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ABSTRACT

Software Defined Networking (SDN) enables centralized control over distributed network resources. In
SDN, a central controller can achieve fine-grained control over individual flows by installing appropriate
forwarding rules in the network. This allows the network to realize a wide variety of functionalities and
objectives. However, despite its flexibility and versatility, this architecture comes at the expense of (1)
laying a huge burden on the limited Ternary Content Addressable Memory (TCAM) space, and (2) limited
scalability due to the large number of forwarding rules that the controller must install in the network. To
address these limitations, we introduce a switch memory space-efficient routing scheme that reduces the
number of entries in the switches, and at the same time guarantees the load balancing on link resources
utilization. We consider the static and dynamic versions of the problem, analyzing their complexities and
propose respective solution algorithms. Moreover, we also consider the case of fine-grained control for
the flows, and develop a 2-approximation algorithm to achieve load balancing on the TCAM space usage.
Experiments show our algorithms can reduce TCAM usage and network control traffic by 20% — 80% in

comparison with the benchmark algorithms on different network topologies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Software Defined Networking (SDN) is an architecture that en-
ables logically centralized control over distributed network re-
sources. In SDN, a centralized controller makes forwarding deci-
sions on behalf of the network forwarding elements (e.g. switches
and routers) using a set of policies. Based on given high level de-
sign requirements, the source and the destination node of each
flow is dictated by the Endpoint Policy and the flow path is decided
by the Routing Policy [1]. For example, the shortest-path routing
policy asks the network to forward packets along the shortest path
between two nodes. Other routing policies that improve resource
utilization, quality of service and energy usage have also been pro-
posed in the literature [2-4]. These features make SDN an attrac-
tive approach for realizing a wide variety of networking features
and functionalities.

Implementing routing policies in SDN may require fine-grained
control over flows, which can place a huge burden on switch mem-
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ory space. Of particular interest is the Ternary Content Addressable
Memory (TCAM), a special type of high speed memory that can
search the entire memory space within a single clock cycle. How-
ever, TCAM has a well known problem on limited capacity and
large power consumption [5]. The largest average memory space
on TCAM chip is far less than that of Binary Content Addressable
Memory (CAM). For example, HP ProCurve 5406z TCAM switch
hardware can support 1500 OpenFlow rules, while each host re-
quires dozens of OpenFlow rules on average, which means 5406zl
can support only 150 users [6]. Moreover, TCAM is also energy-
hungry, it consumes 30 times as much energy as SRAM with the
equal number of entries [7]. As shown in Fig.1, the energy con-
sumption of the TCAM can contribute to up to 25% of total power
required for a high-end switch ASIC [8]. Given that the amount of
power consumption is proportional to the number of entries used
in TCAM, a wealth of research literature is focused on reducing
TCAM usage [1,5,9].

Scalability is another issue resulting from fine-grained central-
ized control. For every subtle change on the network topology
or routing policy, the controller must deliver a control message
to each network element that implements the policy. As the av-
erage flow size in both wide-area and data center networks is
small (around 20 packets per flow [7]) and the inter-arrival rate
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Fig. 1. Power breakdown of high-end switches ASIC.

of the flows in the high-performance network is extremely high
(less than 30 ms [7]), a huge workload is imposed on the controller
as the network size grows. Since each switch typically has limited
bandwidth on the path to the controller, and incurs moderate rule
insertion time, the high workload received by the controller often
causes large rule installation overhead and leads to low flow set up
rate. In modern data center networks, 1ms additional latency for
the delay-sensitive flow can be intolerable [10]. Therefore, the lim-
ited flow set up rate can dramatically hurt the overall performance
and the quality of service. It is important to reduce the interaction
between control plane and data plane in order to achieve better
network scalability and performance.

To address the issues of switch memory space limitation and
scalability, recent work has proposed to control flows collectively
at an aggregated level. This allows the use of prefix aggregation
and wild card rules to minimize the number of stored entries
[1,9]. These works have focused on compressing the entries of each
individual switch, while preserving the routing policy (i.e. with-
out changing the forwarding paths) [6]. However, we find that in
large networks, multiple candidate paths are usually available for
routing each individual flow while still satisfying performance and
business constraints. Therefore, if we can additionally control the
flow forwarding paths, we can achieve substantial gains in terms
of TCAM space savings and controller scalability. To this end, we
propose a new routing scheme that minimizes TCAM space con-
sumption in SDN networks without causing network congestion.
The proposed routing scheme takes advantages of the large num-
ber of available forwarding paths and routes traffic in a way that
improves network scalability and reliability. The main objectives of
this new routing scheme are:

+ Minimize the switch memory space utilization for a given the
end point connection request.

« Reduce control traffic by decreasing the interaction between the
controller and network.

To this end, we show that by appropriately using the subnet
masks on the address field, we can achieve significant saves in
the TCAM space while guaranteeing the load balancing on link re-
sources.

In this paper, we first introduce the TCAM space minimiza-
tion problem and analyze its complexity. We then propose heuris-
tic algorithms for both static and dynamic versions of the prob-
lem. Through experiments, we show that our algorithms reduce
the TCAM space usage and network control traffic by 20% — 80%
in comparison with the benchmark algorithms.

The rest of the paper is organized as follows. Section 2 reviews
the related works. Section 3 motivates our problem through a de-
scriptive example. Section4 presents the problem statement, and
Section 5 formulates a corresponding a traffic engineering problem,
and show the problem is NP-hard and inapproximable in general.
We then propose a heuristic to solve the traffic engineering prob-

lem. Section 6 introduces partitioning of all the demand pairs into
groups to achieve minimum TCAM space utilization. Section 7 pro-
vides an online algorithm to deal with the dynamic entry and
departure of the demand pairs. Section8 presents and solves the
problem of the efficiently placement of the rules to realize fine-
grained control. Section 9 presents performance results from simu-
lations of the proposed algorithms. Section 10 evaluates the routing
scheme on real testbed and discusses potential implementation is-
sues. Section 11 presents conclusions.

2. Background and related work

OpenFlow is a popular and efficient means for realizing a cen-
tralized control framework [11]. It allows the controller to choose
the paths of packets across a set of switches. An OpenFlow table
entry in a switch can be represented by a triplet (M, P, A) [11],
where M is the matching field which is used to match the packet,
P is the matching precedence of the entry and A is the action field
which contains operations on the matched packet. The matching
field usually includes source IP address, source MAC address, des-
tination IP address, destination MAC address, input port number.
The action field includes common operations such as forwarding
the packet to a specific output port, modifying the packet header,
etc. Upon receiving a packet, the switch searches for the rule with
the highest priority that matches the packet, then executes the cor-
responding actions defined by that rule. OpenFlow also supports
wildcard over the input port region and subnet mask in the IP
and MAC address to represent a group of source and destination
IP/MAC addresses [11], for instance, 01** in the address field stands
for 0100, 0101, 0110 and 0111.

To deal with the TCAM space issue, previous works have fo-
cused on compressing the entries of a single switch, guaranteeing
that the overall forwarding logic of that switch keeps the same,
while preserving the routing policy [5]. One Big Switch [1] and
Palette [9] decompose network access policies into small parts and
then distribute these to use TCAM space. Moshref etal. [12] de-
signs routing algorithms to distribute access policies across inter-
mediate switches with minimum switch memory consumption in
a datacenter network. Rami etal. [25] study the effect of flow ta-
ble size on the maximum number of flows supported. CacheFlow
[26] develops an algorithm for placing rules in a TCAM with a lim-
ited space.

Scalability is a key issue in SDN. DevoFlow [6] presents a scal-
able SDN framework by using wildcard entries to decrease the con-
trol plane visibility on the microflows. However, it does not offer
sufficient quantitative analysis about how to use the wildcard to
achieve optimal performance. DIFANE and Kandoo [13,14] propose
efficient and scalable SDN frameworks which split the workload of
the central controller to distributed authorized components. How-
ever, the problem of global visibility has not been tackled. The
authors of [15,16] solve the scalability issue by using multiple in-
dependent controllers to consistently manage the whole network,
while minimizing the amount of communication between them,
but they do not address how these controllers are coordinated
and communicate with each other, and they ignore the overhead
brought by distributing the control protocol.

3. A motivating example

We provide a motivating example to demonstrate the benefit
of the proposed switch memory space-efficient routing scheme. A
network topology and port numbers between nodes are shown in
Fig.2(a) and the end point policy is shown in Fig.3(a). Two source
hosts with the IP address 000 and 001 send traffic to two destina-
tion hosts 100 and 101 respectively. We call a pair of source and
destination address a demand pair, and so there are four demand
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Fig. 2. Motivation example.
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Fig. 3. Example of flow tables.

pairs in this example. The bandwidth consumption of each demand
pair equals 1 and the capacity of each link is 10. Traditional traffic
engineering (e.g. ECMP) spreads the flows evenly in the network to
balance network link utilization, which gives one feasible solution
in Fig. 2(b).

The OpenFlow table of each switch is shown in the Fig.3(b). A
total of 11 entries are installed. To set up these new flows, 11 ad-
ditional control packets are sent from the controller, since at least
one initial packet in each new flow is processed by the controller.
In total 11 + 2 x 4 = 19 packets are transmitted between the con-
troller and the switches. In contrast, the proposed routing scheme
produces the solution in Fig.2(c) and the forwarding tables shown
in Fig.3(c). Instead of routing the traffic of each demand pair re-
spectively, this routing scheme aggregates the flows and uses sub-
net masks to reduce the number of entries in each table. The max-
imum bandwidth consumption of the solution given by the new
scheme is also 2, and 8 additional entries are installed on nodes
A — E, which requires 8 control packets sent from controller. A to-
tal 8 +2 x 4 =16 packets are transmitted between controller and
switches. This reduces TCAM space and control traffic by 27.2% and
15.8% respectively. From the above example, we draw the following
conclusions:

1. If fine-grained control is not required on specific flows, TCAM
space consumption and control traffic can be reduced by using
subnet masks on the source and destination addresses to ag-
gregate flow entries.

2. As the network size increases, the number of control packets to
set up a flow is approximately equal to the number of entries
installed in the TCAM (ignoring the initial packet of the flow
that is sent to the controller). So minimizing TCAM usage can
also indirectly save control traffic indirectly.

3. In addition to finding a path which minimizes TCAM consump-
tion, the constraint on link capacity must also be met. For ex-
ample, the two solutions above have the same maximum link
utilization.

4. Problem overview

The design objective of the proposed switch memory space-
efficient routing scheme is to minimize the total number of Open-
Flow entries installed in all the switches, which is equivalent to
minimizing the average number of entries installed in each switch.
To keep the problem generic, we assign a weight to each switch
in the network, where this weight is the cost of installing an ad-
ditional rule in the switch. For the choice of w(v), in the simplest
case, we can set w(v) = 1 to achieve the goal of minimizing total
number of forwarding entries in the switches. However, adjusting
the value of w(v) allows us to model other objectives. For instance,
since power consumption of a switch is linearly proportional to
the TCAM space usage [5], by setting w(v) to the average power
consumption per rule for switch v, we can model the problem of
minimizing total energy consumption in the network. The objec-
tive then would be to minimize the total weighted cost, given a
set of demand pairs and constraints on link resource utilizations.
We call this the TCAM Space Minimization Problem (TSMP).

TSMP is a rather complex problem to analyze and solve directly.
To simplify our analysis, we divide TSMP into two sub-problems:
Efficient Partitioning Problem (EPP) and Efficient Routing Problem
(ERP). The EPP focuses on partitioning all the demand pairs into
groups. We call these groups the routing groups. The source ad-
dresses and destination addresses in the same routing group have
common prefixes. For example, the four demand pairs [000, 100],
[000, 101], [001, 100], [001, 101] in the Fig.3(a) form a routing
group with prefix 0** and 1**, where we use [s;, d;] to represent
the demand pair.

We can use the addresses with subnet mask s, = 0** and dy, =
1** to represent all the source addresses and destination addresses
in the routing group u. When partitioning is complete, for each
routing group there will be a corresponding ERP, and we route all
demand pairs in that routing group to minimize total TCAM space
usage.
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Table 1
Definitions of parameters.

Name Description Name Description

G A network topology G = (V,E) Vv Set of nodes in G

E Set of links in G S Set of addresses of source hosts

D Set of addresses of destination hosts U denote the set of routing groups

K Set of demand pairs Ky Set of demand pairs in the routing group u € U

m Number of bits in the source address and destination address size(u) The number of demand pairs in routing group u

Sk the source address of demand pair k dy the destination address of demand pair k

Su The source address of routing group u with the subnet mask dy The destination addr. of routing group u with the subnet mask

a(v) Number of OpenFlow rules installed on switch v w(v) Cost of inserting a single OpenFlow rule in switch v

Ty The TCAM space capacity of switch v (v) Set of port numbers associated with switch v

p(v) Set of port number pairs of switch v B Threshold of link utilization rate

By The bandwidth consumption of k € K Ce Ce the capacity of each link e € E

Xijk A binary variable, x;j = 1 if an 4-tuple (sy, i, dy, j) is installed Vi A binary variable, y;; =1 if a 4-tuple (sy, i, dy, j) is installed to
to direct traffic of demand pair k from port i to port j, direct the flow of s, € S from port i to port j and y;; =0
Xijk = 0 otherwise otherwise

Lok A binary variable, [, = 1 denotes edge e < E is used to direct Kfne The set of demand pairs required to gather statistics
the flow of demand pair k

L Maximum number of demand pairs in each routing group Zyk A binary variable, z,, = 1 if the rule is installed on switch v to

gather the statistics for specific flow of k € Ky
A The TCAM space utilization rate qv The initial number of rules installed on switch v before the
rules for collecting specific flow statistics is added
H(k) The path of the demand pair k € Kgpe

Based on the description of ERP and EPP above, we can formu-
late TSMP: let U denote the set of routing group, K denote the set
of routing pairs and Ky(u € U) denote the set of demand pairs in
u (Table1 provides a quick glossary of definitions). Furthermore,
define TCAMcost(K,) to be the minimum cost returned by ERP to
route the demand pairs in K. TSMP can be formulated as:

minimize » ~ TCAMcost (K,,) (1)
u
uel
st. N Ke=K )
uel

The main challenge here is that the EPP and ERP are not inde-
pendent. The routing groups given by the solution of the EPP will
determine the input of ERP, which determines the total amount of
switch memory space consumed.

In the next two sections we first discuss our algorithm for ERP,
and then the solution for EPP, which relies on the solution algo-
rithm for ERP to make partitioning decisions.

5. Efficient routing problem

The goal of ERP is to connect each demand pair for a given
routing group while consuming minimum weighted sum of switch
memory space and satisfying the load balancing on links. Formally,
we model the network as a graph G = (V,E), where each node
veV represents an OpenFlow switch and each switch v is assigned
a cost w(v) per rule inserted. Without loss of generality, we as-
sume each flow entry in the flow table can be represented by a
4-tuple (s, i, d, j), where s, i, d constitute the matching field: s, d
represent the source and destination address information, such as
source/destination IP/MAC address, i is the input port number of
the switch where the packet comes in. j is the output port number
of the switch that the packet is directed to, and which constitutes
the action field of the OpenFlow entry. We neglect rule priority for
now and consider it later.

Let s, and d) denote the source and destination addresses of de-
mand pair k. We use a 4-tuple (sy, i, dy, j) to represent the Open-
Flow rule installed for the routing group u ¢ U, where s, and d,,
are the source and destination addresses with the subnet masks
respectively.

Let 7(v) be the set of port numbers of switch v. We make the
port number equal to the label of the links that the port connects
to (Fig.4). Then we denote p(v) = {(x.y) :xew(v),y e T (v)} as

N
N,

-~
ﬂ
[
=
Ww“

3

v L
5 s 5
Fig. 4. Labelling port example.

the set of port pairs of switch v. For example 7 (A) in Fig.4 is {1,
2,4} and p(A) ={(1,2), (2, 1), (1, 4), (4, 1), (2, 4), (4, 2), (1, 1), (2,
2), (4, 4)}. Let y; € {0, 1} represent whether a 4-tuple is installed
to direct the flow of routing group u from input port i to output
port j. Let x; € {0, 1} denote whether a 4-tuple entry is installed
to direct traffic of a demand pair k € K, from input port i to out-
put port j. Let a(v) denote the total number of rules installed on
switch v. Our goal is to minimize the total weighted sum of rules
installed in the switches:

TR 2, e ®
where a(v) represents the number of 4-tuples (sy, i, dy, j) installed
in v. To compute a(v), note that for the same switch v and same
routing groups, three conditions may occur:

» No 4-tuple (sy, i, dy, j) needs to be installed on v. That is,
Yjerw) M Cicr ) Yij) =0 and therefore a(v) =0, where u is
the step function, w(x) =0if x <0 and pu(x) =1if x > 0.

All the flows installed on v are forwarded to one output port,

e Y jer ) M (Cicr ) Yij) = 1. One entry (sy, *, dy, j) is enough

to direct the flows of K, with s; and dy in the address field and

wildcard in the input port field, so a(v) = 1.

« All the flows installed on v are forwarded to more than one
output port. That is, X u(Zicrwyij)> 1 therefore, the
source and destination fields must be fully specified to differ-
entiate each flow and so that the flows can be directed to cor-
responding output ports. Hence the total number of entries in-
stalled is 3 i (1) 2 jer (v) 2okeky Xijk: Which is the number of de-
mand pairs whose flows traverse through v.
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Switch | Src | Dst | Inport Action
sl 00 10 1 output:4
00 11 | output:3
01 10 2 output:5
01 11 2 output:6

Fig. 5. Flow Table of s1.

The conditions can be illustrated by the following example: As-
sume a set of rules {(00, 1, 10, 4), (01, 2, 10, 5), (00, 1, 11, 3), (01, 2,
11, 6)} is installed on s1. The flow table of s1 is shown in Fig.5. As
the table shows, the source and destination address must be fully
specified so that each flow can be identified by the intermediate
switch to direct to its corresponding output port.

By combining the 3 cases, a(v) can be defined as follows:

0 if > wu(CX yy)=0
jemr(v)  iem(v)
_ 1 if > uCY yy)=1
aw) = jerty e "

XX Yoxge it Y u(C Y yi)>1
iem (v) jem (v) keKy jem(v) iem (v)
We can ensure that the number of rules installed in each switch
does not exceed its TCAM space capacity: let r, be the capacity of
switch v, we then require:

aWw) <r, YveV (4)

Next, we relate x;, to y;;. Eq. (5) ensures that 4-tuple rule (s, i, dy,
j) is installed if any flow of demand pair k is sent from input port
i to output port j, and so:

Z Xijk <Yij Y, j) e p(v),veV (5)

k:keKy,

Next we build the path between each source host to the destina-
tion host. Let I, € {0, 1} denote whether edge e € E is used to di-
rect the flow of demand pair k. Define Q, = {Q, SV : s, € Q. dy ¢
Qi) (Yk € K) and define 7(Q,) the set of edges in the cut defined
by Qy, that is, the set of edges in G which have ingress node in the
set Q. Then we have:

Z lgy>1 Vkek, (6)
eeem (Qy)
By max-flow/min-cut theorem, Eq. (6) ensures there exists at least
one path between s, and d; [17]. Next the following equations

make sure OpenFlow entries are installed to direct the flow to each
used link:

k<Y Y Xa<1 VeecEkek, (7)

veV i:(ie)ep(v)

k<> > Xjy=1 VeeE keky (8)
veV j:(e,j)ep(v)
> xx<1 VkeKyveV 9)

(i.))ep(v)

Eqgs. (7)-(9) ensure that if link e is used to direct the flow for k,
then there exists exactly one flow entry in the ingress switch of e
to direct the flow of k to e and there exists one flow entry in the
egress switch of e to accept the flow of k from link e. Finally, we
must consider the constraint on maximum bandwidth utilization
rate on all links. Define B;, as the bandwidth consumption for the
demand pair k, C. the capacity of each link e € E, and let 8 be the
limit on link utilization rate. we have:

Z Bl < BCe ecE (10)
k:keK

The goal of ERP is to minimize objective function (3), subject to
Egs. (4)-(10).

Next we consider the complexity of ERP. Theorem 1 shows the
NP-completeness and inapproximability of the ERP which implies
the NP-completeness and inapproximability of TSMP. Theorem 2
shows that even without the load balancing guarantee (10), or
some other performance guarantee than (10), the ERP is still NP-
hard and (1 —€) In|V| inapproximable for any € > 0.

Theorem 1. ERP is NP-complete and inapproximable.

Proof. The proof is based on reduction from the 3-partition prob-
lem3. Consider a part of a hierarchical tree topology in a datacen-
ter in Fig.6(a). Four source hosts inject packets to A, B, C, D, and
the bandwidth consumption B of the traffic injected on A, B, C, D
are by, by, bs, by respectively. The maximum usage on bandwidth
BCe of link (E, H), (G, H) and (F, H) equal 1(bj + by + b3 +by). To
satisfy (10), the flows from the four source nodes must be parti-
tioned into three subsets with the same total amount of bandwidth
%(bl + by + by + by). Therefore by knowing whether the problem
is feasible or not, we know whether the set of numbers {b;, by,
bs, by} can be partitioned into three subsets with the equal sum of
elements. Since the decision version of 3-partition problem is NP-
complete, then any polynomial-time approximation algorithm for
this problem would solve the 3-partition problem in polynomial
time, which is not possible unless P = NP. O

Following the same arguments, we can also show that TSMP is
also NP-complete and inapproximable.

Theorem 2. Even without the link capacity constraints (i.e., Eq. (10)),
ERP defined by (3) — (9) is NP-hard, and there is no (1 —¢€)In|V|-
approximation algorithm for any € > 0, where |V| is the number of
nodes in G.

Proof. The proof is based on a reduction from the set cover prob-
lem*. Consider a multi-root hierarchical tree topology in Fig.6(b),
where each node on layer 3 does not fully connect to every node
on layer 2 due to link failure. 4 source hosts form a routing group,
and each connects with the switches A, B, C, D and sends traffic
to the core switch H. Assume r, is large and the weight of all
the switches on layer 3 and layer 1 is small, then the objective
functions (3) is equivalent to minimizing the number of entries in-
serted on layer 2 switches.

Since each additional switch used in layer 2 to direct the
flow from A — D corresponds to an additional flow entry inserted
on that switch, then minimizing number of entries on layer 2
switches is equivalent to minimizing the number of switches used
on layer 2. Define the universal set U = {A,B,C, D} to consist of
all the layer 3 switches, and assign a subset of U to each switch
on layer 2. The subset for each switch on layer 2 consists of the
switches on layer 3 that the switch connects to. For example, the
subset for E = {A, C} and the subset for F = {B, D}. In order to make
sure there is a path from A — D to destination H, we need to ensure
each switch on layer 3 connects to at least one switch on layer 2.
Therefore, minimizing the number of additional flows inserted on
layer 2 switches is equivalent to minimizing the number of layer 2
switches used to direct the flow, which is equivalent to minimiz-
ing the number of subsets used to cover the universal set U, which
in turn is the definition of set cover problem. Since the set cover
problem is NP-hard and cannot be approximated with in a factor

3 The partition problem is the task of deciding whether a set of positive integers
can be partitioned into three subsets X, Y and Z such that the sums of the numbers
in X, Y, Z are equal.

4 Given a set of elements {1,2,...m}, and a set A of n sets whose union equals the
element set, the set cover problem is to find the smallest subset of A whose union
contains every single element.



S.Q. Zhang et al./Computer Networks 125 (2017) 26-40 31

Source Hosts

layer3

layer2

layerl

Fig. 6. Proof of inapproximability.

of (1 -€)Inn for any € > 0 (where n is the size of the set), the
ERP is also NP-hard and (1 —€)In|V| inapproximable for any € >
0. O

Since ERP is both NP-complete and inapproximable, we pro-
pose a simple and efficient heuristic to solve ERP. Without loss of
generality, given an undirected topology G = (V,E) the graph can
be made directed by replacing each undirected link e by two di-
rected links e’ with opposite directions, where we mark both di-
rected links by e’ evolved from e. We define a new directed graph
G = (V',E"), and in(e’)(e’ € E') as the ingress switch (head) of e’
and out(e’)(e’ € E’) as the egress switch (tail) of e’. An directed link
e’ is a link from its egress switch (tail) to its ingress switch (head).
Define C, (¢’ € E’) as the capacity of the link e/, which equals that
of Ce, where e is the undirected link from which e’ is created. We
relate the cost of inserting rules on switches to the weight of the
directed links of the switches. First, we provide the following defi-
nition:

Definition 1. Link €’ is ready for routing group u if: 1. out(e’) con-
tains a 4-tuple (sy, i, dy, €’), i € w(out(e")) or (sy, *, dy, €'). 2. in(e’)
contains a 4-tuple (sy, €/, dy, j), j € m(in(e’)) or (sy, *, dy, j).

In other words, a link is ready for u if there already exists an
entry on its ingress switch and egress switch to forward the flow
onto this link. Next we calculate the cost of activating the links e’
on switch out(e’). Let t(v)(veV) be the number of demand pairs
of u that v carries after the e’ is activated. Define 6% the number
of egress links of v used to direct the traffic of demand pairs of u
before ¢’ is added. Then the cost of activating this link e’, cost(e’)
is shown below:

w(out(e’)) if o =0 or 9 >1

out (e’ out (e’

cost(e') = {(t(out(e/)) —Dw(out(e)) if O, =1 ()

For each newly activated link e/, the corresponding OpenFlow rule
has to be installed to the out(e’) to direct the traffic. If initially
no other link of out(e’) is used, one OpenFlow entry (sy, *, dy,
n(e’)) will be installed on out(e’), so cost(e’) = w(out(e’)). How-
ever, if previously one egress link has been activated on switch
out(e’), then initially all the flows are forwarded to single output
port. To activate a new link with a new output port, we now re-
quire the all the flows carried by the switch to be fully specified so
that they can be directed to the corresponding output ports. Hence
cost(e') = (t(v) — 1)w(out (¢’)). Finally, if previously more than one
link has been activated on switch out(e’), for each new activated
egress link, a new corresponding entry (s, i, di, n(e’))(k € Ky) is
installed to direct the flow.

An example is given in Fig.7(a): Assume initially switch s1 car-
ries two demand pairs [00, 10] and [01, 11] of u that have the same
output port 4 (BY =1), therefore one entry is installed to route
the flows as shown in Fig.7(b). Now assume one more demand

pair [00, 10] is added and another egress link is used to direct this
flow (output port is 5), then number of entries in the routing ta-
ble increases by t(v) — 1 =3 — 1 = 2. Therefore the cost to activate
this new link is 2w(v), the new flow table is shown in Fig. 7(c).

Algorithm 1 Incremental routing algorithm (IRA).

: for each demand pair k € K;, do
for each link e’ € E' do
if €/ is ready for k then
Set the cost of link e’ to 0, cost(e’) =0
if ¢’ is not ready for k then
Update the link cost cost(e’) according to (x)
if BC, < By or a(out(e')) > Toye(ery then
Set the cost of link €’ to infinity, cost(e’) = oo
Find shortest path between s, and d,, if there are more than
one shortest paths, randomly select one. Install the 4-tuple
rules along the path. Update a(v).
10: Set ﬂCe/ = ,BCe/ — Bk

LR3I RLWNS

Algorithm 1 reuses the links which are ready by setting the
weights of these links to 0. The weights of other links are up-
dated according to (x). If the bandwidth consumption on e’ ex-
ceeds the maximum limit 8C,, the cost of €’ is set to be infinity,
cost(e’) = co. Finally the solution path can be calculated by finding
the shortest path between the source and the destination hosts.

We now analyze the complexity of IRA. The for loop between
line 3 to 8 in IRA determines the cost for each edge e € E. In line
9, the shortest path is calculated between each s, to d;. There-
fore, the overall complexity is O(|Ky|(|V| + |E|log|E|)), where |Ky|
is the size of Ky, |V| is number of nodes in the network and |E]| is
number of edges in the network.

6. Efficient partitioning problem

After solving ERP for each routing group, we are still left with
the problem of partitioning K demand pairs into routing groups.
In this case all demand pairs can be visualized using a 2™ x 2™
square, where m is the number of bits in the source and destina-
tion address. For example, Suppose there are 6 demand pairs [10,
00], [11, 00], [00, 01], [00, 11], [01, 11], [O1, 10], the correspond-
ing square is shown in Fig.8(a). The squares representing the 6 de-
mand pairs are coloured in blue. One of the possible partitions is
shown in Fig. 8(b), where the routing group G1 covers the demand
pairs [01, 10], [01, 11], [00, 11], G2 covers [10, 00], [11, 00] and G3
covers [00, 01].

The goal of EPP is to find the routing groups so each group can
be routed with the lowest cost as defined in Eq. (3). We represent
each routing group by a pair of source-destination addresses with
subnet mask. For example, G2 in Fig.8(b) can be represented by
[1*, 00].
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Fig. 9. Example of DSA.

A drawback of aggregating flow entries is that we lose visibil-
ity into the fine-grained flow characteristics, which makes elephant
flow detection and rerouting harder to achieve [6]. Consequently,
we impose a maximum routing group size L to limit the maxi-
mum flow aggregation level, which allows the trade-off between
flow visibility and TCAM space savings.

Our solution algorithm, called Detailed Search Algorithm (DSA),
begins with the entire square that covers all source-destination
pairs. In each iteration, it reduces the size of the routing rectangle
by replacing the wildcard bit in the address with a binary digit.
The output of each iteration is the routing group with the lowest av-
erage cost per demand pair in the group. Define the leading bit of
an address as the leftmost wildcard bit in the address. For exam-
ple, the leading bit of address 00** is the third bit. If there is no
wildcard bit in the address, set the leading bit to 0. Denote size(u)
the number of demand pairs in routing group g. Define s and [; as
the leading bits of the source and destination address. The pseudo
code of Detailed Search Algorithm is described in Algorithm 2.

The function IRAcost(u) returns the minimum cost generated by
IRA to route all the demand pairs in u. The DSA algorithm works
by searching the routing group u’ with size(u’) < L with the low-
est average cost in a greedy fashion, and building the paths for
that group with minimum cost. Subsequently, the demand pair is
removed from K. The algorithm terminates when all the demand
pairs in K have been routed.

Fig.9 provides an example to illustrate DSA. Let L equal 3. Ini-
tially there are 6 demand pairs. The routing group is the region
circled by the red dash line, which is the whole square shown in
Fig.9(a). Assume we found that the routing group with minimum
average cost is [1*, **], by setting the leading bit of source ad-

dress to 1, the corresponding routing group is shown in Fig. 9(b).
We repeat these steps until we have found the routing group [1*,
00] shown in Fig.9(c) and 9(d) (Note that further dividing of this
routing group will increase the average routing cost per demand
pair). Then the two demand pairs in the routing group [1*, 00] are
routed by using IRA. DSA then removes this routing group, and we
repeat the process until all the demand pairs are routed.

We now analyze the complexity of DSA. The inner while loop
between lines 4 — 15 runs at most 2m times, since in each itera-
tion of the inner while loop the leading bit of source address or
destination address decreases by 1, the iteration will stop when
all the wildcard bits in source address and destination address
are filled with binary digits. For each inner while loop, the IRA
is called 4 times (line 5 — 8). Finally, the outer wile loop (line
2 —15) runs at most |K| times. Therefore the complexity of DSA is
O@mIK[*(IV| + |E[log [E])).

6.1. Rule priority between routing groups

It is possible that two routing groups may overlap with each
other. For the example shown in Fig.8(c), two routing groups G1
and G2 both cover the yellow square [11, 00]. Assume the switch
s1 carries the traffic of both routing groups, the flow of [11, 00] will
satisfy the predicates for both entries, which is shown in Fig. 8(d).
Therefore each entry in the switch must be assigned a priority
level. Upon receiving a packet, the switch finds the entries with a
matching predicates and the highest priority level, and then per-
forms its action. One simple way to assign priorities in DSA is
based on the order the routing group is generated by DSA. For ex-
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Algorithm 2 Detailed search algorithm (DSA).

1: Set the source and destination address to the address with fully

wildcard bit, set Uprey = Ucurr = &, set Is = I =m.

2: while K # ¢ do

3: Set prev = oo and curr =0

4:  while curr < prev or size(Ucyrr) > L do

5: Set [uyg, avgcost (ugq)] = FindCost (src, I, 0)
6: Set [usq, avgcost (ugy)] = FindCost (src, Is, 1)
7
8
9

Set [ugq, avgcost (ugg)] = FindCost (dst, 15, 0)

Set [ugq, avgcost (ugq)] = FindCost (dst, I, 1)

Select ucyrr equals to u e {ugg, Us1, Ugg, Ugr} With the mini-
mum avgcost (u), if more than one such u exist or all the
avgcost (u) equals infinity, randomly pick one.

10: Set curr = avgcost (Ucyrr)

11: if (curr > prev or Is = I; = 0) then

12: Remove all the demand pairs in uprey from K, building
the path for each demand pair in ug,r by using IRA.

13: Set the source and destination address to full wildcard
bits. Set Uprey = Ueurr =0, s =1lg=m

14: break

15: Set the binary digit on leading bit according to ucyrr, up-

date the leading bit by decreasing I or I; by 1 according to
Ucyrr, Set prev = curr, Uprey = Ucurr
16: Function FindCost (type, 1, d)
17: if (type == src and [s # 0) then
18:  Set the binary digit on leading bit [ of source address to d,
while keeps destination address the same. Denote the routing
group formed u.
19:  if (0 < size(u) < L) then

20: Reset the binary digit on the leading bit [ of the source
address to wildcard bit.
. IRAcost (u)
21: Return [u, si;giu)“ ]
22:  if (size(u) > L) then
23: Return [u, o]

24: if (type == dst and I; # 0) then

25:  Set the binary digit on the leading bit [ of the destination ad-
dress to d, while keeps the source address the same. Denote
the routing group formed u.

26:  if (0 < size(u) <L) then

27: Reset the binary digit on the leading bit [ of the destination
address to wildcard bit.
. IRAcost (u)
28: Return [u, Siggs(u)” ]
29:  if (size(u) > L) then
30: Return [u, oo]

31: Return [d, co]
32: EndFunction

ample, if G1 is generated before G2, then the entry of G1 has a
higher priority than that of G2 (shown in Fig. 8(d)).

7. Dynamic scheduling of demand pairs

The algorithms presented in the previous sections have been fo-
cused on the static version of the problem. While they are useful
for networks that have constant network demand, in reality, the
demand pairs may join/leave the network dynamically. In this sec-
tion we propose the dynamic algorithms to deal with this scenario.

7.1. Dynamic demand pairs entering

We first consider the case where a new demand pair k enters
the network. Let s, and d;, denote the source and destination ad-
dress of k. We first make the following definition:

Definition 2. Let f be a full address without wildcard bits, we say
the address f covers f if f and f have the same bit length and all
the non-wildcard bits of f are the same as f.

For example, let f' =00* and f = 0001, then f covers f be-
cause all the non-wildcard bits of f (the first two bits) are the
same as f, which is 00. Next we extend the definition of ready for
each new demand pair k:

Definition 3. In a directed graph G’ = (V’,E’), link €’ is ready for
the new demand pair k if: 1. out(e’) contains a 4-tuple (s, i, d,
n(e")), i € m(out(e’)) or (s, *, d, n(e’)). 2. in(e’) contains a 4-tuple
(s, n(e’), d, j), j € m(in(e’)) or (s, *, d, j), where s covers s, and d
covers dy.

Algorithm 3 Dynamic algorithm for new arrivals (DANA).

1: for each new demand pair k do

2. for each link ¢’ € E’ do

3 if ¢’ is ready for k then

4 Set the cost of link e’ to 0, cost(e’) =0
5: if ¢’ is not ready for k then
6
7
8
9

Set the link cost cost(e’) = w(out(e’))
if BCy < By or a(out(e)) > Ty ey then
Set the cost of link e’ to infinity, cost(e’) = o
Find shortest path between s, and d,, if there are more than
one shortest paths, randomly select one. Install the 4-tuple
rules (sy, 1, dy, j) along the path. Update a(v).
10: Set ﬂCe/ = ,BCe/ — Bk

Algorithm 3 (DANA) builds the paths for each new demand pair.

The intuition behind DANA is reusing existing rules in the net-
work. For the example shown in Fig.2(c), the routing tables are
shown in Fig.3(c). Assume that there exists a new demand pair
with source address/destination address 010/101 and ingress/egress
switches are A and E. Further assume that the every link has
enough remaining capacity to carry the flow of this demand pair
such that (10) is obeyed. Also assume that every switch has the
same weight and enough TCAM space. One of the possible so-
lutions is routing through the path A, B, E (the black route in
Fig.10(a)), and the new routing table is shown in Fig. 10(b). Three
entries are added on the switch A, B and E. DANA will generate
the red route shown in Fig.10(a) and the routing table shown in
Fig. 10(c). By comparison, only one entry is installed on switch D,
and the entries in switch A, D are reused so that no additional en-
try is installed.

7.2. Dynamic demand pairs leaving

In case of a demand pair leaving the network, if the leaving
renders the rule to be obsolete, this rule can be safely deleted ei-
ther by the controller or idle timeout [11]. However, depending on
the network traffic pattern, some unused rules can be kept for a
longer time for routing future traffic flows. Details of this problem
is out of the scope of the paper [18].

8. Rule placement for statistics gathering

In the previous section, we proposed a scheme to route the traf-
fic in an aggregate manner such that TCAM space consumption is
minimized and the performance is guaranteed. However, the Open-
Flow controller may need access to collect flow statistics and per-
form fine-grained control on the individual flow under some cir-
cumstances. For example, some flows are mice flows initially and
become elephant flows later, and the controller need timely access
to the detailed statistics on these flows. OpenFlow supports this
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Fig. 11. Example of flow tables.
by involving a counter field in each OpenFlow entry, the counter of below:
the entry will update when the packet matches with the entry, dif- L
ferent kinds of counters are supported by OpenFlow, such as num- nllnel{%]hze A
ber of packets transmitted, number of bytes transmitted, etc [10], ”k. '
the controller will collect the statistics of this flow by querying the subject to Z Zye =1, Vk € Kfine
data in the counter field. An example is given by Fig. 11. The flows veH (k)
of three demand pairs are tran.smitted.in aggregate manner apd Qv + Z Zw <A YveV
the flow tables are also shown in the Fig.11. To gather the statis- kek;,

tics of the flow of demand pair [000, 100], a rule with the source
and destination addresses 000 and 100 must be installed, and the
controller is free to choose which switch along the path A, B, C this
rule is inserted since the traffic of [000, 100] will pass through all
these three switches.

8.1. Problem formulation

Unlike the objective function defined by (3), in this scenario
we are more interested in making sure that all the switches have
space to install the rules since failure to install the rule will cause
the controller to lose control on the specific flow. For the misbe-
haved flows (e.g. elephant flow) which consume the majority of
the resources, it is necessary for the controller to gather statis-
tics and perform fine-grained control timely. Consider the exam-
ple of Fig. 11, assume the switch w(B) is lower than w(A) and w(C),
to minimize the total cost defined by (3) all the rules will be in-
stalled on B until reaching the TCAM space limit of B. Later if there
is a need to install rules to collect statistics on the other demand
pairs whose only intermediate switch is B (e.g the flow only passes
through B), then this rule will be discarded since B is already full.
Therefore, instead of Eq. (3), we should minimize the maximum
consumption on TCAM space in each switch, that is, minimize the
maximum number of rules installed on each switch. Let kg, de-
note the set of demand pairs which are needed to collect statistics.
Zy is a binary variable, z,, = 1 indicates that the rule is installed
on switch v to gather the statistics for k. g, indicates the initial
number of rules installed on switch v, and H(k) denotes the path
carrying the traffic of demand pair k. Then the problem is shown

The first constraint ensures that the rule for k is installed on one of
the switch along the path H(k), and the second constraint ensures
that the total number of rules on each switch is less or equal than
A. We call this problem Rule Placement Problem (RPP), and RPP is a
NP-hard problem.

8.2. Approximation algorithm of RPP

Next we proposed a 2-approximation algorithm for RPP. First
we define a new variable ¢;:

¢vk = {

Then RPP can be redefined as follows:

00
1

if v ¢ Hk)
if v e H(k)

minimize A
z,k€{0,1}
subject to Y "z =1, Vk € Kgipe
veV
W+ Y Guzu <A YveV
keKfine

And we cite the result from [27]:

Theorem 3. Let v;>0 fori=1,..., m,j= n, di > 0 fori=
1.....m, and t > 0. Let Aj(t) = {ilv;; < t} and B;(t) = {jlv;j <t}, if

.....
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the following feasibility problem:

Z Xij=1, j:l,...,n

icA; (t)

EE: VijXij < dh i=1,...,m
JjeBi(t)

X;j =0, forjeBi(t),i=1,...,n

has a solution, then any vertex x’ of this polytope defined by the above
feasibility problem can be rounded to a binary integer solution of the
following problem in polynomial time.

2:: XU ::]7 j ::]’_..,n
icA;(t)

> vyxg <di+t i=1,....m
JjeBi(t)
xij €{0.1}, for jeBi(t).i=1,....n

Then we have to following conclusion:

Theorem 4. Given the constants q, and ¢, for any A > 0, we can
find 2-relaxed decision procedure for the RPP that outputs either: 1.
‘no’, if there is no feasible solution to achieve this maximum TCAM
space consumption A or 2. z, which generates a maximum TCAM
space consumption at most 2A.

Proof. For the linear programming problem given in Theorem 4,
set t =X, Vij =Py, di=A—qu, m=|V|, n=[Kfjpe| and x;; = 7.
By Theorem 3, the problem is either: 1. infeasible. 2. there is a set
of integer solution z,; such that ZkEKfine GukZok <A —qQu+ A =2A—

qv. Therefore qv+ZkEKﬁne Gz < 22 and the maximum TCAM

space consumption is at most 2A. O

Let €jo, = max(qy) and eyp = max(qy) + |Kyipe|, then ¢, and
veV veV

€yp are the lower and upper bound of the optimal solution of RPP.
Then we have the following 2-approximation algorithm of RPP.

Theorem 5. Algorithm 4 is a 2-approximation algorithm of RPP.

Algorithm 4 Two-approximation algorithm.
1: Set €4y = max(qy) and €yp = max(qy) + |Kfipe|
vev veV

2: while ¢, # €, do

3 Set €= |3 (€jpn + €up)l

4: Set A = ¢, apply 2-relaxed decision procedure
5. if decision procedure outputs 'no’ then
6: set €y = €l + 1
7. else

8 set €yp = €yp — 1

9: output the binary integer solution found by 2-relaxed decision
procedure

Proof. In Algorithm 4, it is easy to see that ¢, is always the lower
bound of the optimal solution of RPP. The solution generated by
the above algorithm will generate a output which is less or equal
to 2 x €y, Which is less than two time of the optimal solution of
RPP. O

It is easy to see that the above algorithm will run in polyno-
mial time. Since the difference between €, and ¢, is cut by half
after each iteration. So the 2-relaxed decision procedure is called
at most O(log|Kin|) times. Since the 2-relaxed decision procedure
runs in polynomial time by Theorem 4, hence Algorithm4 will run
in polynomial time.

9. Simulations
9.1. Network settings

We evaluated DSA on 4 different network topologies, one is a
WAN model generated by GT-ITM [19], which simulates WANs us-
ing Transit-Stub topologies. This network has 100 nodes and 127
undirected links. The other network topologies includes the Abilene
(11 nodes, 13 undirected links), Fat Tree (4 pods, 4 core switch, 52
nodes and 64 undirected links) and Sprint (52 nodes, 168 undi-
rected links). The traffic distribution for Abilene and Sprint are
available in [20]. We use two models proposed in [20]: Lognormal
distribution (u = 15.45,8 = 0.885), and Weibull distribution (a =
1.87 x 10°, b = 0.69) to model the traffic distribution in the Sprint
Network. And we use the Lognormal distribution (¢« = 16.6,8 =
1.04) to model the traffic distribution in the Abilene Network. For
the GT-ITM and Fat Tree, we use the Bimodal distribution (gener-
ated by mixture of two Gaussian Distributions) proposed in [21].
The Bimodal distribution is proposed based on the observation that
only a small fraction of Source-Destination pairs has large flows.
Assume each switch has a capacity between 300 — 500 entries. We
use the method proposed in [22] to model the link capacity, which
claims that the link capacity distribution follows the Zipf’s Law, and
the links whose end nodes with higher degree tend to have larger
link capacity. For the purpose of simulation, we set the link capac-
ity to 39.8 Gbps (the transmission rate of optical carrier OC768) if
the degrees of both endpoints of that link are larger than 3, set the
link capacity to 9953.28 Mbps (0C192) if one endpoint has degree
larger than 3 and degree of the other end point is less or equal
3, set the link capacity to 2.49 Gbps (0C48) if the degree of both
endpoints is less or equal than 3.

We randomly generate demand pairs that correspond to a
source machine and destination machine in the network. Each ma-
chine has been assigned a random type B IP address and are con-
nected to a switch in the network. The bandwidth consumption
of the flows follows the distributions described above. Since TCAM
space aware routing has not been investigated before, and there is
no existing routing algorithm that aims to reduce the routing table
size, we compare DSA with two benchmark routing schemes: ECMP
and Valiant Load Balancing (VLB) which are widely used to achieve
load balancing on link resources. Our purpose is to demonstrate
that DSA can substantially reduce of TCAM space without sacrific-
ing too much in terms of load balancing of link resources. ECMP is
a routing strategy which works by splitting the traffic equally over
the multiple paths with the same length (number of hops) [23].
In VLB, the flows of the same demand pair are first sent to some
intermediate nodes, then forwarded to the destination [24].

After the paths are calculated by the two benchmark routing
schemes, the corresponding rules (s, i, d, j) are installed to direct
the flows. All the rules contain fully specified addresses s, and d
so that they can not be reused by the other flows. We run each
algorithm 100 times and take the average results. All the evalua-
tion is run on a machine with 8 GB of RAM and Quad-Core Intel i7
CPU(3.2 GHz). For the evaluation, we set the weight of each switch
in Eq. (3) to 1, therefore the total cost generated by Eq. (1) equals
the total number of entries installed. We compare performance of
the algorithm using a metric called Traffic Saving Ratio. Assume
the total amount of TCAM space consumed by DSA is T, and total
amount of TCAM space consumed by the benchmark algorithm is
Ty, then Traffic Saving Ratio (TSP) is defined as:

TSP = (T, — Tp) /Ty (11)
9.2. Evaluation of the TSP

First we evaluate the relation between the number of demand
pairs and TSP. We do not limit the maximum routing group size.
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Table 2
Mean of TSP on all the network topologies.
Network  Number of flow 60 70 80 90 100
Abilene Lognormal TSP, 0.4264  0.6331 0.7176 0.7518 0.7851
TSP,  0.4051 0.6318 0.7015 0.7427 0.7881
Network Number of flow 80 120 160 200 240
Sprint Weibull ING 0.2570 03740  0.5252 05805  0.6659
TSP,  0.2551 0.4553  0.5038  0.6519 0.7718
Lognormal TSP, 0.2041 02869  0.5437 0.5809  0.6003
TSP,  0.2473 03933 0.5154  0.6715 0.7258
Network Number of flow 200 300 400 500 600
GT-ITM Bimodal INg] 0.4253 04353 0.5766  0.6107 0.6611
TSP, 04542 04604 05599 0.6034 0.7912
Network Number of flow 100 150 200 250 300
Fat tree Bimodal INg] 0.1981 0.2986 04334 0.6008  0.6745
TSP,  0.2158 02974 04298 0.6177 0.7208
Table 3
90% confidence interval of TSP on all the network topologies.
Network  Number of flow 60 70 80 90 100
Abilene Lognormal TSP, 0.3988-0.4511 0.6003-0.6289  0.6901-0.7372 0.7314-0.77 0.7701-0.8013
TSP,  0.3537-0.4451 0.5924-0.6601 0.6705-0.7347 0.7223-0.7664  0.7606-0.8123
Network Number of flow 80 120 160 200 240
Sprint Weibull INg 0.2261-0.2810  0.3437-0.3999  0.5004-0.5414 0.5605-0.6071 0.6347-0.6911
TSP,  0.2227-0.2796  0.4257-0.4829  0.4679-0.5339  0.6307-0.6733 0.7410-0.7997
Lognormal TSP, 0.1818-0.2301 0.2598-0.3044  0.5179-0.5771 0.5588-0.6002  0.5888-0.6268
TSP,  0.2186-0.2735 0.3655-0.4219 0.4884-0.5400  0.6550-0.6943  0.6998-0.7445
Network Number of flow 200 300 400 500 600
GT-ITM Bimodal INg] 0.3979-0.4515 0.4003-0.4668  0.5501-0.5995  0.5911-0.6386 0.6332-0.6904
TSP,  0.4222-0.4824  0.4298-0.4911 0.5345-0.5885  0.5799-0.6303  0.7649-0.8219
Network Number of flow 100 150 200 250 300
Fat tree Bimodal INg] 0.1771-0.2175 0.2687-0.3279  0.4040-0.4655  0.5785-0.6233  0.6550-0.6991
TSP,  0.1965-0.2379 0.2688-0.3240  0.4030-0.4561 0.5888-0.6462  0.6975-0.7478

—O©— ECMP(lognormal)
0.9 | =—#&— VLB(lognormal)
—&— DSA(lognormal)
- 08
k=]
g
g 07
™
E=
g 0.6
£
s
Eos
0.4

90 100 110
number of flows

60 70 80 120

Fig. 12. Link utilization (Abilene).

Table2 shows the relations between the number of flows and
mean of TSP with different networks and different traffic distribu-
tions and Table 3 shows the 90% confidence intervals of TSP. TSP,
is the TSP of the ECMP and TSP, is the TSP of the VLB. The DSA
can achieve 20% — 80% saving on the TCAM space with different
network topologies and traffic distributions. The saving also grows
with the number of flows. This is because as the number of flows
increases, more flows can be aggregated for saving TCAM space.
Moreover, if we neglect the first packet of each flow which is for-
warded to the controller, the TCAM space saving almost equals
to the saving in the number of control traffic between the con-
troller and the OpenFlow switches. This is because each entry in
the switches requires a control packet for installation.

Fig. 12-15 show the relations between the number of flows and
the mean of maximum link utilization of different algorithms over
different traffic distributions. All of the standard deviations of the
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maximum link utilizations are less than 0.08, When calculating the
link utilization of DSA, the threshold on link utilization rate, g is
set to 0.9. The maximum link utilization rate of DSA is on average
10 — 17% higher than that of ECMP and VLB. Despite the higher link
utilization rate of DSA, considering the huge savings on the TCAM
space, we believe this is a fair trade-off.

As mentioned before, we can tune the value of L to balance the
trade-off between TCAM space saving and maximum link utiliza-
tion, we evaluate the impact of the limit of aggregation L on the
TSP and maximum link utilization rate on the GT-ITM network with
500 demand pairs. As shown in Figs. 16 and 17, when L decreases
from 95 to 5, the TSP decreases from 0.6107 to 0.04665, the rea-
son is that L affects the size of the routing groups, a small L causes
a smaller size of routing groups therefore the degree of flow ag-

Table 4
Performance and running time comparison.
Performance Node Abilene  Sprint Tree GT-ITM
TSP 0.5979 0.5435 0.4894 0.4001
Running time  Network  Abilene  Sprint Tree GT-ITM
DSA 0.19ms 0.29ms 0.32ms 0.37ms

gregation decreases. At the same time, the maximum link utiliza-
tion rate also decreases slightly from 0.79 to 0.752. This is because
small routing group leads to fine-grained routes which in turn re-
duces maximum link utilization.

9.3. Evaluation of the DANA

We generate demand pairs that are attached to some random
nodes in the network. Each demand pair has a random type B
source and destination IP address, and all the demand pairs are
connected by installing the rules generated by DSA. To emulate
the dynamic entering of new demand pairs, we generate 50 new
demand pairs and run the DANA to add the flows. We compare
the performance of DANA with shortest path algorithm (SPA), which
routes traffic along shortest paths. All the rules installed for SPA
are fully specified addresses. TSP is defined in a similar manner as
(11), with T, and T, means the total number of rules generated by
SPA and DANA to direct the new flows.

Tables4 and 5 show the means and 90% confidence intervals of
performance as well as the running time of the two algorithms.
As the tables shows, DANA can achieve 40% — 60% saving on TCAM
space. The running time of DANA increases moderately with the
network size. But overall running time of the algorithm is still rea-
sonable.

9.4. Evaluation of the two-approximation algorithm for RPP

We reuse the traffic flow routing generated by EPP and ERP in
Section9.2 on the four different network topologies. We also ran-
domly pick some flows that need to be controlled in fine-grain
scale, and run the two approximation algorithms that give the rule
placement suggestions. We then compare it with the optimal so-
lution generated by exhaustive search method. The total number
of flows is 80, and the result generated by two-approximation al-
gorithm is normalized to the optimal solution. We pick 10 and 15
fine-grained controlled flows from the 80 flows, and the simulation
results are summarized in Tables6 and 7.

As it is shown from Table 6, the total cost generated by the two-
approximation algorithm is on average 12% — 20% higher than the
optimal solution, which demonstrates the efficiency of the two-
approximation algorithm.

10. Testbed deployment

We evaluated the functionality and implementability of the DSA
in a real testbed. We built an overlay network that follows Abilene
network topology by using a software switch (OpenVswitch) run-
ning on virtual machines. The OpenVswitches communicate with
each other by using the virtual extensible LAN. The centralized
controller (Ryu) can configure the entries in the switches to build
the routing paths. We built three source VMs and three destina-
tion VMs (three demand pairs), each VM is assigned an IP address.
The routing module on top of the Ryu controller takes the con-
nection demands as the input and sends the results of DSA to the
implementing module which installs the relative OpenFlow rules
on the switches (Fig. 18). For comparison, we also used the short-
est path algorithm (Dijkstra’s Algorithm) to connect the demands
pairs. For DSA, a total 14 entries are installed on the switches, and



38 S.Q. Zhang et al./ Computer Networks 125 (2017) 26-40
Table 5
90% confidence interval of TSP.
Performance  Node  Abilene Sprint Tree GT-ITM
TSP 0.5808-0.6102 0.5288-0.5660 0.4606-0.5000 0.3768-0.4242
Table 6
Performance of two-approximation algorithm.
Mean of the ratio (10 fine grained flows)  Abilene  Sprint  Tree GT-ITM
11771 11808 11345 11447
Mean of the ratio (15 fine grained flows)  Abilene  Sprint  Tree GT-ITM
11680 1.2018 11677 11494
Table 7
Performance of two-approximation algorithm.
90% CI of the ratio(10 fine grained flows) Abilene Sprint Tree GT-ITM
1.1212-1.2016 1.1118-1.259 1.1004-1.2280 1.0642-1.2288

90% CI of the ratio (15 fine grained flows)  Abilene

1.1163-1.2089

GT-ITM
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1.0969-1.2335
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Ryu controller

Routing Implemanti
Module ng Module
7 7\
192.168.200.11
=) 7
E |
192.168.200::[3\ ¥
g
&/
192.168.200.13

Input —»

\
\ 192.168.200.14
\

o

)IE)/;;GS.ZOOJS
B |

4

\
\

Al

192.168.200.16

E]

-

|

/

Fig. 18. Real testbed experiment.

the total time taken for building the path is 0.028s. For Dijkstra’s
Algorithm, total 30 entries are installed on the switches with the
total time 0.061s. Hence, DSA clearly saves TCAM space and path
set up time.

11. Conclusions

In this paper, we proposed an efficient routing scheme to
achieve savings on TCAM space in SDN without causing network
congestions. We provide algorithms for both the static and dy-
namic scenarios. Moreover, for the purpose of statistics gathering
on the flow entries, we also propose a rule placement algorithm to
achieve load balancing on TCAM space. Experiments show that the
proposed routing scheme can achieve 20% — 80% saving on TCAM
space with 10% — 17% increase in maximum link utilization. Finally,
a preliminary version of the DSA has been implemented on the
real testbed environment.
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