in: Proceedings of Infocom, 2014 .
[26] N. Katta , et al. , Infinite cacheflow in software-defined networks, in: Proceed-

ings of HotSDN, 2014 .
[27] L.J. Karel , D. Shmoys , E. Tardos , Approximation algorithms for scheduling unre-

lated parallel machines, in: Proceedings of 28th Annual Symposium on Foun-

dations of Computer Science, 1987 .

http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0010
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0015
http://www.designofapproxalgs.com/
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0016
http://www.cc.gatech.edu/projects/gtitm/
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30264-5/sbref0023

S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40 39

Electrical engineering from University of Toronto, Canada, in 2013 and 2016 respectively.

niversity. His research interest includes traffic engineering, routing algorithms, software

University of Waterloo (Canada), Queen’s University (Canada) and University of Ottawa

low in the Department of Electrical and Computer Engineering at University of Toronto
for Cloud data centers and applications. He is also interested in related research areas

search Associate in the ECE Department at the University of Toronto. He is leading the

& Smart transportation), which is an ORF Funded university-industry-government part-
ation application platform for research and business purposes. He received his M.A.Sc.

he University of Tehran (1994) and University of Toronto (2009), respectively. Between
for about 10 years, where he gained an abundance of experience in different aspects of

rt systems and power grids. His major research interests are in applications of network
ing, autonomic network control and management, network optimization, and smart grid.

rsity of Toronto. He received his Ph.D. (2012) and B.Sc. (2006) degree in computer science
et traffic measurement and analysis.

ronto Department of Electrical & Computer Engineering. After graduating, he worked at
 2011, he returned to the University of Toronto to lead the effort s towards the creation

tions on Virtual Infrastructure (SAVI) research project. Since then, he has been the Chief
interest is in the field of Software Defined Infrastructure (SDI) including Software Defined

 computer science from the University Pierre & Marie Curie, Paris, in 1990 and 1994,

nce and the Associate Dean Research of the Faculty of Mathematics at the University of

 and service management in networks and distributed systems. He is the founding editor
anagement (20072010) and on the editorial boards of other journals. He received several

s Research Excellence Award, the IEEE ComSoc Hal Sobol, Fred W. Ellersick, Joe LociCero,
nada McNaughton Gold Medal. He is a fellow of the IEEE, the Engineering Institute of
Sai Qian Zhang received his B.A.Sc and M.A.Sc degree in

He is currently pursuing his doctoral degree at Harvard u
defined networking, network function virtualization, etc.

Qi Zhang received his Ph. D, M. Sc and B. A. Sc. from

(Canada), respectively. He is currently a post-doctoral fel
(Canada). His research focuses on resource management

including network and enterprise service management.

Ali Tizghadam (ali.tizghadam@utoronto.ca) is a Senior Re

development CVST research project (Connected Vehicles
nership in Canada to build a flexible and open transport

and Ph.D. in electrical and computer engineering from t
his M.A.Sc. and Ph.D. studies he worked in the industry

networking from telecommunication networks to transpo
science in transportation, communications, green network

Byungchul Park is a post-doctoral researcher at the Unive
from POSTECH, Korea. His research interests include Intern

Hadi Bannazadeh holds a PhD from the University of To
Cisco Systems as a Senior Network Software Engineer. In

of Canadian national testbed as part of the Smart Applica
Testbed Architect for the SAVI project. Hadi main research

Networking (SDN) and Cloud Computing.

Raouf Boutaba received the M.Sc. and Ph.D. degrees in

respectively. He is currently a professor of computer scie

Waterloo (Canada). His research interests include resource
in chief of the IEEE Transactions on Network and Service M

best paper awards and recognitions including the Premier
Dan Stokesbury, Salah Aidarous Awards, and the IEEE Ca

Canada, and the Canadian Academy of Engineering.

40 S.Q. Zhang et al. / Computer Networks 125 (2017) 26–40

r in Electrical and Computer Engineering at the University of Toronto. He is a Fellow

 “for contributions to multiplexing and switching of integrated services traffic”. He is
 the American Association for the Advancement of Science. He has received the 2006

nd the 2010 IEEE Canada A. G. L. McNaughton Gold Medal for his contributions to the

 of the leading textbooks: Probability and Random Processes for Electrical Engineering,
d Key Architecture. He is currently Scientific Director of the NSERC Strategic Network for
Professor Alberto Leon-Garcia is Distinguished Professo

of the Institute of Electronics and Electrical Engineering
also a Fellow of the Engineering Institute of Canada and

Thomas Eadie Medal from the Royal Society of Canada a

area of communications. Professor Leon-Garcia is author
and Communication Networks: Fundamental Concepts an

Smart Applications on Virtual Infrastructures.

	TCAM space-efficient routing in a software defined network
	1 Introduction
	2 Background and related work
	3 A motivating example
	4 Problem overview
	5 Efficient routing problem
	6 Efficient partitioning problem
	6.1 Rule priority between routing groups

	7 Dynamic scheduling of demand pairs
	7.1 Dynamic demand pairs entering
	7.2 Dynamic demand pairs leaving

	8 Rule placement for statistics gathering
	8.1 Problem formulation
	8.2 Approximation algorithm of RPP

	9 Simulations
	9.1 Network settings
	9.2 Evaluation of the TSP
	9.3 Evaluation of the DANA
	9.4 Evaluation of the two-approximation algorithm for RPP

	10 Testbed deployment
	11 Conclusions
	 References

