
1132 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Multi-Layer Virtual Network Embedding
Shihabur Rahman Chowdhury , Student Member, IEEE, Sara Ayoubi, Reaz Ahmed,

Nashid Shahriar , Student Member, IEEE, Raouf Boutaba , Fellow, IEEE, Jeebak Mitra , and Liu Liu

Abstract—Network virtualization (NV), considered as a key
enabler for overcoming the ossification of the Internet allows
multiple heterogeneous virtual networks to co-exist over the
same substrate network. Resource allocation problems in NV
have been extensively studied for single layer substrates such
as IP or Optical networks. However, little effort has been put
to address the same problem for multi-layer IP-over-optical
networks. The increasing popularity of multi-layer networks for
deploying backbones combined with their unique characteristics
(e.g., topological flexibility of the IP layer) calls for the need to
carefully investigate the resource provisioning problems arising
from their virtualization. In this paper, we address the problem of
multi-layer virtual network embedding (MULE; similar to multi-
layer networks, this hybrid species brings the best of two species
together.) on IP-over-optical networks. We propose two solutions
to MULE: 1) an integer linear program formulation for the
optimal solution (OPT-MULE) and 2) a heuristic to address the
computational complexity of the optimal solution (FAST-MULE).
We demonstrate through extensive simulations that on average
our heuristic performs within ≈1.47× of optimal solution while
executing several orders of magnitude faster. Simulation results
also show that FAST-MULE incurs ≈66% less cost on average
than the state-of-the-art heuristic while accepting ≈60% more
virtual network requests on average.

Index Terms—Computer network management, overlay
networks.

I. INTRODUCTION

MULTI-LAYER IP-over-Optical networks are becom-
ing a popular choice among Infrastructure Providers

(InPs) for deploying wide area networks [1]. Such multi-
layer network typically consists of an optical substrate for the
physical communication with an IP overlay on top [2]. This
network model is being increasingly adopted for backbone

Manuscript received March 2, 2018; accepted May 3, 2018. Date of pub-
lication May 8, 2018; date of current version September 7, 2018. This
work was supported in part by Huawei Technologies and in part by an
NSERC Collaborative Research and Development Grant. Additionally, this
work benefited from the use of the CrySP RIPPLE Facility at the University
of Waterloo. The associate editor coordinating the review of this paper
and approving it for publication was C. Fung. (Corresponding author:
Shihabur Rahman Chowdhury.)

S. R. Chowdhury, R. Ahmed, N. Shahriar, and R. Boutaba are with the
David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: sr2chowdhury@uwaterloo.ca;
r5ahmed@uwaterloo.ca; nshahria@uwaterloo.ca; rboutaba@uwaterloo.ca).

S. Ayoubi is with INRIA, 75012 Paris, France (e-mail:
sara.ayoubi@inria.fr).

J. Mitra is with Huawei Technologies Canada Research Center, Ottawa,
ON K2K 3J1, Canada (e-mail: jeebak.mitra@huawei.com).

L. Liu is with Huawei Technologies Company, Ltd., Chengdu, China
(e-mail: liuliu1@huawei.com).

Digital Object Identifier 10.1109/TNSM.2018.2834315

networks as it offers the best of both worlds, i.e., the flexibil-
ity in addressing, resource allocation, and traffic engineering
of IP networks along with the high capacity provided by opti-
cal networks. Despite their increasing popularity, research on
addressing resource provisioning challenges for virtualizing
such networks is still in its infancy. A classical resource provi-
sioning problem in network virtualization is Virtual Network
Embedding (VNE), which consists in establishing a Virtual
Network (VN) on a Substrate Network (SN) with objec-
tives such as minimizing resource provisioning cost [3], [4],
maximizing the number of admitted VNs [5], etc. VNE has
been extensively studied for single-layer SNs [6] with sig-
nificantly lesser attention paid to the multi-layer network
substrates [7]. The topological flexibility provided by multi-
layer networks [8] poses some unique challenges for VNE and
calls for new investigations.

Several deployment models exist for multi-layer IP-over-
Optical networks [9] including but not limited to: (i) IP over
Dense Wavelength Division Multiplexed (DWDM); (ii) IP
over Optical Transport Network (OTN) over DWDM. DWDM
networks have specific constraints such as wavelength conti-
nuity for optical circuits and typically do not have transparent
traffic grooming capabilities. A more favorable choice (also
our choice of technology) is to deploy an OTN [10] over
a DWDM network with advanced transport capabilities (e.g.,
traffic grooming without optical-electrical-optical conversion).
The OTN in turn can be static, i.e., necessary interfaces
on OTN nodes have been configured and the corresponding
light paths in the DWDM layer have been lit to provision
fixed bandwidth between OTN nodes. Or, the OTN can be
dynamic, i.e., more bandwidth between OTN nodes can be pro-
visioned by lighting new light paths in the DWDM. Clearly,
the VNE problem for each of these scenarios requires dedi-
cated explorations due to their unique constraints. As a first
step towards addressing VNE for multi-layer networks, we
limit the scope of this paper to the case of a static OTN
and leave the other possible deployment scenarios for future
investigation.

Solving the VNE problem for multi-layer networks exhibits
many unique challenges due to the topological flexibility
offered by such networks. Concretely, although the OTN is
fixed, the IP network is dynamic, i.e., new IP links can be
established when needed by provisioning necessary capacity
from the OTN. Such flexibility can be exploited if residual
resources in the IP layer are insufficient to admit a new VN,
or to reduce the cost of VN embedding by creating new IP
links that reduce network diameter. Provisioning new IP links
in optical networks has been a tedious and manual task with a

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6232-2027
https://orcid.org/0000-0002-1101-6716
https://orcid.org/0000-0001-7936-6862
https://orcid.org/0000-0003-4568-2589

CHOWDHURY et al.: MULTI-LAYER VNE 1133

long turnaround time. However, with the advances in optical
networking technologies [11] and centralized optical control
plane [12]–[15], such provisioning tasks are more and more
automated. Even then, one should not abuse such capability
to sporadically establish new IP links since it remains more
expensive than embedding virtual links on existing IP links.
In this regard, we are faced with the following challenges:
(i) strike a balance between obtaining a low cost VN embed-
ding while minimizing the establishment of new IP links;
(ii) simultaneously decide on whether to create an IP link or
not and its embedding in the OTN.

In this paper, we study the problem of MUlti-Layer Virtual
Network Embedding (MULE) focusing on IP-over-OTN sub-
strate networks with the objective of minimizing total resource
provisioning cost for embedding the VN while considering
the possibility of establishing new IP links when necessary.
Specifically, the contributions of this paper are as follows:

• OPT-MULE: An Integer Linear Program (ILP) formula-
tion to find the optimal solution to MULE. The state-of-
the-art in multi-layer VNE [7] does not optimally solve
the problem. To the best of our knowledge, this is the
first optimal solution the VNE problem for multi-layer
IP-over-OTN networks.

• FAST-MULE: A heuristic to tackle the computational
complexity of OPT-MULE. We also prove that our
heuristic solves the problem optimally for a specific
class of VNs, i.e., star-shaped VNs. For arbitrary VNs,
trace driven simulations show that FAST-MULE uses
≈1.47× more resources on average compared to OPT-
MULE while executing several orders of magnitude
faster. Further, our comparative analysis shows that
FAST-MULE allocates ≈66% less resources on average
compared to the state-of-the-art heuristic for multi-layer
VNE [7], while accepting ≈60% more VN requests on
average.

This paper extends our initial work presented in [16] on
the following aspects. First, we provide a guideline on how to
parallelize the proposed heuristic and leverage modern multi-
core CPUs. Second, we perform more extensive performance
evaluation of the proposed heuristic by performing a steady
state analysis. The steady state analysis involves performance
evaluation while considering arrival and departure of VNs
over a longer period of time as opposed to performing
micro-benchmarking for single VN instances. We compare
the steady state performance of our proposed heuristic with
that of the state-of-the-art heuristic for multi-layer VN embed-
ding [7]. Finally, we present a more elaborate discussion on the
research literature and contrast our contributions to the related
works.

The rest of the paper is organized as follows. We begin
with a discussion of related works in Section II. Then we
introduce the mathematical notations representing the inputs
to the problem and formally define the problem in Section III.
In Section IV, we present OPT-MULE, an ILP formulation to
optimally solve MULE, followed by our proposed heuristic,
FAST-MULE in Section V. Our evaluation of the proposed
solutions are presented in Section VI. Finally, we conclude
with some future research directions in Section VII.

II. RELATED WORKS

A. Virtual Network Embedding

VNE is a well studied problem in network virtualization
and a significant body of research has solved a number of
its variants [4], [17]–[27]. However, it has been mostly stud-
ied for single layer SNs, i.e., for IP, Optical or Wireless
networks. Despite the existence of a significant number of pro-
posals [28]–[30], VNE solutions for IP networks commonly
involve allocating compute and bandwidth resources for the
virtual nodes and links, respectively. In the case of optical
networks, solving VNE involves allocating compute resources
and wavelength for virtual nodes and links, respectively [31].
Optical networks have technological constraints such as dis-
crete wavelength allocation, wavelength continuity etc. that
add additional challenges to the VNE problem [32]. The state-
of-the-art in optical network virtualization has mostly focused
on single layer optical networks.

B. Multi-Layer Embedding

A few works in the research literature addressed the
problem of embedding in multi-layer networks [7], [33], [34].
Savi et al. [33] consider the problem of application-aware traf-
fic embedding on IP/Multi-layer Protocol Switching(MPLS)-
over-Optical Network. Traffic requests are given between pairs
of routers in the network, where each request has differentiated
service requirements in terms of bandwidth, tolerable end-to-
end delay, and tolerable end-to-end path availability. Here, the
possibility of establishing new IP links is also considered when
the IP/MPLS layer does not have sufficient capacity to meet
the demand of a given request. However, in [33], the end points
of the requests are fixed and it only addresses the link routing
problem. Moreover, [33] neither does propose an optimal solu-
tion to the problem, nor presents complexity analysis of the
proposed heuristic. Furthermore, the creation of new IP links is
restricted to the pair of IP nodes that are not already connected.
In [34], the problem of Service Function Chaining (SFC) in
IP-over-OTN networks is addressed. This work considers ser-
vice function chains distributed across multiple data centers,
where the data centers, representing the electronic layer, are
interconnected via an optical network. The authors propose
an algorithm in [34] to route each SFC request across the
data centers. Therefore, even though the substrate network is
a multi-layer one, the routing problem is addressed only in
for optical layer. Furthermore, the placement of the network
functions in the requested SFC is considered given, and the
different segments (pair of service functions) that make up the
SFC are routed sequentially.

To the best of our knowledge, the only work that consid-
ered the problem of multi-layer virtual network embedding
while considering both node and link embedding is presented
in [7]. Zhang et al., proposed a heuristic for solving the
multi-layer VNE problem for IP-over-DWDM networks. They
also consider the possibility of modifying IP layer topol-
ogy by allocating wavelengths from the underlying DWDM
network. Zhang et al., proposed a two step embedding pro-
cess that first embeds the virtual nodes then the virtual links,
which limits the solution space and hence the optimality of

1134 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

the embedding. In contrast, we propose an ILP formulation
for optimally solving the multi-layer VNE problem. Also,
our heuristic does not embed the virtual nodes and links
independently from each other, rather tries to embed them
simultaneously.

C. Multi-Layer Network Optimization

An orthogonal but somehow related area of research in
multi-layer network optimization focused on the issue of
capacity planning in multi-layer networks [32], [35]. During
the initial capacity planning a traffic matrix for the IP layer
is given and sufficient capacity needs to be allocated in
both IP and Optical layers to support that traffic matrix.
Different variants of the problem exist that take differ-
ent technological constraints and deployment models into
account [36]–[39]. While the results from [36] are applicable
for generic multi-layer network, however, that from [37] is spe-
cific to IP/MPLS-over-OTN-over-DWDM optical networks,
with particular emphasis on the technological constraints of
the OTN layer. Similar to [37], the work presented in [38] con-
siders the capacity planning problem for OTN-over-DWDM
networks.

Another research direction, that has been well explored
in the research literature is that of protection planning for
multi-layer networks [40]–[44]. Multi-layer protection plan-
ning involves deciding which layer will be in charge of pro-
tecting what, and coordinating the protection schemes across
different layers [40], [45]. For instance, Gerstel et al. [45]
showcase the limitations of traditional capacity planning in IP-
over-OTN networks where each layer is treated in isolation.
Subsequently, the authors motivate the advantages of coordi-
nating across the different layers, and illustrate these benefits
in Multi-Layer Restoration (MLR) planning. To achieve their
goals, the authors compared MLR against restoration planning
performed at the IP-layer alone and showed significant sav-
ings in the number of interfaces used and provisioned network
resources (i.e., wavelengths in their case). Bigos et al. [41]
address the problem of designing a multi-layer protection
scheme for MPLS-over-OTN networks. They evaluate single
and multi-layer survivability schemes under different spare
capacity allocation strategies (e.g., shared vs. dedicated). In
the single layer survivability scheme, they propose to protect
every Label Switched Path (LSP) against failures in the IP
or in the OTN layer. Whereas, in the multi-layer survivability
scheme, the OTN layer is protected against physical link and
OXC failures, and the IP layer is protected against routers and
IP/Optical interface failures.

In contrast to capacity and protection planning, in multi-
layer VNE, the endpoint of the demands, i.e., virtual node
placement, is not known in advance, making this one a fun-
damentally different problem. Further, the body of research
in multi-layer capacity and protection planning has demon-
strated clear advantages of resource allocation when the
layers are jointly optimized as opposed to considering them
in isolation [41], [45], [46]. Our solution approach also
takes a joint optimization approach to the multi-layer VNE
problem.

Fig. 1. MULE Illustrative Example.

III. MULE: MULTI-LAYER VIRTUAL NETWORK

EMBEDDING PROBLEM

We first present a mathematical representation of the inputs,
i.e., the IP topology, the OTN topology, and the VN request.
Then we give a formal definition of MULE, followed by an
illustrative example.

A. Substrate Optical Transport Network (OTN)

We represent the substrate OTN as an undirected graph Ĝ =
(V̂ , Ê), where V̂ and Ê are the set of OTN capable devices
(referred as OTN nodes in the remaining) and OTN links,
respectively. Without loss of generality we assume the OTN
links to be undirected, since such undirected OTN links can
be either supported by specific technologies [47], [48] or by
laying out multiple unidirectional fibers, or by using different
wavelengths for sending and receiving within a single strand of
fiber. Neighbors of an OTN node û are represented with N (û).
We assume the OTN to be fixed, i.e., light paths atop a DWDM
layer have been already lit to provision OTN links (û, v̂) with
bandwidth capacity bû v̂ . This pre-provisioned bandwidth can
be used to establish IP links between IP routers. The cost of
allocating one unit of bandwidth from an OTN link (û, v̂) ∈ Ê
is Cû v̂ . Fig. 1 illustrates an example of an OTN network,
where the numbers on each link represent its residual capacity.

B. Substrate IP Network

The substrate IP network is an undirected graph G′ =
(V′, E′). Each IP node u ′ ∈ V ′ has pu′ number of ports with
homogeneous capacity capu′ . Each IP node u′ is connected
to an OTN node τ(u ′) through a short-reach wavelength
interface. Attachment between an IP and an OTN node is rep-
resented using a binary input variable τu′û , which is set to 1
only when IP node u′ is attached to OTN node û . An IP link
is provisioned by establishing an OTN path that connects its
end points. Note that, it is common in operator networks to
establish multiple IP links between the same pair of IP nodes
and bundle their capacities using some form of link aggre-
gation protocol [49]. We also follow the same practice and
use (u′, v′, i) to represent the i-th IP link between u′ and v′,
where 1 ≤ i ≤ pu′ . We use the binary input variable Γu′v ′i
to indicate the existence of an IP link (u′, v′, i) in G′. Γu′v ′i
is set to 1 when IP link (u′, v′, i) is present in G′, otherwise it
is set to 0. Bandwidth of an IP link is represented by bu′v ′i .

CHOWDHURY et al.: MULTI-LAYER VNE 1135

Fig. 2. Virtual Network.

Capacity of a new IP link (u′, v′, i) is set to min(capu′ , capv ′).
Fig. 1 illustrates an example IP network, where each IP link
is mapped on an OTN path and the residual bandwidth capac-
ity of an IP link is represented by the number on that link.
The cost of allocating one unit of bandwidth from an IP link
(u′, v′, i) ∈ E ′ is Cu′,v ′,i .

C. Virtual Network (VN)

A VN request is an undirected graph Ḡ = (V̄ , Ē), where
V̄ and Ē are the set of virtual nodes (VNodes) and virtual
links (VLinks), respectively. Each VLink (ū, v̄) ∈ Ē has a
bandwidth requirement bū v̄ . Each VNode ū ∈ V̄ has a loca-
tion constraint set L(ū) ⊂ V ′ that represents the set of IP
nodes where ū can be embedded. L(ū) can be determined by
the InP based on geographical proximity requirement by the
SP. Note that L(ū) can contain all the IP nodes to represent an
unconstrained scenario. We represent the location constraints
using a binary input variable �ūu′ , which is set to 1 if IP node
u ′ ∈ L(ū). Fig. 2 illustrates a VN, where the number on each
link represents VLink demand, and the set next to each node
denotes that VNode’s location constraints.

D. Problem Definition

Given a multi-layer SN composed of an IP network G′ on
top of an OTN network Ĝ , and a VN request Ḡ with location
constraint set L:

• Map each VNode ū ∈ V̄ to an IP node u ′ ∈ V ′
according to the VNode’s location constraint.

• Map each VLink (ū, v̄) ∈ Ē to a path in the IP network.
This path can contain a combination of existing IP links
and newly created IP links.

• Map all newly created IP links to a path in the OTN.
• The total cost of provisioning resources for new IP links

and cost of provisioning resources for VLinks should be
minimized subject to the following constraints:

– IP links cannot be over-committed to accommodate
the VLinks, and

– the demand of a single VLink should be satisfied by
a single IP path.

The embedding is subject to the constraints that both
IP links and OTN links cannot be over-provisioned, and
VLinks and IP links cannot be routed along multiple IP
paths and multiple OTN paths, respectively (i.e., no path split-
ting). Moreover, we do not consider neither VNode resource
requirement nor VNode embedding cost. We assume that the
virtualization enabled network devices have enough capac-
ity to switch at line rate between any pair of ports and any
complex control mechanism is decoupled and performed in a
centralized control plane. Finally, we consider online version
of the problem where VN requests arrive one at a time.

Fig. 3. Multi-Layer VN Embedding Example.

E. Illustrative Example

To better illustrate the problem and the underlying com-
plexities, consider the case of embedding the VN presented
in Fig. 2 over the multi-layer IP-over-OTN network in Fig. 1.
Given the residual capacity of the IP links, clearly, there is
not sufficient bandwidth in the IP network to route the VLink
between VNodes 0 and 1. Hence, no feasible embedding of
the VN exists. Indeed, if we were to place VNode 1 on either
IP nodes A or B, and VNode 0 on IP node C (the only possible
placement), we cannot route 15 units of bandwidth between IP
nodes A and C, or B and C over an unsplittable path. In the
single-layer embedding problem, such situation would have
led to rejecting this VN. However, we can exploit the topologi-
cal flexibility of multi-layer IP-over-OTN networks to establish
new IP link(s) when there is insufficient capacity present in
the IP layer. Fig. 3 illustrates and example solution of MULE
where a new IP link has been provisioned between IP nodes A
and C to accommodate the VLink between VNodes 0 and 1.
The new IP link is supported by provisioning resources on the
OTN path between the pair of OTN nodes connected to IP
nodes A and C, respectively. This new IP link consumed an
available port from IP nodes A and C. For the sake of sim-
plicity, we assume uniform capacity of 100 units of bandwidth
for all ports of an IP node. However, in the remainder of the
paper we do not make any assumptions on the capacity of the
IP ports.

Observe that in this example, there were several possibilities
for provisioning the new IP link(s). For instance, if VNode 1
was embedded on IP node B instead of C, then the new IP
link would have been between IP nodes B and C. Even when
embedding VNode 1 on IP node A, two IP links could have
been created to establish a path between IP nodes A and C
through B. Hence, performing the node and link embedding
separately impacts the cost of the resultant embedding solu-
tion, as well as the choice of new IP link(s) to setup. This
stresses the need to jointly consider both VN embedding and
provisioning of new IP links, which we will be addressing in
the remainder of the paper.

IV. OPT-MULE: AN ILP FORMULATION

MULE jointly optimizes VN embedding, creation of new
IP links and embedding of newly created IP links on the

1136 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

TABLE I
SUMMARY OF KEY NOTATIONS

OTN layer. We present an Integer Linear Program (ILP) for-
mulation for optimally solving MULE, namely OPT-MULE.
We first introduce the decision variables used in our ILP
(Section IV-A). Then we present our constraints (Section IV-B)
followed by the objective function (Section IV-C). A list of key
notations used in the ILP formulation is presented in Table I.

A. Decision Variables

A VLink must be mapped to a path in the IP network. The
following decision variable indicates the mapping between a
VLink (ū, v̄) ∈ Ē and an IP link, (u ′, v ′, i) ∈ E ′.

x ū v̄
u′v ′i =

{
1 if (ū, v̄) ∈ Ē is mapped to (u ′, v ′, i) ∈ E ′,
0 otherwise.

VNode mapping on IP node is denoted by:

yūu′ =
{

1 if ū ∈ V̄ is mapped to u ′ ∈ V ′,
0 otherwise.

The following decision variable determines the creation of
new IP links:

γu′v ′i =

⎧⎨
⎩

1 when i -th IP link is created between
u ′ and v ′,

0 otherwise.

Finally, a newly created IP link must be mapped to an OTN
path. This mapping between such IP link and an OTN link is
indicated by the following variable:

zu′v ′i
ûv̂ =

{
1 if (u ′, v ′, i) ∈ E ′ is mapped to (û, v̂) ∈ Ê ,
0 otherwise.

In what follows, we use the notation V ′2 to denote the set
of all pairs of IP nodes (u′, v′) such that u ′ �= v ′.

B. Constraints

1) VNode Mapping Constraint: Equations (1) and (2)
ensure that each VNode is mapped to exactly one IP node
according to the location constraints. Equation (3) restricts
multiple VNodes to be mapped on the same IP Node.

∀ū ∈ V̄ ,∀u ′ ∈ V ′ : yūu′ ≤ �ūu′ (1)

∀ū ∈ V̄ :
∑

u′∈V ′
yūu′ = 1 (2)

∀u ′ ∈ V ′ :
∑
ū∈V̄

yūu′ ≤ 1. (3)

2) VLink Mapping Constraints: Equation (4) ensures
that VLinks are mapped only to existing or newly cre-
ated IP links. Equation (5) ensures that each VLink
is mapped to a non-empty subset of IP links. We
prevent the formation of loops between parallel IP links
by (6). Equation (7) prevents overcommitment of IP
link bandwidth. Finally, (8), our flow-conservation con-
straint, ensures that VLinks are mapped on a continuous
IP path.

∀(ū, v̄) ∈ Ē , ∀(
u ′, v ′) ∈ V ′2, 1 ≤ i ≤ min(pu′ , pv ′) : x ūv̄

u′v ′i
≤ γu′v ′i + γv ′u′i + Γu′v ′i (4)

∀(ū, v̄) ∈ Ē :
∑

∀(u′,v ′)∈V ′2

pu′∑
i=1

x ūv̄
u′v ′i ≥ 1 (5)

∀(ū, v̄) ∈ Ē , ∀(
u ′, v ′) ∈ V ′2 :

pu′∑
i=1

x ūv̄
u′v ′i ≤ 1 (6)

∀(
u ′, v ′) ∈ V ′2, 1 ≤ i ≤ pu′ :

∑
∀(ū,v̄)∈Ē

x ūv̄
u′v ′i × būv̄ ≤ bu′v ′i

(7)

∀(ū, v̄) ∈ Ē , ∀u ′ ∈ V ′ :
∑

∀v ′∈V ′2

min(pu′ ,pv′)∑
i=1

(
x ūv̄
u′v ′i − x ūv̄

v ′u′i
)

= yūu′ − yv̄u′ . (8)

3) IP Link Creation Constraints: Equation (9) limits the
number of incident IP links on an IP node to be within its
available number of ports. Then, (10) ensures that a spe-
cific instance of IP link between a pair of IP nodes is either
decided by the ILP or was part of the input, but not both

CHOWDHURY et al.: MULTI-LAYER VNE 1137

at the same time.

∀u ′ ∈ V ′ :
∑

∀v ′∈V ′|v ′ �=u′

min(pu′ ,pv′)∑
i=1

γu′v ′i

+ γv ′u′i + Γu′v ′i ≤ pu′ (9)

∀(
u ′, v ′

) ∈ V ′2, 1 ≤ i ≤ pu′ : γu′v ′i + Γu′v ′i ≤ 1. (10)

4) IP-to-OTN Link Mapping Constraints: First, we ensure,
using (11), that only the newly created IP links are mapped on
the OTN layer. Then, (12) is the flow conservation constraint
that ensures continuity of the mapped OTN paths. Finally, (13)
is our capacity constraint for OTN links.

∀(
u ′, v ′

) ∈ V ′2, 1 ≤ i ≤ pu′ , (û, v̂) ∈ Ê : zu′v ′i
ûv̂ ≤ γu′v ′i

(11)

∀(
u ′, v ′

) ∈ V ′2, 1 ≤ i ≤ pu′ ,

∀û ∈ V̂ :
∑

∀v̂∈N (û)

(
zu′v ′i
ûv̂ − zu′v ′i

v̂ û

)

=

⎧⎨
⎩

γu′v ′i if τu′û = 1,
−γu′v ′i if τv ′û = 1,

0 otherwise.
(12)

∀(û, v̂) ∈ Ê :
∑

∀(u′,v ′)∈V ′2

pu′∑
i=1

zu′v ′i
ûv̂ × bu′v ′i ≤ bû v̂ . (13)

C. Objective Function

Our objective is to minimize the cost incurred by creating
new IP links and also the cost of provisioning bandwidth for
the VLinks. Cost for provisioning new IP links is computed
as the cost of allocating bandwidth in the OTN paths for every
new IP link. The cost of embedding a VN is computed as the
total cost of provisioning bandwidth on the IP links for the
VLinks. Our objective function is formulated as follows:

minimize
∑

∀(u′,v ′)∈V ′2

pu′∑
i=1

∑
∀(û,v̂)∈Ê

zu′v ′i
ûv̂ × bu′v ′i × Cû v̂

+
∑

∀(ū,v̄)∈Ē

∑
∀(u′,v ′)∈V ′2

pu′∑
i=1

x ū v̄
u′v ′i ′ × bū v̄ × Cu′v ′i . (14)

D. Hardness of OPT-MULE

Consider the case where the IP layer has sufficient capac-
ity to accommodate a given VN request. In this case, MULE
becomes a single-layer VNE, which has been proven to be NP-
Hard via a reduction from the multi-way separator problem [5].
Given that single-layer VNE is an instance of MULE, by
restriction we conclude that MULE is also NP-Hard.

V. FAST -MULE: A HEURISTIC APPROACH

Given the NP-Hard nature of the multi-layer VNE problem
and its intractability for large network instances, we pro-
pose FAST-MULE, a heuristic to solve the Multi-Layer VNE
problem. We begin by explaining the challenges behind the
design of FAST-MULE in Section V-A, followed by a descrip-
tion of its procedural details and an illustrative example in

Section V-B and Section V-D, respectively. We analyze the
running time of FAST-MULE in Section V-C. Then, we prove
in Section V-E that FAST-MULE yields the optimal solution
for star VN topologies with uniform bandwidth require-
ment. Finally, we provide a guideline on how to parallelize
FAST-MULE for leveraging multiple CPU cores (Section V-F).

A. Challenges

1) Joint Mapping in IP and OTN Layers: One challenge
of MULE is the fact that the embedding can take place in
both layers. This occurs when a VN could not be accommo-
dated by the existing IP links, and requires the creation of
new ones. A plausible approach is to handle the embedding
at each layer separately, i.e., start by mapping the VN on the
IP layer followed by mapping the new IP links on the OTN
layer. Clearly, such disjoint embedding is far from optimal as
there may not be sufficient bandwidth at the OTN level to
accommodate the new IP links. To overcome this limitation,
we equip FAST-MULE with the ability to consider both lay-
ers simultaneously when embedding a VN. This is achieved
by collapsing the IP and OTN into a single layer graph, sim-
ilar to [7]. Our collapsed graph contains all the IP and OTN
nodes and links, as well as the links connecting IP nodes to
OTN nodes. In contrast, [7] keeps the IP links and replaces
the shortest paths in OTN with IP links that could have been
created with those corresponding paths. In our case, a VLink
embedding that contains OTN links indicates the creation of
new IP links.

2) Joint VNode and VLink Embedding: Another challenge
is to perform simultaneous embedding of a VNode and
its incident VLinks. Embedding VNodes independently of
their incident VLinks increases the chances of VN embed-
ding failure. However, such joint embedding is hard to
solve since it is equivalent to solving the NP-hard Multi-
commodity Unsplittable Flow with Unknown Sources and
Destinations [50]. Our goal is to equip FAST-MULE with the
ability to perform joint embedding of VNodes along with their
incident VLinks. To achieve this, we augment the collapsed
graph with meta-nodes and modify its link capacities to con-
vert the VNode and VLink embedding problem into a min-cost
max-flow problem that we solve using Edmonds-Karp (EK)
algorithm [51]. The flows returned by EK indicate both the
VNodes and VLinks mapping. In what follows, we eluci-
date the details of this transformation along with how the
embedding solution is extracted from the flows obtained
from EK.

B. Heuristic Algorithm

Alg. 1 presents a high level view of FAST-MULE. From
a very high level, the algorithm works as follows. First, we
collapse the IP and OTN layers into a single-layer graph
to perform joint optimization on both of the layers. Then,
we incrementally embed the VN on the collapsed graph by
extracting star subgraphs from the VN and jointly embedding
the VNodes and VLinks of the star subgraph. We model the
joint embedding problem as an instance of finding min-cost
max-flow in the collapsed graph by setting appropriate flow

1138 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Algorithm 1: Multi-Layer VNE Algorithm

Input: Ĝ = (V̂ ,Ê), G′ = (V ′,E′), Ḡ = (V̄ ,Ē)
Output: Overlay Mapping Solution M

1 function FAST-MULE()
2 /*Initialize List of Settled Nodes*/
3 S = {}
4 Step 1: Create Collapsed Graph
5 G = CreateCollapsedGraph(G′,Ĝ)
6 forall v̄ ∈ V̄ do
7 if v̄ ∈ S then
8 continue
9 S = S ∪ v̄

10 Step 2: Create Meta-Nodes
11 M.nmap = M.nmap ∪ MapNode(v̄ ,L(v̄))
12 for each (ū ∈ N (v̄)) do
13 if (ū in S) then
14 continue
15 if (M.nmap(ū) == NULL) then
16 V = V ∪ CreateMetaNodes(L(ū))
17 else
18 V = V ∪ CreateMetaNodes(M.nmap(ū))
19 Step 3: Create Ref-Nodes
20 V = V ∪ CreateRefNodes(V)
21 Step 4: Run Link Embedding Algorithm
22 M.emap = M.emap ∪ EdmondsKarp(G)
23 E = E ∪ GetNewIPLinks(M.emap)
24 S = S ∪ isSettled(N (v̄))
25 Return M;

capacities and introducing additional meta-nodes and meta-
links in the collapsed graph. We describe each of the phases
from Alg. 1 in detail in the following.

Stage 1 (Creation of a Collapsed Graph): We begin by col-
lapsing the OTN and IP networks to a single-layer graph to
achieve a joint embedding across both the IP and the OTN
layers (i.e., to address the first challenge from Section V-A).
The set of nodes in the collapsed graph contains all the IP
and OTN nodes. The links in the collapsed graph consist of:
(i) all the OTN links, (ii) added IP-to-OTN links (described
later), and 3) all the IP links. We keep the residual capacities
of the IP and OTN links as is. We assume the OTN links have
significantly higher cost than the IP links. Therefore, new IP
links are created only when they are really needed and can
significantly reduce embedding cost. Finally, between every
IP node u′ and its corresponding OTN node τ(u ′), we create
pu′ links with capacity capu′ . This guarantees that at most pu′
new IP links can be created from u′, and that their capacity
cannot exceed node u′’s port capacity.

Stage 2 (Extraction of Star-Shaped Sub-Graphs From VN):
Next, we randomly pick a VNode v̄ ∈ V̄ and embed v̄ with its
incident VLinks. Embedding v̄ ’s incident links entails embed-
ding its neighbors as well. This means that we are embedding a
star-shaped subgraph of the VN at each iteration. Incremental
embedding of star subgraphs was performed to jointly embed
nodes and links of the VN as much as possible (i.e., to address

the second challenge from Section V-A). To achieve this, we
begin by mapping our current VNode v̄ , i.e., the center of the
star to a random IP node in its location constraint set (denoted
as source in the following). Then we construct a flow network
in such a way that the paths contributing to a min-cost max-
flow in the flow network correspond to the embedding of the
VLinks incident to v̄ .

Stage 3 (Addition of Meta-Nodes): We create a flow network
by replacing every link in the collapsed graph with direc-
tional links in both directions. Then, ∀ū ∈ N (v̄), we add
a meta-node in the flow network that we connect to every
node in L(ū). These meta-nodes are in-turn connected to a
single meta-node, that we denote as the sink. After adding the
meta-nodes we set the link capacities as follows:

• We set the flow capacity of a link (u, v) from the col-
lapsed graph that is not connected with any meta-node
to buv

max∀ū∈N (v̄)(būv̄)
. Setting such capacity puts an upper

limit on the maximum number of VLinks that can be
routed through these links. Although this can lead to
resource fragmentation and in the worst case rejection of
a VN, it ensures that no capacity constraints are violated.

• We set the capacity of the links incident to a meta-node
to 1. This guarantees that at most |N (v̄)| flows can be
pushed from source to sink.

Stage 4 (Addition of Referee Nodes): Location constraint
sets of different VNodes in a single VN may overlap. We
denote such VNodes as conflicting nodes and the intersection
of their location constraint sets as the conflict set. Every node
in the conflict set is denoted as a conflict node. When con-
flicting VNodes are incident to the same start node, we end
up with an augmented graph where all the nodes in the con-
flict set are connected to more than one meta-node. This is
problematic because EK may end up routing multiple VLinks
via the same conflict node, thereby violating the one-to-one
node placement constraint. To resolve this issue, we introduce
“Referee Nodes” (Ref-Nodes). Ref-Nodes are meta-nodes that
are added to resolve the case of conflicting VNodes. In pres-
ence of a conflict, conflict nodes will be connected to more
than one meta-node at the same time. Ref-Nodes are thus intro-
duced to break this concurrency by removing the conflicting
connections, and replacing them with a single connection to
a Ref-node. The Ref-node is subsequently connected to all
the meta-nodes of the conflicting nodes. This ensures that
at most a single VLink will be routed through any conflict
node. Further, when a conflict node is selected to host a
given VNode, no other IP nodes for the same VNode will
be selected, thereby ensuring an one-to-one assignment.

Stage 5 (Execution of the Edmonds-Karp Algorithm): Now
we have an instance of the max-flow problem that we will
solve using the Edmonds-Karp (EK) Algorithm []. We have
set the capacity of the links in the flow network in such a
way that EK can push at most |N (v̄)| flows, indicating the
VLink embedding of v̄ ’s incident links. Note that the only
way to push |N (v̄)| flows is by having each flow traverse
a unique meta-node to reach the sink. The VNode embed-
ding of v̄ ’s neighbors can be extracted by examining each
flow to find the incident IP node of each meta-node. If any

CHOWDHURY et al.: MULTI-LAYER VNE 1139

Fig. 4. Transformation from multi-layer to single-layer substrate network.

of the obtained flows is routed via an OTN path, then a new
IP link is established and added to the collapsed graph. This
allows subsequent iterations to use the newly created IP link.
If at any iteration EK returns less than |N (v̄)| flows, this
indicates an embedding failure, and the algorithm terminates.
Otherwise, the algorithm returns to Stage 2 and repeats until
all the VNodes are settled.

C. Running Time Analysis

We first introduce the following notations for running time
analysis:

• I = the number of iterations of FAST-MULE
• |V | = the number of nodes in the collapsed graph, where

|V | = O(|V̂ | + |V ′|)
• |E | = the number of links in the collapsed graph, where

|E | = O(|Ê |+ |E ′|+ |V ′|). The last element represents
the number of IP-OTN links.

During each iteration (i.e., embedding of a star subgraph
from the VN), we execute the EK algorithm to find a min-cost
max-flow in the collapsed graph. We replaced the augment-
ing path finding procedure of EK with Dijkstra’s shortest
path algorithm. Therefore, the running time of EK becomes
O(|V ||E |2 log |V |). This renders the time complexity of our
proposed approach to O(I |V ||E |2 log |V |). If we consider
the worst-case scenario where the VN is in the form of a
chain, and the nodes are traversed sequentially, then I =
|V̄ | − 1, which results in a worst-case time complexity of
O(|V̄ ||V ||E |2 log |V |).

D. Illustrative Example

Fig. 4(b) illustrates how the IP-over-OTN graph in Fig. 4(a)
has been converted into a collapsed IP-OTN graph. The col-
lapsed graph is composed of the OTN nodes, OTN links, IP
Nodes, IP-OTN links (represented by the single straight gray
lines), and IP links (represented by the dashed black lines).
Here, we assume that each IP node has a single residual port
of capacity 20. The numbers on each link represent the capac-
ity of the link followed by the cost of using this link. Observe
that we set the cost of the IP links to 1, whereas the cost of
the OTN links is set to a really high number to discourage the
routing from passing through OTN links.

Fig. 5. Illustrative Example.

Next, we showcase how FAST-MULE embeds the VN in
Fig. 2 atop the collapsed graph, as illustrated in Fig. 5. We
consider that VNode 0 is the start node. Hence, the source node
at this iteration of EK is IP node C. The sink node is meta-
node s attached to the meta-nodes α and β of VNodes 1 and 2,
respectively. Given that the maximum demand of VNode 0’s
incident links is 15, the capacity of each link in the collapsed
graph (except links incident to meta-nodes whose capacity is
fixed to 1) is replaced by the number of VLinks of capacity
15 it can accommodate. Running EK on the augmented graph
(Stage 5) returns two flows between the source node C and
the sink node s, indicated by the black and grey dotted lines in
Fig. 5. Here, we observe that EK can only route VLink (0,2)
via existing IP links (grey flow); whereas VLink (0,1) is routed
through OTN links (black flow), thereby creating a new IP link
(B,C) with capacity 20. Further, by examining the terminating
IP nodes in every flow, we identify the VNode embedding of
nodes 1 and 2 as IP nodes B and E, respectively.

E. Optimality of FAST-MULE for Star VN Topology

Recall that in Alg. 1, the joint node and link embeddings
are executed iteratively on a subgraph of the VN until all
the VNodes are settled. This iterative scheme renders a sub-
optimal solution. However, if we could perform a joint node
and link embedding on the entirety of the VN in a single
iteration, that would guarantee that the obtained solution is

1140 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

indeed optimal. Such embedding is possible when all the nodes
in the VN are only connected to a single node, and if the lat-
ter is selected as the start node, i.e., the VN topology is a
star. A star VN topology S(N) contains a center node ū and
N links connecting ū to N leaf nodes {v̄1, v̄2, . . . v̄N }. In the
sequel, we prove that Alg. 1 can find the optimal solution in
polynomial time when the VN request is a star topology (typ-
ically used to support multi-cast services [4]) with identical
bandwidth demand on all VLinks.

Theorem 1: Given a star VN topology Ḡ = S (N) with
uniform bandwidth demand β for all VLinks, Alg. 1 obtains
the optimal solution in polynomial time.

Proof: The optimal embedding of Ḡ , M∗, is the one
where the VNodes are placed on the IP nodes that provide
the lowest cost link embedding. The cost includes both the
cost of provisioning new IP links and the cost of allocat-
ing bandwidth for VLinks. We denote the cost of M∗ as
θ∗ = β

∑N
i=1

∑
u′v ′∈Pūv̄i

Cu′v ′ , where Pū v̄i is the embed-
ding path for VLink (ū, v̄i). Without loss of generality, we
abstract a newly created IP link (u′, v′)’s cost as Cu′v ′ . Let
M be the solution obtained by Alg. 1. For simplicity, we
assume the central node ū has exactly one IP node in its
location constraint set. M consists of placing ū on the IP
node in its location constraint set, v′, followed by running
EK from v′ to the sink node s. EK will return the min-cost
max-flow from v′ to the sink node s. Given that the capac-
ity of all the incident links to s are 1, the number of flow
augmenting paths will be at most the number of leaf nodes
in Ḡ and exactly 1 unit of flow will be pushed through
each of these augmenting paths. Therefore, upon successful
embedding, EK will return N flow augmenting paths with min-
imum cost θ. Now recall that the only way to push N flows
towards the sink is to traverse every meta-node once; which
entails the traversal of one node from each location constraint
set. The traversed nodes represent the VNode embedding of
all the leaf nodes in S(N). Therefore, the flow augmenting
paths represent a valid embedding of S(N). We can charac-
terize θ as, θ =

∑N
i=1

∑
(u,v)∈Fi

Cuv × fuv , where Fi is
the i-th flow augmenting path and fuv is the flow pushed
along link (u, v) in the flow network constructed from the
collapsed graph. Note that, fuv = 1, therefore, the cost
becomes, θ =

∑N
i=1

∑
(u,v)∈Fi

Cuv . If we can prove that∑N
i=1

∑
(u,v)∈Fi

Cuv =
∑N

i=1

∑
u′v ′∈Pūv̄i

Cu′v ′ then our
proof is complete. Since θ∗ is the optimal objective value, let,∑N

i=1

∑
(u,v)∈Fi

Cuv >
∑N

i=1

∑
u′v ′∈Pūv̄i

Cu′v ′ . Then it

implies that if we pushed the flows along the paths
⋃N

i=1 Pū v̄i
(the newly created IP links can be expanded to a set of OTN
links to match the paths in the collapsed graph), we would
have obtained a lower cost solution to min-cost max-flow
problem, which contradicts that θ is the minimum cost of our
min-cost max-flow problem for the converted flow network.
Therefore,

∑N
i=1

∑
(u,v)∈Fi

Cuv =
∑N

i=1

∑
u′v ′∈Pūv̄i

Cu′v ′ ,
completing our proof.

If the central node, ū , has more than one candidate node in
its location constraint set, then running Alg. 1 |L(ū)| times is
sufficient to obtain the lowest cost mapping solution, and the
running time of Alg. 1 still remains polynomial.

F. Parallel Implementation of FAST-MULE

Note that during the execution of stage 2 in FAST-MULE,
i.e., during the extraction of star-subgraphs from the VN, we
randomly chose a VNode as the center node of the extracted
star graph. Indeed, the order in which the VNodes are chosen
for star subgraph extraction has an impact on the performance
of the heuristic. Therefore, we propose to execute the heuristic
for a set of VNode orderings and choose the least cost one
from the resulting solutions. Clearly, this means increasing the
order of complexity for FAST-MULE.

One way to consider different VNode ordering in FAST-
MULE is to consider the different VNode orders in parallel,
i.e., implement FAST-MULE as a multi-threaded program to
utilize the multiple CPU cores on modern machines. Each
thread of execution computes a solution to MULE by taking
a VNode ordering as an input. Since, one execution of FAST-
MULE for one VNode ordering is independent of another
execution with a different VNode ordering, therefore, they
can be run in parallel without requiring any synchronization
between the threads. After the parallel executions finish, we
can choose the best embedding, i.e., the least cost embedding
among all the parallel executions.

VI. EVALUATION RESULTS

We evaluate our proposed solutions for MULE through sim-
ulations. Due to the lack of publicly available real world multi-
layer network topologies, we resort to generating synthetic
topologies with varying sizes for our performance evaluation.
We first describe our simulation setup in Section VI-A and the
evaluation metrics in Section VI-B. Then we present our eval-
uation results based on the following two scenarios: (i) micro-
benchmarking of FAST-MULE by comparing with the optimal
solution and to D-VNE [7], the state-of-the-art heuristic
for solving multi-layer VNE problem (Section VI-C), and
(ii) steady-state analysis of the performance of FAST-MULE
and comparison with that of D-VNE [7] (Section VI-D).
For the micro-benchmarking scenario, we consider the VN
requests in isolation, assuming each VN request can be suc-
cessfully embedded on the SN. Micro-benchmarking allows us
to measure how resource efficient is FAST-MULE compared
to the optimal solution and to D-VNE [7]. In contrast, for the
steady-state scenario, we consider VN arrival and departure
over a period of time and consider the possibility of failing
to embed VN requests on the SN. The steady-state analysis
gives insights on substrate resource utilization over a longer
period of time.

A. Simulation Setup

1) Testbed: We have implemented OPT-MULE and FAST-
MULE using IBM ILOG CPLEX 12.5 C++ libraries and
Java, respectively. OPT-MULE was run on a machine with
4×8 core 2.4Ghz Intel Xeon E5-4640 CPU and 512GB of
memory, whereas, we used a machine with 2×8 core 2Ghz
Intel Xeon E5-2650 CPU and 256GB memory to evaluate
FAST-MULE We used a home-grown discrete event simulator
to simulate the arrival and departure of VNs for the steady
state scenario.

CHOWDHURY et al.: MULTI-LAYER VNE 1141

2) Multi-Layer IP-Over-OTN Topology: As mentioned ear-
lier, due to the lack of publicly available real multi-layer
network topologies, we resorted to synthetically generating the
multi-layer SN topologies. For the micro-benchmarking sce-
nario, we generated OTNs by varying the size between 15–100
nodes. For each OTN, we generated an IP topology with a node
count of 60% of that of the OTN. Each node in the IP topology
was attached to exactly one node in the OTN topology. For
both the OTN and the IP topologies, we set a link generation
probability to match their average node degree to known ISP
topologies [52]. For the steady state scenario, we generated
a larger SN topology with a 150 node OTN and 90 node IP
network. Choice of such a size is based on the average size of
known ISP networks found in [52]. The link generation prob-
ability was again chosen to ensure node degrees are similar
to known ISP topologies. For both scenarios, OTN links were
assigned a capacity of 100Gbps, while IP links were assigned
a capacity randomly chosen between 10–20Gbps. Finally, we
used a constrained shortest-path algorithm to map the input IP
links over OTN paths.

3) VN Topology: For the micro-benchmarking scenario, we
generated 20 VNs for each combination of IP and OTN, each
VN with 4–8 VNodes. For the steady state case, we varied
the size of the VN between 4–15 VNodes. For both scenar-
ios, we set a 50% probability of having a link between every
pair of VNodes. VLink capacities were randomly set between
50%–100% of that of the IP links. For each VNode, we gen-
erated a location constraint set by randomly selecting an IP
node and including all the IP nodes withing its 3-hop reach.
For random graph generation (both the VN and the SN) we
used Erdos – Renyi method [53].

We evaluated the arrival and departure of VNs in the steady
state scenario by simulating a Poisson process. We varied the
VN arrival rate between 4 to 10 VNs per 100 time units,
with a VN lifetime exponentially distributed with a mean of
1000 time units. These chosen set of parameters conforms with
the ones used in [5], [20], and [26].

B. Evaluation Metrics

1) Cost Ratio: This is the ratio of costs obtained by two
different approaches for solving the same problem instance,
where cost is computed using (14). Cost ratio measures the
relative performance of two approaches.

2) Execution Time: The time required for an algorithm to
solve one instance of MULE.

3) Acceptance Ratio: The fraction of VN requests that
have been successfully embedded on the SN over all the VN
requests.

4) Utilization: The Utilization of an IP link is computed as
the ratio of total bandwidth allocated to the embedded VLinks
to that IP links capacity

5) Embedding Path Length: The length of IP (or OTN) path
corresponding to a VLink’s (or new IP link’s) embedding.

C. Micro-Benchmarking Results

We focus our micro-benchmarking on the following aspects:
(i) cost comparison between FAST-MULE and OPT-MULE to

Fig. 6. FAST-MULE to OPT-MULE Cost Ratio.

Fig. 7. Comparison of Execution Time.

evaluate how well FAST-MULE compares to the optimal,
(ii) impact of VNode ordering on FAST-MULE’s performance,
and (iii) comparison of FAST-MULE with the state-of-the-art
heuristic [7] for solving multi-layer VNE problem.

1) Comparison of FAST-MULE With OPT-MULE: First,
we empirically measure the extent of additional resources
allocated by FAST-MULE compared to OPT-MULE. Our
cost function is proportional to the total bandwidth allo-
cated for a VN and the new IP links. Therefore, cost ratio
of FAST-MULE to OPT-MULE gives the extent of addi-
tional resources allocated by FAST-MULE. Fig. 6 shows the
Cumulative Distribution Function (CDF) of cost ratio between
FAST-MULE and OPT-MULE. Note that, OPT-MULE scaled
up to only 35-node OTN. To mitigate the impact of VNode
ordering during embedding, we run FAST-MULE 75 times,
each time with a different VNode embedding order and take
the best solution at the end. We observe from the results that
the end. We observe from the results that 50% of the VNs
admitted by FAST-MULE have an embedding cost within 10%
of the optimal solution. On average, the admitted VNs have
a cost within 1.47× of that of the optimal solution. These
results are indeed promising given that FAST-MULE achieves
this while executing 440× faster than OPT-MULE on average
(10s for FAST-MULE vs. >1hr per VN for OPT-MULE).

To further showcase the advantage of FAST-MULE com-
pared to OPT-MULE, we plot their execution times against
varying SN size in Fig. 7. For similar problem instances in
our evaluation, FAST-MULE executed 200× to 900× faster
than OPT-MULE. Even after increasing the SN size, the exe-
cution time of FAST-MULE remained in the order of tens of
seconds.

2) Trade-Off Between Cost Ratio and Execution Time: We
also evaluated the impact of the number of VNode orderings
considered for the embedding. We present the results in Fig. 8,
which shows how increasing the number of considered VNode

1142 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Fig. 8. Impact of VNode Shuffle on FAST-MULE’s Performance.

Fig. 9. Comparison between FAST-MULE and D-VNE [7].

orderings impacts the cost ratio and the execution time of
FAST-MULE. Clearly, as we increase the number of consid-
ered VNode orderings, FAST-MULE to OPT-MULE cost ratio
decreases. This comes at the expense of increased execution
time, which still remains in the order of tens of seconds.
However, the gain becomes marginal as we go beyond 75 itera-
tions. Hence, in our evaluation we opt for feeding FAST-MULE
with 75 VNode orderings and select the best solution.

3) Comparison of FAST-MULE With D-VNE [7]: Now, we
evaluate how well FAST-MULE performs compared to the
state-of-the art heuristic for multi-layer VNE [7]. We refer
to [7] by D-VNE in the remaining. D-VNE constructs an
auxiliary graph from the IP and Optical layers. The auxiliary
graph contains precomputed optical paths that can be poten-
tially chosen for creating new IP links. In contrast, we do not
precompute paths in the OTN layer and let the embedding
decide the best set of paths for jointly embedding VLinks and
possible new IP links. D-VNE first embeds the VNodes using
a greedy matching approach and then uses shortest path algo-
rithm to route the VLinks between embedded VNodes. We

Fig. 10. VN Acceptance Ratio.

modified D-VNE to fit to our context where we do not perform
wavelength allocation and omit node resource requirements.

We begin by evaluating the cost ratio of D-VNE to OPT-
MULE (Fig. 9(a)). The performance gap between D-VNE and
FAST-MULE is evident from Fig. 9(a). D-VNE could embed
VNs within 1.5× the cost of the optimal for ≈40% of the
cases, whereas, FAST-MULE remains within the same bound
for more than 70% of the cases. A head-to-head comparison
between D-VNE and FAST-MULE is presented in Fig. 9(b).
We observe that on average D-VNE allocates ≈66% more
resources compared to FAST-MULE. These results reflect the
advantage of a joint embedding scheme compared to a disjoint
approach adopted by D-VNE.

D. Steady State Analysis

We perform a steady state analysis using the VN arrival
rate and duration parameters described in Section VI-A for
a total of 10000 time units. The total number of VNs across
the simulations were varied between 400 - 950. The steady
state performance analysis is focused on the following aspects:
(i) comparing the acceptance ratio obtained by FAST-MULE to
that of D-VNE under different loads, (ii) analyze and compare
the load distribution on the SN, and (iii) analyze topological
properties of the solution.

1) Acceptance Ratio: In this section, we present results on
the acceptance ratio obtained by FAST-MULE and compare
that with the acceptance ratio obtained by using D-VNE [7].
We consider the first 1000 time units of the simulation as the
warm up period and discard the values from this duration. We
compute the mean of the acceptance ratio obtained during the
rest of the simulation period and report it along with the 5th
and 95th percentile values against different VN arrival rates
in Fig. 10. The results show that FAST-MULE outperforms
D-VNE in all cases and accepts at least ≈37.5% more VNs
over all cases. When the system load is increased, i.e., for
higher acceptance ratio, this gap is even bigger. For instance,
when VN arrival rate is 10 VNs/100 time unit, FAST-MULE
accepts ≈78%× more VNs compared to D-VNE.

There can be several contributing factors to such behav-
ior. For instance, one possibility is that the SN is becoming
saturated (due to sub-optimal embedding with longer embed-
ding paths), hence, VN requests are being rejected more often.
Another possibility is that sufficient capacity in the SN is
available, however, an algorithm is unable to exploit the avail-
able capacity or exploit the topological flexibility offered by
the multi-layer network. In the following, we analyze how

CHOWDHURY et al.: MULTI-LAYER VNE 1143

Fig. 11. Load Distribution at the IP Layer.

Fig. 12. Mean IP Link Utilization with Varying Load.

Fig. 13. Ratio of Newly Created IP Links (FAST-MULE : D-VNE) with
Varying Load.

these algorithms distribute load over the substrate and how
much they are able to exploit the topological flexibility to
gain further insight into the difference in acceptance ratio.

2) Load Distribution: We measure the utilization of IP
links at each VN arrival and departure event. We present
the mean IP link utilization for varying load (i.e., VN arrival
rate) in Fig. 12. One interesting observation is that, although
D-VNE yields a lower acceptance ratio, it exhibited a higher
mean link utilization compared to FAST-MULE (≈10% more).
However, this plot does not capture the variance in link utiliza-
tion and does not say much about how the load is distributed
over the IP links.

We present a further break down of IP link utilization
in Fig. 11. Specifically, where we present the Cumulative
Distribution Function (CDF) mean, 5th percentile, and
95th percentile link utilizations in Fig. 11(a), Fig. 11(b),
and Fig. 11(c), respectively. The results for load distribution
is also consistent with that from Fig. 12, i.e., at all the spec-
trum of distribution D-VNE is exhibiting slightly higher link
utilization while yielding lower acceptance ratio.

Fig. 14. Mean Embedding Path Length.

Another aspect that can also be tributary to such behavior
is the extent to which the algorithms are exploiting the topo-
logical flexibility of multi-layer networks. After the end of
each simulation we counted the total number of new IP links
that were established by FAST-MULE and D-VNE, respec-
tively, and present the ratio of these numbers in Fig. 13. As
we can observe, FAST-MULE created more IP links compared
to D-VNE and hence was able to accept more VNs in the long
run. Because of the higher number of IP links, the graph diam-
eter reduced and resulted in possibly shorter embedding paths,
hence, lower utilization of individual links. Because of the
joint optimization approach, FAST-MULE was able to make
better decisions regarding creation of new IP links and also
for embedding paths, hence, the acceptance ratio and lower
link utilization.

3) Topological Properties of the Solution: For each simula-
tion setting, we computed the mean embedding path length for
both the VLinks and the newly created IP links and present the
result in Fig. 14. We observe from Fig. 14(a) that FAST-MULE
embedded the VLinks on shorter paths (≈30%) compared to
D-VNE. This is a combined effect of being able to create more
IP links on the long run as well as the joint embedding of

1144 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

VNodes and VLinks whenever possible. We also present the
mean embedding path length for the newly created IP links
in Fig. 14(b). Since the OTN is static and FAST-MULE estab-
lished significantly more new IP links compared to that of
D-VNE, IP link embedding paths became longer in case of
FAST-MULE.

VII. CONCLUSION

This paper studied MULE, i.e., multi-layer virtual network
embedding on an IP-over-OTN substrate network. We
proposed an ILP formulation, OPT-MULE, for optimally solv-
ing MULE and a heuristic, FAST-MULE, to address the
computational complexity of the ILP. To the best of our knowl-
edge, this is the first optimal solution to multi-layer VNE.
Our evaluation of FAST-MULE shows that it performs within
1.47× of the optimal solution on average. FAST-MULE also
outperformed the state-of-the-art heuristic for multi-layer VNE
and allocated ≈66% less resources on average while accepting
≈60% more VN requests on average. Finally, we also proved
that our proposed heuristic obtains optimal solution for star
shaped VNs with uniform bandwidth demand in polynomial
time.

We hope that this first endeavor will stimulate further
research in multi-layer network virtualization. One possible
future direction is to consider a dynamic OTN where more
capacity can be provisioned by establishing new light paths
in the underlying DWDM. Technological constraints posed
by different optical network technologies such as wavelength
continuity of DWDM networks or sub-wavelength resource
allocation capabilities of elastic optical networks [31] are other
interesting directions worth exploring in the future.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
of IEEE/ACM/IFIP CNSM 2017 for their valuable feedback.

REFERENCES

[1] X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The
prospect of inter-data-center optical networks,” IEEE Commun. Mag.,
vol. 51, no. 9, pp. 32–38, Sep. 2013.

[2] N. Ghani, S. Dixit, and T.-S. Wang, “On IP-over-WDM integration,”
IEEE Commun. Mag., vol. 38, no. 3, pp. 72–84, Mar. 2000.

[3] J. F. Botero et al., “Energy efficient virtual network embedding,” IEEE
Commun. Lett., vol. 16, no. 5, pp. 756–759, May 2012.

[4] S. Ayoubi, C. Assi, K. Shaban, and L. Narayanan, “MINTED: Multicast
virtual network embedding in cloud data centers with delay constraints,”
IEEE Trans. Commun., vol. 63, no. 4, pp. 1291–1305, Apr. 2015.

[5] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” in Proc.
IEEE INFOCOM, 2009, pp. 783–791.

[6] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[7] J. Zhang et al., “Dynamic virtual network embedding over multilayer
optical networks,” J. Opt. Commun. Netw., vol. 7, no. 9, pp. 918–927,
Sep. 2015.

[8] X. Jin et al., “Optimizing bulk transfers with software-defined opti-
cal WAN,” in Proc. ACM SIGCOMM, Florianópolis, Brazil, 2016,
pp. 87–100.

[9] F. Rambach et al., “A multilayer cost model for metro/core networks,”
J. Opt. Commun. Netw., vol. 5, no. 3, pp. 210–225, Mar. 2013.

[10] “Interfaces for the optical transport network,” Int. Telecommun. Union,
Geneva, Switzerland, Rep. g.709/y.1331, 2016. [Online]. Available:
http://www.itu.int/rec/T-REC-G.709/

[11] A. L. Chiu et al., “Architectures and protocols for capacity efficient,
highly dynamic and highly resilient core networks [invited],” J. Opt.
Commun. Netw., vol. 4, no. 1, pp. 1–14, Jan. 2012.

[12] OpenFlow-Enabled Transport SDN. Accessed: Feb. 2018. [Online].
Available: https://www.opennetworking.org/wp-content/uploads/2013/
05/sb-of-enabled-transport-sdn.pdf

[13] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, “Emerging transport
SDN architecture and use cases,” IEEE Commun. Mag., vol. 54, no. 10,
pp. 116–121, Oct. 2016.

[14] Cisco nLight Technology: A Multi-Layer Control Plane Architecture for
IP and Optical Convergence. Accessed: Feb. 2018. [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-
3750-series-switches/whitepaper_c11-718852.html

[15] S. Dahlfort and D. Caviglia, “IP-optical convergence: A complete
solution,” Ericsson Rev., vol. 9, no. 1, pp. 34–40, 2014.

[16] S. R. Chowdhury et al., “MULE: Multi-layer virtual network embed-
ding,” in Proc. IEEE/ACM/IFIP CNSM, Tokyo, Japan, 2017, pp. 1–9.

[17] M. Chowdhury, F. Samuel, and R. Boutaba, “PolyViNE: Policy-based
virtual network embedding across multiple domains,” in Proc. ACM
VISA Workshop, 2010, pp. 49–56.

[18] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Comput. Netw., vol. 55,
no. 4, pp. 1011–1023, 2011.

[19] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link
mapping,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219,
Feb. 2012.

[20] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network
embedding algorithms for network virtualization,” IEEE Trans. Netw.
Service Manag., vol. 10, no. 2, pp. 105–118, Jun. 2013.

[21] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “VDC planner:
Dynamic migration-aware virtual data center embedding for clouds,” in
Proc. IFIP/IEEE IM, Ghent, Belgium, 2013, pp. 18–25.

[22] Z. Zhang et al., “Energy-aware virtual network embedding,” IEEE/ACM
Trans. Netw., vol. 22, no. 5, pp. 1607–1620, Oct. 2014.

[23] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network embed-
ding with opportunistic resource sharing,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 816–827, Mar. 2014.

[24] N. Shahriar et al., “Connectivity-aware virtual network embedding,” in
Proc. IFIP Netw., Vienna, Austria, May 2016, pp. 46–54.

[25] S. Ayoubi, Y. Chen, and C. Assi, “Towards promoting backup-sharing
in survivable virtual network design,” IEEE/ACM Trans. Netw., vol. 24,
no. 5, pp. 3218–3231, Oct. 2016.

[26] S. R. Chowdhury et al., “Dedicated protection for survivable virtual
network embedding,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4,
pp. 913–926, Dec. 2016.

[27] N. Shahriar et al., “Virtual network survivability through joint spare
capacity allocation and embedding,” IEEE J. Sel. Areas Commun., to be
published.

[28] M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Comput. Netw., vol. 54, no. 5, pp. 862–876, 2010.

[29] M. F. Bari et al., “Data center network virtualization: A survey,”
IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quart.,
2013.

[30] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: A survey,” IEEE Commun. Mag.,
vol. 51, no. 11, pp. 24–31, Nov. 2013.

[31] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on
OFDM-based elastic core optical networking,” IEEE Commun. Surveys
Tuts., vol. 15, no. 1, pp. 65–87, 1st Quart., 2013.

[32] R. Nejabati, E. Escalona, S. Peng, and D. Simeonidou, “Optical network
virtualization,” in Proc. ONDM, Bologna, Italy, Feb. 2011, pp. 1–5.

[33] M. Savi et al., “Benefits of multi-layer application-aware resource allo-
cation and optimization,” in Proc. IEEE EuCNC, Oulu, Finland, 2017,
pp. 1–5.

[34] Y. Li, H. Li, Y. Liu, and Y. Ji, “Multi-layer service function chaining
scheduling based on auxiliary graph in IP over optical network,” Proc.
SPIE, vol. 10464, Oct. 2017, Art. no. 1046424.

[35] Ć. Rožić, D. Klonidis, and I. Tomkos, “A survey of multi-layer network
optimization,” in Proc. ONDM, Cartagena, Spain, 2016, pp. 1–6.

[36] M. Duelli, E. Weber, and M. Menth, “A generic algorithm for CAPEX-
aware multi-layer network design,” in Proc. ITG Symp. Photon. Netw.
(VDE), Leipzig, Germany, 2009, pp. 1–8.

[37] I. Katib and D. Medhi, “IP/MPLS-over-OTN-over-DWDM multilayer
networks: An integrated three-layer capacity optimization model, a
heuristic, and a study,” IEEE Trans. Netw. Service Manag., vol. 9, no. 3,
pp. 240–253, Sep. 2012.

CHOWDHURY et al.: MULTI-LAYER VNE 1145

[38] C. Govardan et al., “A heuristic algorithm for network optimization of
OTN over DWDM network,” in Proc. IEEE ANTS, 2015, pp. 1–6.

[39] E. Palkopoulou, D. A. Schupke, and T. Bauschert, “Energy efficiency
and CAPEX minimization for backbone network planning: Is there a
tradeoff?” in Proc. IEEE ANTS, New Delhi, India, 2009, pp. 1–3.

[40] H. Zhang and A. Durresi, “Differentiated multi-layer survivability in
IP/WDM networks,” in Proc. IEEE/IFIP NOMS, Florence, Italy, 2002,
pp. 681–694.

[41] W. Bigos, B. Cousin, S. Gosselin, M. Le Foll, and H. Nakajima,
“Survivable MPLS over optical transport networks: Cost and resource
usage analysis,” IEEE J. Sel. Areas Commun., vol. 25, no. 5,
pp. 949–962, Jun. 2007.

[42] W. Lu, X. Yin, X. Cheng, and Z. Zhu, “On cost-efficient integrated
multilayer protection planning in IP-over-EONs,” J. Lightw. Technol.,
vol. 36, no. 10, pp. 2037–2048, May 15, 2018.

[43] A. Alashaikh, D. Tipper, and T. Gomes, “Supporting differentiated
resilience classes in multilayer networks,” in Proc. IEEE DRCN, Paris,
France, 2016, pp. 31–38.

[44] M. Tornatore, D. Lucerna, B. Mukherjee, and A. Pattavina, “Multilayer
protection with availability guarantees in optical WDM networks,” J.
Netw. Syst. Manag., vol. 20, no. 1, pp. 34–55, 2012.

[45] O. Gerstel et al., “Multi-layer capacity planning for IP-optical networks,”
IEEE Commun. Mag., vol. 52, no. 1, pp. 44–51, Jan. 2014.

[46] P. Demeester et al., “Resilience in multilayer networks,” IEEE Commun.
Mag., vol. 37, no. 8, pp. 70–76, Aug. 1999.

[47] D. BianchiAn, G. Parthasarathy, and Y. Xu, “OTN system and method
for supporting single-fiber bidirectional transmission of supervisory
channel light,” WO Patent WO2 015 127 780, Sep. 2015. [Online].
Available: https://patents.google.com/patent/WO2015127780A1/en

[48] S. Chen et al., “Full-duplex bidirectional data transmission link using
twisted lights multiplexing over 1.1-km orbital angular momentum
fiber,” Sci. Rep., vol. 6, Nov. 2016, Art. no. 38181.

[49] Link Aggregation Control Protocol. Accessed: Feb. 2018. [Online].
Available: http://www.ieee802.org/3/ad/public/mar99/seaman_1_0399.
pdf

[50] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source
unsplittable flow problem,” in Proc. IEEE FOCS, 1998, pp. 290–299.

[51] J. Edmonds and R. M. Karp, “Theoretical improvements in algorith-
mic efficiency for network flow problems,” J. ACM, vol. 19, no. 2,
pp. 248–264, 1972.

[52] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 133–145, 2002.

[53] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes
Mathematicae, vol. 6, pp. 290–297, 1959.

Shihabur Rahman Chowdhury (S’13) received
the B.Sc. degree in computer science and engineer-
ing from the Bangladesh University of Engineering
and Technology. He is currently pursuing the Ph.D.
degree with the David R. Cheriton School of
Computer Science, University of Waterloo. His
research interests include virtualization and soft-
warization of computer networks. He was a recipient
of several scholarships and awards, including the
Best Paper Award at IEEE/ACM/IFIP CNSM 2017,
the MITACS Globalink Research Award, the Ontario

Graduate Scholarship, President’s Graduate Scholarship, GoBell Scholarship,
and Graduate Excellence Scholarship in Computer Science with the University
of Waterloo.

Sara Ayoubi received the Ph.D. degree in infor-
mation and systems engineering from Concordia
University. In 2016, she was a Post-Doctoral
Fellow with the Cheriton School of Computer
Science, University of Waterloo. She is currently a
Post-Doctoral Fellow with Inria, Paris. She is the
Co-Founder of the Montreal Operations Research
Student Chapter. Her research interests are in the
fields of operations research, networks, and com-
puter systems. She was a recipient of several awards,
including the Dissertation Prize for Engineering and

Computer Science and the Best paper Award at IEEE CloudNet 2015. She
was a co-recipient of the Best Paper Award at IEEE/IFIP CNSM 2017, and
selected as a rising star in EECS in 2017.

Reaz Ahmed received the B.Sc. and M.Sc. degrees
in computer science from the Bangladesh University
of Engineering and Technology in 2000 and 2002,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Waterloo in 2007. His
research interests include future Internet architec-
tures, information-centric networks, network virtu-
alization, and content sharing peer-to-peer networks
with focus on search flexibility, efficiency, and
robustness. He was a recipient of the IEEE
Fred W. Ellersick Award in 2008.

Nashid Shahriar (S’16) received the B.Sc. and
M.Sc. degrees in computer science and engineering
from the Bangladesh University of Engineering and
Technology in 2009 and 2011, respectively. He is
currently pursuing the Ph.D. degree with the School
of Computer Science, University of Waterloo. His
research interests include network virtualization, 5G
networks, and network reliability. He was a recip-
ient of Ontario Graduate Scholarship, President’s
Graduate Scholarship, and David R. Cheriton
Graduate Scholarship with the University
of Waterloo.

Raouf Boutaba (F’12) received the M.Sc. and Ph.D.
degrees in computer science from University Pierre
& Marie Curie, Paris, in 1990 and 1994, respec-
tively. He is currently a Professor of computer
science with the University of Waterloo. His research
interests include resource and service management
in networks and distributed systems. He was a
recipient of several best paper awards and recogni-
tions, including the Premiers Research Excellence
Award, the IEEE ComSoc Hal Sobol Award, the
Fred W. Ellersick Award, the Joe LociCero Award,

the Dan Stokesbury Award, the Salah Aidarous Award, and the IEEE Canada
McNaughton Gold Medal. He was the Founding Editor-in-Chief of the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT from 2007 to
2010 and on the editorial boards of other journals. He is a fellow of the
Engineering Institute of Canada and the Canadian Academy of Engineering.

Jeebak Mitra received the M.A.Sc. and Ph.D.
degrees in electrical engineering from the University
of British Columbia in 2005 and 2010, respec-
tively. From 2010 to 2011, he was a Senior System
Engineer with Riot Micro, leading the system level
design for a local thermal equilibrium baseband.
From 2011 to 2012, he was a Team Leader for
physical layer DSP design with BLINQ Networks,
Ottawa, focusing on small cell backhaul products.
Since 2013, he has been a Senior Staff Engineer with
the Huawei Technologies Canada Research Center,

Ottawa, in the areas of algorithm design and implementation for coherent high-
speed optical transceivers and flexible optical networks. His research interests
lie in the area of high-performance communication systems design focusing
on optical and wireless networks. He was a recipient of the Best Student
Paper Award at the IEEE Canadian Conference in Electrical and Computer
Engineering 2009. He was a co-recipient of the Best Paper Award at CNSM
2017.

Liu Liu received the M.Sc. and Ph.D. degrees in communication and infor-
mation systems from the University of Electronic Science and Technology of
China in 2011 and 2015, respectively. He was a Visiting Scholar in computer
science and engineering with the State University of New York at Buffalo
from 2012 to 2014. He joined Huawei as a Research Engineer in 2015. His
research interests focus on network planning and optimization, uncertainty
optimization, approximation algorithms, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

