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Abstract—This paper presents a lightweight approach for the early detection of nocturnal epileptic seizures through analysis of inertial

data and muscle contractions. Our approach uses an overlapping sliding window to derive the variance of data acquired by the MPU

9,250 motion tracking device and single channel surface ElectroMyoGram (sEMG). The Exponentially Weighted Moving Average

(EWMA) is used to forecast the current value of the data variance. When the Kullback-Leibler divergence between the forecasted and

measured variances deviates from past values, a signal is transmitted to the base station to set the current counter in an alarm window.

If the filling ratio of the alarm window is greater than a predefined threshold, an alarm is triggered by the base station. The proposed

approach is intended to improve the performance of existing detection systems based on data analysis from Accelerometer. The MPU

9,250 is 9-axis motion tracking and used to detect motor seizures, and it contains a 3-axis Accelerometer, Gyroscope, and

Magnetometer. The sEMG is used to detect silent seizures without jerky movements. Our experimental results on a real dataset from

an epileptic patient show that our proposed approach is able to increase detection accuracy and reduce the low false alarm rate.

Comparison with a Probability Density Function (PDF) further demonstrates the detection efficiency of our approach.

Index Terms—3D accelerometer, gyroscope, magnetometer, sEMG, epileptic seizures, anomaly detection, EWMA, WBANs

Ç

1 INTRODUCTION

EPILEPSY is a neurological disorder caused by electrical
discharges from cortical neurons in the brain, which is

susceptible to produce various types of seizure. They are
unexpected, unpredictable and unprovoked by an immedi-
ate causative factor. More than 65 million persons world-
wide suffer from this dysfunction, but in 75 percent of the
cases, epileptic seizures can be treated using available ther-
apy (anticonvulsant) or surgery to remove the epileptogenic
area [1]. For the rest of the cases (25 percent), the seizures per-
sist despite anti-epileptic drugs and polytherapy, and these
drug-resistant patientsmust live their life with seizures [2].

Patients with epilepsy are usually isolated during the
night and vulnerable to several physical injuries or asphyxia
due to a blocked airway after swallowing their tongues.
They need assistance in short delay during/after the onset
of seizures, where falls, fractures and Sudden Unexpected
Death in EPilepsy (SUDEP) are frequent. Seizures are partic-
ularly risky during the night when patients are isolated and
cannot call for help.

The nocturnal seizures may pass unnoticed by the
patient’s family members and may cause several medical

complications or death, and there exists a need to develop a
real-time seizure detection system which is able to raise the
alarm for family or people in the vicinity when a seizure is
detected. Providing assistance may reduce the mortality and
prevent further complications (fractures, head-banging, etc.).

The electroencephalogram (EEG) is the dominant method
used for the monitoring and detection of epileptic seizures,
which usually create abnormalities in themeasured EEG sig-
nal, and several approaches have been proposed to detect
epileptic seizures from EEG signals [3], [4]. The signature of
epileptic seizures in an EEG is polymorphic waveforms of
variable amplitude and frequency over variable duration.
However, existing devices for pervasive acquisition of
the EEG signal (helmet, scalp sensors, etc.) are cumbersome,
and both uncomfortable to wear in bed and to keep on
during sleep.

As epileptic seizure with motor symptoms and
uncontrolled jerky movements is the most frequent type
(95 percent), and several detection systems based on video
processing [5] or motion data analysis from 3-axis acceler-
ometers (ACM) integrated in wristbands (or anklebands [6])
are available in the market. The video processing technique
requires a camera and markers on the patient, and when the
markers are outside the camera’s field of view, the seizure
movements are difficult to detect.

Motion analysis techniques using 3D ACM data seeks to
distinguish normal nocturnal movements from jerky move-
ments produced by seizures. This practical solution is able
to quickly detect nocturnal epileptic seizures with motor
manifestations, and raises an alarm for people in the vicinity
to limit the seizure’s consequences.

We investigated the optimal position for 3D ACM in [7],
where we placed three 3D ACMs on the chest, ankle and
wrist of a monitored patient. We found that induced
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variations by seizures in inertial data are more relevant
from the limbs, especially from the ACM on the wrist,
where the variations are more visible and easy to detect
than data from the ACM placed on the chest. Also, it was
found that leg movements were also not involved in all
types of seizures.

Given the constrained resources of the wristband devices
available in the market, the measured inertial data are trans-
mitted to a Local Processing Unit (LPU—such as a smart-
phone, tablet, PC, etc.) for motion analysis and seizure
detection. As generalized seizures can extend to all or part
of the body, they may provoke falls, twitching, sweating,
secretions, etc. They can provoke muscle contractions
(tonic), or relaxations or alternation between contractions
and relaxations (clonic movements), producing shaking
when this alternation is fast. When a seizure is detected in
the LPU, an alarm can warn family members or healthcare
staff. However, data transmission consumes more energy
than local data processing, and most of the time, the inertial
data are normal and thus their transmission is useless.

Motion analysis techniques have a high False Alarm Rate
(FAR), as it is hard to distinguish between daily activities
and nocturnal movements from seizures. They are also
unable to detect seizures without movements, such as tonic
seizures, where the muscles contract without convulsions
or motor manifestations. This type of seizure may not be
detected through the analysis of inertial data, and requires
the analysis of other physiological data. The ElectroMyo-
Gram (EMG [8]) involves the detection of electrical signals
generated by muscle fibers during contractions. This physi-
ological signal provides valuable information about the
state of a patient’s muscles, and can be measured using two
types of device: electrodes with needle or surface electrodes.

The needle in the invasive method must be in contact
with the muscle fiber to measure the produced signal. How-
ever, this method monitors the signal emitted by a single
fiber and may damage skin and muscle tissues. Their usage
is reserved for in-hospital or in-clinic doctors or specialized
nurses, and is not adequate for pervasive monitoring.

The acquisition of sEMG signal is based on the use of
round patches called surface electrodes, which are fixed on
the skin next to the target muscle to enable sEMG [8], [9].
The electrodes measure the signal emitted by a set of muscle
fibers and can be easily affixed by any user without the help
of healthcare professionals. sEMG has been used for the
analysis of movements, muscle strength, fatigue measure-
ments, command of fingers in prosthetic hands of amputee,
Human Computer Interface (HCI), speed control of electric
wheelchairs, etc.

The most common epileptic seizures are classified in [9]
into 4 types: Tonic-Clonic, Atonic, Versive and Myoclonic.
The Tonic phase and Versive type induce muscle contrac-
tions without convulsions, while the Clonic phase and the
Myoclonic type induce jerky movements with muscle con-
tractions. Therefore, one should not expect a strong correla-
tion between sEMG and inertial data in a tonic phase
seizure, where muscles contract without notable changes in
inertial data. In an Atonic seizure, the patient suddenly
loses muscle control, causing them to fall if standing.

Recent detection systems have begun to take into consid-
eration many physiological parameters before raising an

alarm through the analysis of Heart Rate (HR), 3D ACM, 3D
Gyroscope (GYR), skin temperature, skin conductance, etc.
These multivariate systems allow increases in detection
accuracy and reductions in FAR.

In this paper, we use inertial and muscular signals to
detect the three types of epileptic seizures. The use of sEMG
improves the detection accuracy of off-the-shelf wristbands,
which are based on the analysis of inertial data. Our pro-
posed monitoring system is able to distinguish normal
nocturnal movements from epileptic seizures, and raise an
alarm for family members when a seizure is detected.
The inertial data from ACMs, GYRs and Magnetometers
(MAGs) are used to identify jerky movements in the convul-
sion phase, and the sEMG is used to detect muscular con-
tractions in the tonic phase.

Instead of applying a change point detection algorithm
directly in the data, we look for change detection in the vari-
ance of the data, and an overlapping sliding window is used
to derive the variance and absorb the variations induced by
normal nocturnal movements. The purpose of this proposed
approach is to provide online analysis and in-network
detection of underlying seizures, intended to work on emb-
edded devices with low processing power. This approach is
based on the analysis of two time series: 1 channel sEMG
and 1 derived inertial signal. As convulsions induce cha-
nges in some of the 9 inertial signals (3 ACM, 3 GYR and 3
MAG), we derive one inertial signal (denoted by It) that
reflects changes in any of the signals by considering the
maximum value of variance from whole measured inertial
data. In fact, It is derived from inertial data (It ¼
fðACM;GYR;MAGÞ) at specific time instants t.

The proposed approach involves two steps: forecasting
the current variances for sEMG and It using EWMA, and
analyzing the Kullback-Leibler Divergence (KLD) between
the measured and forecasted values. If the KLD deviates,
we set the associated time slot in the sliding window, which
is used to absorb temporal fluctuations by checking the fill-
ing ratio. We built a prototype using an Arduino microcon-
troller, with e-Health Sensors Shield to acquire the sEMG,
and the Inertial Measurement Unit (IMU) MPU 9,250 to
acquire 9 Degrees Of Freedom (DOF). To evaluate the effec-
tiveness of the proposed approach, we conducted several
experiments after implementing our algorithm in the Ardu-
ino. We also used the Shimmer EMG sensor with 10 DOF to
acquire only the data from epileptic children in the “rare
epilepsies” department at the Necker-Enfants Malades Hos-
pital in Paris, France. Our experimental results show that
the proposed system is able to achieve high detection accu-
racy with low delay and a low false alarm rate.

The rest of this paper is organized as follows. Section 2
reviews relevant related work and different existing
approaches for epileptic seizure detection. Section 3 presents
our proposed approach for body motion and sEMG data
analysis to detect epileptic seizures. In Section 4, we present
our results from the experimental evaluations. Section 5
presents a discussion about the proposed approach and
Section 6 concludes the paper.

2 RELATED WORK

Several approaches for epileptic seizure detection [10], [11],
[12], [13], [14], [15] using Wireless Body Area Networks
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(WBANs) have been recently proposed to replace the con-
ventional wired EEG through the use of tiny and light-
weight devices with wireless transmission.

Various methods to detect motor manifestations during
seizures have been proposed in [16], [17], [18], [19]. Today,
many devices and wristbands for epileptic seizure detection
are available in the market. When the seizure is detected
from the inertial data, the system will trigger an alarm [20],
[21]. However, existing detection systems are unable to dis-
tinguish seizures from similar movement patterns gener-
ated by normal daily life activities (brushing teeth, etc.).

Elmpt et al. in [22] proposed a seizure detection model
based on HR change. Mass�e et al. in [23] use the ElectroCar-
dioGram (ECG) to detect seizures from changes in HR. Simi-
larly, in [24], Fujiwara et al. extracted 8 Heart Rate
Variability (HRV) features to detect seizures. However, these
approaches are subject to high false alarm rates, since the HR
increases with nervous system activity and stress state.

As epilepsy seizure induces salivation, involuntary and
uncontrolled movements, seizure detection using ACM sig-
nals was proposed and experimented on animals in [25], [26]
and on humans in [27]. Wang et al. in [26] proposed a three-
state finite state machine to detect seizure activities using 1-
axisACM.Nijsen et al. in [27] used 3DACM to detect seizures
and to distinguish them from daily life activities. They ana-
lyzed and compared the detection accuracy of four methods
based on ACM data: Short Time Fourier Transform (STFT),
Wigner Distribution (WD), Continuous Wavelet Transform
(CWT), and MODel based wavelet transform (MOD), and
found that the features extracted using CWT and MOD pro-
vided better classification accuracy (80 percent).

Karmer et al. in [17] proposed a system for seizure detec-
tion based on a 3D ACM mounted in a bracelet for seizure
detection. The integrated transmitter sends data to a PC for
processing and to raise an alarm upon detection of change.
Borujeny et al. in [28] proposed a seizure detection
approach based on three 2D ACMs positioned on the right
arm, left arm and left thigh, and used ANN and K-Nearest
Neighbors (k-NN) to distinguish seizures movements from
normal movements.

Cuppens et al. in [5] proposed a system based on ACMs
and video analysis using Linear Discriminant Analysis
(LDA) for seizure detection, where the combined detection
had better accuracy. Dalton et al. in [29] developed a tem-
plate-matching algorithm based on the signature of seizures,
and used Dynamic Time Wrapping (DTW) to measure the
distance between the ACM data and the template. Becq et al.
in [16] used three 3D ACMs positioned on the wrist and the
head to detect seizures using norm entropy, which produces
better performance than feature-based classification.

In [30], Cuppens et al. extended their previous work
in [31] through the use of 4 ACMs attached to the extremi-
ties (wrist and ankle) to detect generalized tonic-clonic seiz-
ures. They derived a Probability Density Function (PDF)
from normal movements to classify data in epileptic and
non-epileptic movements. The training phase requires only
normal data to derive the PDF, and seizure-related informa-
tion or annotated training data are not required.

Becq et al. in [16] use three 3D ACMs positioned on
patients’ wrists and head. Their system achieved 80 percent
sensitivity and 95 percent specificity. However, the

performance of the monitoring system depends highly on
the position of the ACM. Cleland et al. in [32] investigated
the optimal placement of ACMs for detecting a range of
everyday activities. Jallon et al. in [1] proposed an epileptic
seizure detection system based on the analysis of data
received from 2 3D ACMs using the Hidden Markov Model
(HMM). The first ACM is attached to the wrist of the moni-
tored patient and the second is placed on the chest. Becq
et al. in [33] analyzed the efficiency of epileptic seizure
detection using a 3D ACM without limiting the detection to
nocturnal seizures, since the patient may be in motion.

Tzallas et al. in [34] compared classification results using
Na€ıve Bayes (NB), k-NN, Decision Tree (C4.5), Logistic
Regression, and ANN. They found that ANN achieves the
best performance, and this result was confirmed in [10].
Annotated data are required to build the classification
model in a supervised manner. However, the annotation
task is costly as it requires skill, time and human interaction
to classify data in the training phase.

The sEMG is a biomedical signal resulting from the elec-
trical activity during muscle activation. Larsen et al. in [35]
focused on tonic seizures using sEMG and a Random Forest
(RF) algorithm to classify data into 2 classes: seizure or non-
seizure. Conradsen et al. in [2] proposed a multi-modal
approach for seizure detection based on sEMG, 3D ACM
and angular velocity. They extracted features from the sig-
nal details of Discrete Wavelet Transform (log-sum of
details in levels 4, 5, 6 and 7), and used the Support Vector
Machine (SVM) to classify the data into two groups: seizure
and non-seizure. However, SVM requires the training data
to build the classification Model. Conradsen et al. in [36]
used zero crossings count, DWT and SVM classifier for the
automatic detection of tonic-clonic seizures based on sEMG,
ACM and GYR. In its objective, this work is the closest to
our work on seizure detection based on inertial and muscu-
lar activities. However, we use the magnetometer as an
additional input, and we rely on lightweight statistical tech-
niques adequate for sensors with constrained resources to
achieve better detection accuracy and lower false alarm rate.

3 PROPOSED APPROACH

To ensure the early detection of epileptic seizures, we con-
sider a real nocturnal deployment scenario, where a person
in bed wears a wristband containing the MPU 9250 capable
of acquiring inertial data in real time and a data acquisition
interface for sEMG. Muscle activities and patient move-
ments are acquired in real time by the wristband and proc-
essed locally for real time detection. Upon detection of a
seizure, an alarm is transmitted to the LPU (smartphone) as
shown in Fig. 1. The SHIMMER EMG Module, available in
the market, is provided inside a small box with a wrist strap
for sEMG data acquisition and 10 DoF (ACM, GYRO, MAG
and altimeter) and it is smaller and lighter than our proto-
type and easy to deploy.

Let Xi;j ¼ fx1;j; x2;j; . . . ; xn;jg denote the measured values
for the jth attribute (where j ¼ 1; . . . ; 10). We denote by attri-
bute the times series associated with the measurements for
each axis of the integrated 3D ACM, 3D GYR, 3D MAG and
sEMG (9 inertial and 1 physiological attributes). Thewindow
of thesemeasurements (Xi;jÞ is used to calculate the variance
of each attribute and to forecast its next value. The sensor
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calculates the variance (s2
t;j) of the nmeasured values for the

10 attributes during the past T time interval. A high variance
indicates that the data set has a wide deviation from the
mean, while low variance indicates close values.

To reduce the computational complexity and energy con-
sumption in the LPU during seizure detection, we analyzed
a feature extracted from multiple signals instead of analyz-
ing the 10 time series obtained from 3D ACM, 3D Gyro, 3D
MAG and sEMG. During sleep, the values of raw signals
must be close to zero, and Tonic-Clonic (most frequent type
of epileptic seizures) provokes convulsions, which induce a
large variations in the amplitudes. To detect seizures, we
look for changes in these signals (muscular and inertial),
where the amplitude characteristics are reflected by the var-
iance of measurements inside sliding window. The varian-
ces of the inertial signals and muscular activities are close to
zero during sleep (or normal nocturnal movements), and
significantly deviate from zero during the seizures. There-
fore, we use the variance as a feature to distinguish between
normal and seizure data.

To avoid false alarms with normal nocturnal movements,
the variance of a sliding window is used to characterize the
amplitude and to smooth the short variations. From the var-
iances of acquired inertial signals, the largest deviation
value for each period is used to identify change point and to
distinguish seizures from normal activities. The maximum
value of the 9 calculated inertial (3 axis from each sensor:
3D ACM, 3D GYR and 3D MAG) variances is used to reflect
changes and to derive the inertial signal It as given in
Equation (1). The purpose of this feature extraction is not
only to reduce the dimensionality, but to extract useful
hidden information in the signals.

Furthermore, the Shewhart limits (derived dynamically
from patient profile) prevent the system for raising an alarm
for smaller variations. Rarely, normal nocturnal movements
and sleep disorders are not often confused with seizures,
because they are neither violent nor frequent. However, our
system cannot distinguish seizures from parasomnias and
frequent movements, which may trigger false alarms due to
their similarity with jerky movements. To enhance the reli-
ability of the system, interactions with users are required,
where they can push a button to cancel the false alarm and
update the patient profile

It ¼ max
j¼x;y;z

var ACMi;j; GYRi;j;MAGi;j

� �
: (1)

Accordingly, the sensor derives the variance of the inertial
(It) and muscular signals (sEMGt). We use Vt to denote the
matrix Vt ¼ ½It; sEMGt�. The sensor applies the EWMA to
predict the next value (ŝ2

tþT;k) based on the currently mea-
sured and past variances of each signal It and sEMGt. The

value of k is equal to 1 (k ¼ 1) for inertial and k ¼ 2 for mus-
cular signal. Afterwards, the detection of divergence (or sig-
nificant changes) between the predicted and measured
values is conducted using KLD and the Shewart control limit.

The EWMA is used for one-step forecasting of s2
t;k as

given in the following equation:

ŝ2
tþ1;k ¼ a:ðvt;k � mt;kÞ2 þ ð1� aÞ:ŝ2

t;k: (2)

Where a is the weight (or smooth) parameter with a value
between 0 and 1. ŝ2

tþT;k is the predicted value for the variance
of the associated time series (It or sEMGt) at the time instant
tþ T . The weighting factor a is a tuning parameter to make
the forecasting procedure sensitive to small or gradual drift.
It determines the depth of memory and its value ranges from
0 up to 1. The factor a controls the sensitivity of the forecast-
ing procedure and determines the rate at which the current
measurement impacts the forecasting procedure. When the
value of a is close to 1, the forecasting has small memory and
is very sensitive to recent fluctuations in the measured sig-
nal, and when its value is close to 0, the procedure gives less
weight to recent data and becomes insensitive to normal noc-
turnal movements. The smoothing factor [37], [38] is recom-
mended to be in the interval 0.05 to 0.25. Our experiments
show that alpha = 0.095 absorbs the impact of small disrup-
tions and provides the optimal precision, with high detection
rate and lowest false alarms. Therefore we set its value to
0.095 in our experiments.

EWMA is the lightest forecasting procedure in term of
computation complexity and storage cost. To predict the
current value, it does not need to keep all past measure-
ments, and only uses the previous estimate and the current
measurement. EWMA is equivalent to AutoRegressive
Integrated Moving Average (ARIMA(0, 1, 1)) with less
parameters, and has reduced computational complexity
and storage cost. ARIMA model requires a large number of
anomaly free observations in training data to derive its
parameters. Therefore, robust forecasting using EWMA is
preferred, where this simple model generates remarkably
accurate forecasts [38]. Similarly, EWMA has the same fore-
casting precision as KF and IDF after tuning their parame-
ters (as shown later in this paper in Figs. 8c and 8d) with
less storage and computation cost. EWMA is appropriate
for sensors with constrained resources. We refer to [37] for
detailed comparison with ARIMA, KF, GARCH, etc.

Fig. 2 shows the forecasting procedure for one time
series, where the EWMA in Equation (2) is used to predict
the next value of the variance (ŝ2

tþT;k) based on past values.
In fact, the EWMA will update the forecasted value (ŝ2

tþm;k)
for each new measurement, but we focus only on values at
the end of each window (ŝ2

tþT;k). At the same moment (end

Fig. 1. Bracelet for epileptic seizure detection.
Fig. 2. Predicted and measured variance values.
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of window with duration T ), we calculate the variance of
measurements in the window (s2

tþT;k). Afterwards, the KLD
between the measured (s2

tþT;k) and predicted (ŝ2
tþT;k) varian-

ces is derived.
The KLD measures the difference between the two prob-

ability distributions P and Q as given

KLDðP jjQÞ ¼
X2
k¼1

pklog
pk
qk

� �
; (3)

where KLDðP jjQÞ is the mean of the logarithmic differ-
ence between probability distributions P ¼ ðp1; p2Þ and
Q ¼ ðq1; q2Þ, with pk � 0, qk � 0, and

X2
k¼1

pk ¼
X2
k¼1

qk ¼ 1: (4)

The reference probability distribution P is derived from the
variances of It and sEMGt

pk ¼ s2
t;k=

X2
k¼1

s2
t;k: (5)

The same goes for the derivation of qk from the estimated
variances ŝ2

t;k of It and sEMGt. KLD has a value equal to or
near zero for similar distributions. When the value of qk
deviates from pk, the contribution of the kth term increases
and a deviation in the KLD time series for each change is
observed. If pk ¼ 0 or qk ¼ 0, the contribution of the kth
term is interpreted as zero. The contribution is also zero
when both terms are equal to zero (pk ¼ 0 and qk ¼ 0).

We used Shewhart control charts to detect deviations in
the KLD. The control chart defines a Center Line (CL)
derived from the mean of normal measurements, and when
a new measurement is outside the normal range ½LCL;UCL�
defined by the Lower Control Limit (LCL) and Upper Con-
trol Limit (UCL), a change is detected. These limits are com-
puted as 3 standard deviations above and below the CL

LCL ¼ CL� 3� sffiffiffi
n
p (6)

UCL ¼ CLþ 3� sffiffiffi
n
p : (7)

The control charts do not require normally distributed data,
and can work with any input distribution. If the value of
KLD is inside the range ½LCL;UCL�, the measured data are
more likely generated by hypothesis H0 (or normal hypoth-
esis); otherwise, we reject the normal hypothesis (also
denoted by null hypothesis or H0) and assume a change to
another hypothesis (H1).

When a significant statistical change is detected in at least
one time series (inertial or sEMG), a signal is transmitted to

the LPU to set the associated time slot in the sliding window
(as shown in Fig. 3). To achieve a good detection ratio and to
reduce false alarms triggered by transient motions and tem-
poral fluctuations, the LPU uses the Filling Ratio (FR) of the
sliding window (Fig. 3) before raising a medical alarm.
When the FR is greater than predefined threshold FR � h,
an alarm is triggered by the LPU.

Algorithm 1 shows the pseudo code of our proposed
approach, where the LPU derives one inertial time series
from the 9 received inertial signals. The muscular activities
(sEMG) and the derived inertial signals acquired during the
past time interval T are used to calculate the variance of
each signal (s2

t;k) and to predict the next values (ŝ2
tþT;k). If

the KLD between the measured and predicted distributions
of the variances is outside the range defined by the Shewart
control charts, the associated time slot is set. To reduce false
alarms, when the FR of the sliding window is greater than h
(FR � h), an epileptic seizure alarm is raised to call for help.

Algorithm 1. Pseudo Code for our Proposed Approach

1: function ONSENSORPROCESSING(none)
2: for (j ¼ 1! 10) do
3: s2

i;j  window:varianceðXi;jÞ
4: end for
5: It ¼ max varianceðACMi;j; GYRi;j;MAGi;jÞ

� �
6: for (k ¼ 1! 2) do
7: ŝ2

tþ1;k ¼ a:ðxt;k � mi;kÞ2 þ ð1� aÞ:ŝ2
t;k

8: pk ¼ s2
t;k=

P2
k¼1 s

2
t;k

9: qk ¼ ŝ2
t;k=

P2
k¼1 ŝ

2
t;k

10: end for
11: KLDt ¼

P2
k¼1 pklog

pk
qk

� �
12: if KLDt < LCL or KLDt > UCLÞð Þ then
13: AlarmWindowt:setðÞ
14: end if
15: if ðWindow:FRðAlarmWindowÞ � hÞ then
16: Raise an epileptic seizure alarm
17: end if
18: end function

4 PROTOTYPE IMPLEMENTATION AND

EXPERIMENTAL EVALUATIONS

In this section, we present the experimental results of the
proposed approach for epileptic seizure detection using real
data from epileptic patients and data from simulated seiz-
ures. We further evaluate and compare the performance of
our proposed approach with that of the Probability Density
Function based approach presented in [30]. We also replace
the EWMA forecasting procedure with a Kalman Filter (KF)
and Implicit Dynamic Feedback (IDF) for further perfor-
mance comparison.

4.1 Prototype Implementation and Evaluation Setup

To evaluate the proposed approach, we built a proto-
type using an Arduino Uno microcontroller (as shown in
Fig. 4a), where we implement our proposed algorithm. We
connect the Cooking-Hacks [39] interface to the Arduino to
measure the single channel sEMG signal through the use of
3 wired electrodes. We also connect the IMU chip MPU9250
containing the 3D ACM, Gyro, MAG and Radio Frequency

Fig. 3. Window containing alarm counters.
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(RF) transmitter. The validation of the detection system is
realized on healthy persons and epileptic patients.

Acquiring the signal sEMG typically requires skin clean-
ing and pre-gelled electrodes. However, recent technologi-
cal advances allow us to acquire the sEMG signal without
using wet sensors or sticky gels with electrodes, e.g., the
electrical sensors used in Myo armband [40], [41] to acquire
the sEMG are shown in Fig. 5. Three flat metal pieces
are used as 3 electrodes to acquire the micro-voltage signal,
and a board circuit for signal amplification (and digital
processing) are integrated in each of 8 components (or
casinghouse) of the Myo bracelet.

However, the deployment of our prototype in the
“epilepsies rares” department at the “Necker-EnfantsMalad-
es” Hospital posed some problems. Many children did not
feel safe wearing our prototype and removed the cable/elec-
trodes, evenwhen we tried to hide the microcontroller under
their pillows. Therefore, we replaced the prototype with one
Shimmer3 EMG (shown in Fig. 4b) in our last experiments for
data collection. The latter (Shimmer3) contains an integrated
altimeter, 9 DoF and two channels sEMG, but we only used
one channel sEMG and 9DoF. The Shimmer deployment was
also difficult, but most children ended up accepting it after
covering the box with a wristband sponge bob. Obviously,
themain reasons that prevented the deployment of ourArdu-
ino prototype (shown in Fig. 4a) were its size, weight and
shapewhichwere not child-friendly.

The first evaluation test was conducted by 7 healthy vol-
unteers to verify the correctness and reliability of the pro-
posed detection system. All the patients involved in the
development of this project were male between 25 and 50
years old. The prototype (inside the box) was attached to the
wrist using a rubber band, and a special cream was used to
fix the 3 electrodes and prevent their disconnection from the
forearm. It is important to note that in some of the

experiments, electrodes were involuntarily disconnected by
nocturnal movements or sweat. Data collection was per-
formed overnight, and an evaluation test was conducted to
verify the functioning of the prototype and to tune its
parameters.

Algorithm 1 is evaluated as part of the prototyped moni-
toring system for epileptic seizure detection. The precision
of the prototype is evaluated is terms of false alarms and
true detection of epileptic seizures. The monitoring system
raises an alarm every time the FR is greater than or equal to
the predefined threshold h. The quality of the acquired data
is evaluated by the detection accuracy of the monitoring
system in terms of true detection and false alarm rate.

The comfort of using the prototype was evaluated by the
volunteers after the data collection phase. Their experience
wearing the prototype was not as comfortable as with
the Shimmer, but even the Shimmer prototype still far from
being the perfect solution for the real scenario. They pro-
posed to use an armband (similar to the Myo Armband [42])
with a built-in device for acquiring sEMG and inertial sig-
nals, instead of wired electrodes with Arduino (or Shimmer)
in our prototype.

4.2 Results

The second real dataset (containing seizures) is collected
using Arduino microcontroller, with the e-health complete
kit and the MPU 9250. All monitored children (8 children)
wear the developed prototype (wired sEMG electrode and
IMU) before going to sleep (after the lunch/dinner) to col-
lect inertial and muscular data for several hours. Only 4
datasets were exploitable from 32 collected datasets over
several days in the “epilepsies rares” department at the
Necker-Enfants Malades Hospital in Paris, France.

Given the deployment complexity, we conducted third
collection phase, but we used the Shimmer3 IMU as proto-
type instead of Arduino. The sampling frequency was
512 for whole signals. More than 110 motors seizures from
different children were collected over one month and used
for performance analysis of the proposed detection system.
In most cases, we observed one seizure by children through
the monitoring day, with mean duration between 10
and 30 seconds. In few extreme cases, the seizure lasts
3 minutes. We concatenate 100 seizures into one file to build
a synthetic trace for performance analysis.

Each dataset contains the inertial and muscular measure-
ments for several hours. All patients were taking anti-
epileptic drugs to reduce the frequency of seizures and
improve their quality of life. In this paper, we only focus on
approximately 5-minute periods, including the seizure. The

Fig. 4. Real deployment scenario.

Fig. 5. Myo armband and its integrated sEMG sensors.
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raw collected data from the monitored patients during tonic-
clonic seizures by the IMU (3D ACM, GYR, MAG) and mus-
cular electrodes (sEMG) are presented in Figs. 6a, 6b, 6c,
and 6d respectively. The filtered sEMG is also shown at the
bottom of Fig. 6d.

The raw EMG signal requires preprocessing to remove
noise and movement artifacts. A band-pass filter with cutoff
frequency of ½20� 400� Hz, was used to remove frequencies
associated with noise and artifact, and to preserve the
desired information related to muscle activity. We used a
low pass filter with cut-off frequency of 20 Hz to remove
the motion artifact, and a high pass filter with cut-off fre-
quency of 400 Hz to remove noise outside the band of inter-
est. These filters are provided by the shimmer API for
software development [43], [44].

We can visually identify in the inertial data (Figs. 6a, 6b,
and 6c) a small variation during the tonic phase, and large
variations during the clonic seizure phase are visible on all
axes (X, Y and Z) around the interval ½80; 220� � 103 msec.
Small deviations from zero around the time instant
0:5� 105 msec are induced by the tonic phase, which mostly
produces muscle contractions and precedes the clonic
phase.

A visual inspection of the filtered sEMG signal in Fig. 6d
shows the underlying variations generated during the tonic
and clonic phases, and we can notice correlations between
the inertial and muscular activities in both phases. How-
ever, the sEMG signal detects the tonic phase faster than the
inertial signal.

A sliding window containing acquired data in 1 sec, with
an overlapping ratio of 50 percent, is used to calculate the
variance of inertial and muscular signals on the sensor. The

variances of the signals acquired from the 3D ACM, GYR,
MAG and sEMG are shown in Figs. 7a, 7b, 7c and 7d respec-
tively. The local processing allows reducing energy con-
sumption by the data transmission and prolongs the life of
the monitoring system.

The microcontroller derives one inertial signal It from the
9 signals presented in Figs. 7a, 7b and 7c by considering the
maximum value to reflect the variations in any signal. To
predict the current value of the variance, we tested 3 fore-
casting procedures: EWMA, KF and IDF. The measured
(s2

t;k) and forecasted (ŝ2
t;k) values of the data variance from

the inertial and muscular signals are shown in Figs. 8a
and 8b. However, these forecasting procedures achieve sim-
ilar performance by changing the values of their parame-
ters, as shown in Figs. 8c and 8d. In fact, we cannot
distinguish between the overlapping curves as they predict
the same values. Regardless, we choose EWMA in our
implementation for its simplicity.

From the variance of raw inertial data presented in
Figs. 6a, 6b and 6c, the signal It (maximum variance) is
derived and presented in Fig. 8a with the forecasted sig-
nals using different algorithms. The difference between
the forecasted and measured values (zt;k) of the variance
of the inertial activities (Equation (8)) is shown in
Fig. 9a. The same goes for raw muscular activities pre-
sented in Fig. 6d. The derived filtered sEMG is also
shown on the bottom of Fig. 6d, and has been used to
calculate the variance of measurements in a sliding win-
dow (shown in Fig. 7d) and the forecasted variance at
the end of each window (shown in Fig. 8b), as well as
the difference between the measured and forecasted val-
ues (shown in Fig. 9b)

Fig. 6. Inertial and muscular data.
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zt;k ¼ ŝ2
t;k � s2

t;k: (8)

Where t denotes the time reference and zt;k is calculated
only at time instants t ¼ k� T . The possible values of k are
1 and 2, where k ¼ 1 for inertial signal and k ¼ 2 for sEMG.

During tonic-clonic seizures, patients usually start with
muscle contractions followed by involuntary and uncon-
trolled jerky movements in the clonic phase, thus inducing
a deviation between the measured and predicted instances
of Vt. The KLD between the measured and forecasted var-
iances in Vt is shown in Fig. 9c, and fluctuates during the
changes generated by a tonic-clonic seizure. To detect
changes in the KLD, we used control charts for online
change detection, where a signal is transmitted to the LPU if
the value of KLD exceeds one of the control limits (UCL or
LCL), as shown in Fig. 9d.

When the FR of the sliding windows (shown in Fig. 3) is
greater than a percentage p% for a window size w time slots,
an alarm is triggered by the LPU. A large value of w induces
large detection delay and makes the system inefficient in the
detection of seizures of short duration. Therefore, the value
of p must be chosen as a tradeoff between false alarms and
detection accuracy. A large value of p will decrease the false
alarms and the detection accuracy, and vice versa. The opti-
mal values of p was determined empirically and set to 10
percent in our experiment for a window size w ¼ 30.

The alarm was triggered for seizures in Figs. 6a, 6b, 6c
and 6d at time instant 45,000 msec. However, it is important
to note that there is no significant difference in the detection
accuracy when considering a FR with a value greater than or
equal to 10 percent. In contrast, a low FR value significantly
increases the false alarm rate. Therefore, the value of FR is a
trade-off between false alarms and detection accuracy.

The detection delay of seizures by our approach is 3 sec,
which is very reasonable when compared to existing
approaches and directly related to the threshold h. How-
ever, the detection delay is a tradeoff between false alarms
and true detection. Its value follows h, where a small value
of h reduces the delay and increases the rate of false alarms,
and a large value of h increases the delay and reduces the
false alarms.

4.3 Performance Analysis

We start the performance analysis experiments by analyzing
the impact of parameter a on the predicted values of the var-
iances. We present the results for the inertial data only.
Fig. 10 shows the impact of the weighting factor on the pre-
diction process of variance. By choosing a value of a near to
1, the predicted time series becomes more sensitive to the
new value of themeasured variance and its transient fluctua-
tions. We use a ¼ 0:095 for a regular data smoothing and to
minimize the impact of fluctuations by giving more weight
to past values. Furthermore, this small value allows distin-
guishing convulsions from normal nocturnal movements.

To evaluate the performance of our approach, we use a
synthetic data set containing 100 seizures at different time
instants. This dataset is built by concatenating several real
data collected during seizures collected using Shimmer3
unit, and mostly contains one seizure. The Shimmer3 unit
acquires motion (IMU) and biophysical (sEMG, GSR, Respi-
ration, etc.) with a sampling rate of 512 Hz for ACM, GYR,
MAG and sEMG. We apply our algorithm on the resulting
synthetic dataset to study the impact of the threshold h on
the detection accuracy. We used the Receiver Operating
Characteristic (ROC) curve to show the impact of h on the
True Positive Rate (TPR) given in Equation (9) and the False

Fig. 7. Variance of measured data.
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Alarm Rate given in Equation (10)

TPR ¼ TP

TP þ FN
� 100%; (9)

where TP is the number of true positives, and FN is the
number of false negatives. FAR is defined as the ratio of
incorrectly detected seizures

FAR ¼ FP

FP þ TN
� 100%; (10)

where FP is the number of false positives and TN is the
number of true negatives. A good detection mechanism
should achieve a high detection ratio with a low FAR.

To demonstrate the effectiveness of our approach, we
conduct comparisons with Multi-model Intelligent Seizure
Acquisition (MISA) system proposed in [9] and the Proba-
bility Density Function in [30], [45] to detect seizures. The
MISA uses multi-modal (sEMG, ACM and GYRO) to pro-
pose an automatic method for the detection of seizures with
motor manifestations. MISA uses discrete wavelet decom-
position (Daubechies) to derive approximation (A1) and
Detail (D1) of level 1. These signals are the result of low and
high pass filters respectively. From each approximation Ai

in level i, the same filtering procedure is applied to split the
signal into Aiþ1 and Diþ1. Each channel from ACM and
GYRO is divided into 6 levels, and sEMG into 7 levels.

The sampling frequencies for their input sEMGwas 1,024
and 120 Hz for ACM/GYRO. Conradsen et al. [9] apply
wavelet decomposition on overlapping sliding window of 1
second, i.e., each window contains 120 samples for inertial
and 1,024 samples for sEMG, with an overlap of 50 percent
between 2 consecutive windows. To reduce the number of
input signals obtained for seizure detection, they derive a

feature vector x carrying the amount of energy contained in
the frequency range for seizure events. For the ACM/
GYRO signals, the frequencies extracted are 0.94-7.5 Hz and
for the sEMG signals they are 4-64 Hz. These frequencies
were identified through visual inspection of the signals’
spectrum. The optimal Support Vector Machine is used to
classify the vector x into two classes: seizures and normal.
The class seizures contains whole epileptic seizures and the
normal class contains normal nocturnal data without seiz-
ures. From 152 channels, 14 sEMG channels and 138 chan-
nels of 3D ACM and 3D GYR (23 � 3 ACM and 23 � 3
GYR), MISA achieves a good performance with TPR 100
percent, FAR of 5 percent and latency of 1 second.

To compare the performance of MISA with that of our
approach, we use wavelet decomposition with 6 layers for
sEMG and 5 layers for ACM/GYRO (3, 4, 5, 6 for sEMG and
3, 4, 5 for ACM/GYRO) to calculate the log-sum from detail
signals and to derive the feature vector x [9], as the sam-
pling frequency of our combined data for this experiment is
512 Hz. A training data with 10 seizures is used to derive
the SVM hyperplane (separator line between 2 classes) used
to classify the feature vector. To reduce the false alarms
with the small number of channels in our experiment (10
channels instead of 152 channels used in their experiment),
skewed (unbalanced) classes and incomplete training data
with whole possible normal movements, we added the use
of FR of the alarm sliding window as in our approach.

Fig. 11 shows a comparison between the ROC of the pro-
posed approach, the MISA and the ROC of the PDF method
for the same dataset. The TPR of our proposed approach
reaches 100 percent for a FAR of 6 percent, and the TPR
of the PDF method also reaches 100 percent for a FAR of
9 percent, and the TPR of the MISA also reaches 100 percent

Fig. 8. Measured and forecasted variances.

SALEM ET AL.: NOCTURNAL EPILEPTIC SEIZURES DETECTION USING INERTIAL AND MUSCULAR SENSORS 2921



with a FAR of 13 percent. For 95 percent of DR, our
approach triggers 4 percent of FAR while PDF triggers
7 percent. The ROC curve of the proposed system outper-
forms the ROC of PDF and the MISA methods by reducing
the number of false alarms. It is important to note that our
implementation of PDF is based on KDE, and that the same
input dataset is used for the 3 methods.

When applying MISA, the computation complexity for
classification in SVM used in MISA isOð1Þ. In fact, the classi-
fication of new record is achieved by comparing the derived
feature with the hyperplane. However, the required com-
plexity to derive the classifier from training data is Oðn3Þ,
where n is the number of records in training data. Therefore,
the required computational complexity to derive (and to
update) the classification model may quickly deplete the
energy of the sensor. Furthermore, the required labeled train-
ing data to build the classifier is hard to derive and adds

significant load, where 2 seizures from the same patient do
not exhibit the same contraction strength and convulsion
pattern.

On the other hand, the computation complexity to derive
the PDF from the n measurements is Oðn2Þ, which makes it
prohibitively expensive for sensors with constrained resour-
ces and for large amounts of data. The complexity to predict
and to derive the variance is linear OðnÞ, where n is the
number of elements in the sliding window. Therefore, our
proposed method has a computational complexity of OðnÞ,
which is more adequate than SVM and PDF in deployment
environments with constrained resources. Our approach is
lighter than MISA in terms of computation complexity,
memory usage and number of required sensors.

5 DISCUSSION

5.1 Impact of Additional Biosignals

The reliability of existing seizures detection systems prevent
their adoption and wide deployment, especially when con-
sidering their high rate of false alarms and inability to detect
seizures without jerky movements. The FAR and the detec-
tion of non-convulsive seizures in our proposed detection
system can be enhanced by considering additional
biosignals. Several physiological parameters may change
during seizures, such as Heart Rate, respiration (RESP) rate,
skin conductivity or Galvanic Skin Response (GSR), body
temperature, etc. The HR, RESP, GSR, skin temperature, can
be easily acquired by the armband, where many existing
activity trackers are able to acquire these parameters in non-
invasive manner. On the other hand, patient comfort must
be taken into account, and his body must not be overloaded
with biosensors. An optimal set of physiological parameters

Fig. 9. Change detection.

Fig. 10. Impact of weighting factor (a).

2922 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019



must be identified to achieve both accuracy and comfort in
our future work.

5.2 Impact of Design and Acceptance

To the best of our knowledge for existing seizures detection
devices in the market, the acceptance by children has not
been addressed. Children refuse to carry the device and
start screaming. We tried to make it appear as an attractive
bracelet (by including popular characters such as sponge
bob, Frozen Queen, etc.). This should be considered at the
conception phase to provide an attractive armband that
appears as a game for children with lullaby. In the other
hand, our prototype for seizure detection uses only an arm-
band to acquire inertial signals and muscle contractions.
The use of armband with non-invasive recording (sEMG)
was more accepted than EEG-based systems (headsets)
with motion sensors, and more accurate, with lower false
alarm rate when comparing with 5 channels EEG Emo-
tiv [46], [47] headsets with integrated inertial sensor (9 DoF)
to detect head movements. It is more practical to sleep (and
to keep during sleep) with armband than headsets.

The Emotiv was used to capture the EEG data and a soft-
ware was used to process the acquired EEG signals by the
headset. The use of 5 channels in EEG, instead of widely
used 32-channels in hospital, reduces the detection accu-
racy, where the electrodes are unable to cover whole area in
the brain, especially when fired neurons are far from elec-
trodes. The electrodes must be placed on the lesion (location
of epilepsy) for accurate detection. Therefore, the deviations
generated by some seizures was not detectable as we do not
have access to the relevant channels.

Furthermore, it is hard to keep the electrodes in contact
with daily life activities. As the children were observed by
nurses, the recorded EEG signals contain artifacts and sev-
eral additional variations identified as seizures by the neu-
rologist and by assistive automatic detection tools. This can
be explained by unrestricted movements (eye blinking,
turning, etc.) and the associated artifacts. The false alarms
are identified from the notes of nurses written during daily
observation. The detection rate for one day on all monitored
patients was 76 percent with a FAR of 14 percent.

Different EEG based detection systems are available today
and have different accuracies. Conradsen et al. in [48] com-
pare seizure detection approaches based on sEMG with
existing approaches based on EEG. They found the detection
rate for EEG based systems varies between 70-100 percent

with a 0.5-72 false alarms per day, where the accurate
system usesmore than 60 electrodes.

5.3 Human Activity Recognition

Our proposed system is intended for nocturnal detection
and requires a combination with additional mechanisms for
the detection during daily activities. We are working on
human activity recognition and behavior tagging, by allow-
ing the user to create a model for each activity (walking,
running, cycling, driving, brushing teeth, etc.). A training
period of five minutes is required for each activity, and is
requested from user to derive the statistical parameters of
the user custom activity. During test phase, an activity
with statistical parameters that heavily deviate from pre-
established profiles of recognized activities is classified as
seizure. Users must also have the ability to interact with the
monitoring system, where he can push a button to cancel
ongoing false alarm for seizure. The detection system can
derive the parameters of current pattern and store them to
prevent such false alarms in the future and improve the
accuracy of the detection system.

We are working on enhancing the detection system by
taking into account the sex, age and weight of the patients.
We analyzed the mean number of minutes that children
spent in moderate or vigorous activity to distinguish with
seizures and to enhance the accuracy of our detection sys-
tem.We conducted studies for boys and girls separately con-
sidering age and weight to determine the differences across
childhood. Therewere no significant differences for vigorous
activity between girls and boys in all groups. Our analy-
sis showed that children (girls and boys) in each group
spent very little time in sustained activity, only overweight
children spent less time in vigorous activity. Furthermore,
during class time, children (6-17 year old) have reduced
activity and such context-aware information can be exploited
to enhance the accuracy of the detection system.

6 CONCLUSION

In this paper, we have proposed a lightweight and efficient
approach for the automatic detection of epileptic seizures.
Tonic-clonic seizures are the most common type of seizure.
They have motor manifestations, muscle contractions, or
both. Jerky movements can be detected through real-time
data analysis from ACM, GYRO and MAG, and muscle con-
tractions can be detected by analyzing the data from sEMG.
The muscular contractions followed by abnormal jerky
movements are used by our approach to detect nocturnal
seizures and to raise an alarm. The combination of inertial
and muscular signals increases the detection accuracy and
reduces the rate of false alarms. Furthermore, it allows the
detection of different types of epileptic seizures.

The proposed approach is based on the analysis of iner-
tial and muscular data, and is aimed at enhancing the detec-
tion accuracy of existing devices while reducing energy
consumption by eliminating the transmission of normal
data to the LPU. The early detection of seizures is based on
change point detection in the Kullback-Leibler divergence
between measured and forecasted variances. A signal is
transmitted to the LPU upon detection of a change, and sets
an associated counter in a sliding alarm window. The LPU

Fig. 11. ROC.
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uses the filling ratio of the alarm window to make a final
decision and raise an alarm to family members or healthcare
professionals.

We used simple and computationally efficient methods
capable to absorb normal nocturnal movements and high-
light convulsion seizures. The advantages of our approach
are the independence from the labeled training data
required to build a classification model for machine learn-
ing, and the local data processing on the sensor, which
reduces the energy consumed by the transmission of data.
We conducted several experiments on a real datasets from
healthy and epileptic patients to evaluate the performance
and efficiency of our approach. We used a commercially
available Micro Electro-Mechanical Systems (NEMS) and an
Arduino Uno with wireless transmission to test our system
and evaluate its performance. The prototype triggers an
alarm upon the detection of life-threatening seizures and
can be very effective in reducing SUDEP. The experimental
results are encouraging, and demonstrate that our approach
is able to achieve good detection accuracy with a low false
alarm rate and low detection delay when compared with
the state of the art PDF method.

In future work, we plan to deploy our developed system
in the “epilepsies rares” department at the Necker-Enfant
Malades Hospital in Paris, France, to cover more types of sei-
zure. Among the challenges wewould like to address as part
of our future work are: miniaturization of the prototype sys-
tem, addressing the difficulty in deploying the prototype
and difficulty in fixing the electrode on the skin of disorderly
and disruptive children, and optimizing of the algorithm to
improve detection accuracy, especially in the presence of
unreliable measurements from slightly detached electrodes.

More research is needed with larger datasets to further
refine and optimize the performance of our detection system
in order to detect the most common types of seizures among
40 known types. Currently, our approach is not able to detect
without convulsions and with loss of muscle tone, such as
gastaut seizures, where slightly impaired vision followed by
adduction of the left eye only lasts for up to 10 seconds.
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