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A B S T R A C T

Modern network services are constantly increasing their requirements in terms of bandwidth, latency and
cost efficiency. To satisfy these requirements, the concept of network slicing has been introduced in the
context of next-generation 5G networks. However, to successfully provision resources to slices, a complex
optimization problem must be addressed to allocate resources over a cloud network, i.e., a distributed
computing infrastructure interconnected through high-capacity network links.

In this study, we propose two new latency and energy-aware optimization models for provisioning 5G slices
in cloud networks comprising both distributed computing and network resources. The proposed approaches
differ from other existing solutions since we conduct our studies with respect to the end-to-end latency.
Relevant models of latency and energy consumption are proposed based on a comprehensive review of the
state-of-the-art. To effectively solve those optimization problems, a configurable heuristic is also proposed and
investigated over different network topologies. Performance of the proposed heuristic is compared against near-
optimal solutions. Moreover, we assess the importance of matching between resource provisioning algorithms
and architectural assumptions related to 5G network slices and a proper problem modeling.

1. Introduction

Global mobile data traffic is expected to increase seven-fold be-
tween 2017 and 2022, reaching 77.5 exabytes per month by 2022 [1].
The increasing number of end users is not the only reason for this
phenomenon, although end users are also increasing their bandwidth
demands to get access to several new bandwidth-hungry cloud applica-
tions. However, increasing traffic volume is not the only challenge for
future cloud networks. Other challenges arise from the heterogeneous
and strict requirements imposed by new network services. For example,
in 5G networks, considered in this work as a preeminent form of
cloud networks, high bandwidth, low latency and energy-efficiency
services are critical. To meet these requirements, network slicing has
been proposed and defined as generating a logical network to provide
specific network capabilities and network characteristics in 5G architec-
tures [2]. This definition can be further generalized to cloud networks,
where a ‘slice’ is defined as a set of virtual resources (either network
or computing) provisioned for the purpose of a particular request [3].
Slicing is not achievable in traditional architectures characterized by
limited control capabilities, since it calls for a more sophisticated
control plane and distributed computing resources.

Software defined networking (SDN), together with cloud orchestra-
tion, ensures programmable and automated control with a global view
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over the infrastructure composed of both network and computing re-
sources. Furthermore, network function virtualization (NFV) enables scal-
able deployment of network services [3] through interconnected virtual
network functions (VNFs) that form virtual network function chains (VN-
FCs) to satisfy service requirements. VNFs can be located not only
in large centralized data centers (DCs), but also in smaller facilities
distributed over edge locations, including base stations or micro data
centers in operators’ central offices. Such a distributed computing
infrastructure is denoted as edge or fog computing, depending on con-
text. All of those technologies and concepts enable slicing in cloud
networks.

The main contributions of this paper can be summarized as follows.

(a) We formulate two multi-objective optimization problems for
provisioning 5G slices in a cloud network. The related optimiza-
tion goals reflect requirements faced by 5G network slices which
must ensure sufficiently-low latency while minimizing resource
utilization and energy consumption. Per-service provisioning
is assumed as a slice reserved for each consecutive request.
The first problem assumes only a single computing location,
whereas the second one considers a more distributed scenario
with several cloud and edge computing facilities.
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(b) Due to the combinatorial characteristics of the two models and
the resulting computational complexity, we also propose a time-
efficient heuristic to obtain satisfactory sub-optimal results. Note
that our heuristic shall also account for network limitations in
terms of capacity. The proposed algorithm is based on the short-
est path algorithm performed on an auxiliary graph with nu-
merous novel aspects introduced. These are additional stages of
the heuristic and sub-algorithms being parts of those particular
stages.

(c) Energy and latency models are provided for both computing
infrastructure and network resources. Latency and energy con-
sumption are studied under assumption that end-to-end (E2E)
latency originates simultaneously from both network (transmis-
sion) and computing domains.

(d) Numerous experiments are conducted to provide a comprehen-
sive assessment. First of all, different configurations of the pro-
posed heuristic are investigated in different network topologies
to verify the ability of adjustment to the latency requirements of
5G network slices. Second, by comparing the two optimization
models, we assess the importance of matching between resource
provisioning algorithms and architectural assumptions related
to 5G network slices. Finally, we compare the performance of
the proposed heuristic against near-optimal solutions. For all of
the experiments, realistic assumptions and configuration values
are ensured based on our comprehensive review of available
literature.

The paper is organized as follows. In Section 2, we present the
related work and current state-of-the-art. In Section 3, the two opti-
mization models are introduced. In Section 4, a heuristic is proposed to
effectively obtain a sub-optimal solution for realistic problem instances.
In Section 5, we describe the research environment, methodology, and
discuss the assumptions and values of computation parameters. Sec-
tion 5.2 presents the results along with their comprehensive analysis.
Finally, Section 6 concludes the paper.

2. Related work

One advantage of distributed computing is the ability to limit
latency during service provisioning by directing computing tasks and
VNFs to edge facilities located closely to end users, instead of locating
them in distant DCs. Such an approach is referred in the literature as
computation offloading [4]. However, it comes at the cost of increased
energy consumption and required investments in an edge infrastruc-
ture [5]. That is why joint optimization model of communication and
computation resources assuming limited energy and sensitive latency
was proposed in [4] while some online heuristics are presented in [5].
Those works show how to balance the trade-off between computation
in more efficient, yet farther, DCs and closely located edge facilities.
Similarly, energy vs. latency trade-off has been considered in multilayer
data processing stacks comprising end devices, edge/fog layers and
cloud data centers [6], all of those important aspects are also addressed
in our work.

In our work, we also consider a hybrid infrastructure composed of
cloud DCs and distributed edge resources interconnected through the
SDN network. Our research assumes that E2E latency originates from
both domains: network (transmission) and computing. Our approach is
an important improvement in comparison to the current state-of-the-art
studies, especially when considered under assumptions related to 5G
infrastructure [3]. For example, in a very recent work [7], E2E latency
comprising both infrastructure domains was pointed to be a crucial and
under-investigated research area. The authors proposed E2E analytical
queue-based latency model applying packet level considerations and
validating the model by simulations. In [3], a framework was proposed
to place VNFs in an 5G network infrastructure composed of both edge
and core cloud servers, while respecting requirements of 5G slices.
The authors also provide convincing arguments that no previous work

was adequate for the VNF placement problem for 5G network slices.
However, their aim is to minimize throughput degradation caused by
VNF consolidation without considering energy and latency aspects.
Contrary to the presented theoretical solutions, experimental aspects
are addressed in [8]. The paper presents details of implementation
experiences when deploying streaming and augmented reality ser-
vices over 5G network slices utilizing extended open-source software
solutions.

SDN with all of its capabilities (e.g., a central controller and pro-
grammability and its flexibility in treating various flows in a differ-
entiated way) creates a great opportunity to introduce energy- and
latency-awareness into the optimization process [9]. Reductions in
terms of energy consumption may significantly help cut down op-
erational costs and limit a negative impact of IT infrastructures on
the natural environment by decreasing carbon dioxide emission [10].
Similarly, improvements in terms of latency are especially crucial for
modern services offered in 5G networks utilizing the NFV approach [7].

Furthermore, SDN controllers can be easily integrated with cloud
and edge orchestrators in order to provision a complete E2E service.
This aspect of different orchestration capabilities is also tackled in our
work by considering two different optimization models. It is extremely
important that our proposed modeling is adequate to the ecosystem
and fundamental assumptions. For example, deploying computing jobs
in various locations should be enabled by the optimization model.
However, such an approach to distributed computing requires integra-
tion between controllers handling different facilities and a WAN SDN
controller.

Other optimization models have already been proposed to solve
problems related to the one considered in this work. For example,
in [11], the authors formulated a problem which aims to deploy VNFs
in nodes along the path that minimizes latency comprising network
and processing factors. An auxiliary graph is defined to ensure a proper
order of functions in the chain and the so-called Resource Constrained
Shortest Path problem is formulated. However, energy aspects are
not considered. The latency aspect is differently addressed in [12],
where, cost is minimized while latency is considered as a constraint.
The cost comprises physical servers, links, and licensing for virtual
servers. Additionally, service differentiation is ensured and failures are
considered. However, the problem is solved in two stages and the some
important aspects are moved to the post-processing phase.

Energy consumption is an important issue in the context of dis-
tributed computing and it has been studied both with and without
taking into account latency constraints. The later approach has been
taken by authors in [13], where the VM placement problem is con-
verted to a routing problem and computing resources are transferred
to the network domain. Only intra-DC networks are considered in
this work. On the other hand, latency is considered as a constraint
in [14], yet delays originate solely from packet transfers in DC-internal
networks. In [14], energy consumption in the combined network and
computing infrastructure is optimized when co-located virtual ma-
chines communicate with each other. An additional contribution of
this work is related to the fact that validation is conducted utilizing
real-life traffic traces (to/from Wikipedia, Yahoo!, and IBM services).
The approach proposed in [14] is based on correlations between traffic
generated by different VMs, while the intermediate aim is to con-
solidate the load and VM deployments. A joint VNF placement and
routing problem which also minimizes energy under latency constraints
is proposed in [15]. Energy consumption and latency come from both
network and computing domains. Moreover, distinctive features re-
garding the utilization of network topology properties, as betweenness
centrality and presence of blocking islands, are taken into account.
Despite numerous similarities, the crucial difference between the model
proposed in [15] and in our work lies in the fact that we consider
latency as a component of the optimization goal instead of considering
latency as a constraint.
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Other works focus only on latency, while neglecting energy aspects.
Interesting models of network functions, NFC requests, and correspond-
ing heuristics are proposed in [16]. The optimization aim comprises
latency originating in the network and service provisioning domains.
Latency is also the main indicator in [17] which is one of the first that
considers the VNF placement problems in multi-layer infrastructures.
Latency originates from traffic grooming performed by the network
nodes in the upper layer of the model. The study is conducted in a
metro-like topology which is most suitable for 5G slices deployment.
Some other works, even through they consider neither latency nor
energy issues, are mentioned in the following due to their contribution
in the optimization field strongly connected to our work. One recent
example is [18], where computing and network resources are reserved
for incoming demands to deploy VNFCs. The problem is constructed
based on the expanded network and is solved with the use of four
different heuristics. Ref. [19] is a second example where overall CPU
and bandwidth utilization is the optimization factor. An on-demand
VNFC provisioning problem for a 5G environment is modeled using lin-
ear programming and solved by novel adaptive deep Q-learning based
approach being significantly advantageous over reference solutions.
On the other hand, Elastic Optical Network slicing problem for 5G
networks under strict latency requirements has been studied in [20].

Finally, some studies focus solely on task scheduling in distributed
systems, without considering network aspects. Despite this important
difference from our assumptions those works remain important as such
a task scheduling is a sub-problem of issues addressed in our work.
In [21], the authors aim at minimizing energy consumption under
deadline constraints. The main contribution are eight heuristics to solve
the problem. Those proposals were thoroughly assessed solely in the
computing domain. The network domain is simplified to the virtual
connection between the cloud and fog infrastructures in [22]. The
aim is to reduce energy consumption and latency in the fog comput-
ing environment. The authors proposed two algorithms: (1) machine
learning-based algorithm that minimize latency in physical layer an-
alyzing user behavior; and (2) intelligent task offloading between fog
nodes with a limited battery and processing power. Another approach
was proposed in [23], where the authors focus on the costs related to
sharing of computing resources between different VNFs: the upscaling
cost and the context switching cost. The latter is especially valuable
when modeling impact of computing resource utilization on the la-
tency. The aim of the proposed optimization model is to minimize a
number of active computing nodes under latency constraints obligatory
to satisfy the demands. A very recent study [24] formulates the NP-
hard optimization problem modeling deployment of VNFCs with the
aim to reduce the overall cost comprising energy and distance (latency)
aspects. Two solving methods were considered. One algorithm is based
on the Markov Approximation (MA) and is further improved by the
novel approach combining MA with the matching approach which
solves the problem iteratively.

To sum up, to the best of our knowledge, it is the first work
that jointly optimize energy and latency when solving multi-objective
optimization problem for provisioning of 5G slices in a cloud network.
The novelty is further extended as energy and latency models are
provided as well as a time-efficient heuristic is proposed.

3. Problem formulation

In this section, we formulate two novel optimization models. Both
models use node-link notation, but they formally differ as one of the
models (the less restrictive one) ignores two additional constraints
enforced in the more restrictive model. Therefore, to avoid repeti-
tions, we present both models using a unified notation, and report
only additional comments regarding the constraints responsible for the
difference. As explained in Section 1, the rationale is to investigate
scenarios in which resource provisioning methods are not directly
adjusted to the 5G architecture and concept of network slicing. The

more restrictive model enforces that all computing jobs must be per-
formed in a single computing node, and, as such, is better suited for
traditional applications as grid computing. The second model removes
that limitation, hence it lends itself to more modern applications as
those envisioned in customized 5G network slices. The proposed models
significantly extend the model introduced in our previous work [25].

The optimization models capture both topology planning and flow
routing problems. Moreover, computing resources are assumed to be
interconnected through a programmable SDN network creating a cloud
network. The demand modeling is adequately extended to properly
model also processing in the computing domain and, as a result, a set of
virtual resources in each domain is provisioned to satisfy each request.
This slice definition is a natural extension of the slice definition in
a 5G architecture [2] when applied in cloud networks. Furthermore,
latency issues are modeled, assuming that delay is introduced by both
computing and networking elements in the following way: (a) with a
linealized delay function based on queuing traffic in link interfaces; (b)
with a latency that inversely proportional to the assigned resources in
computing elements. Finally, energy consumption of the cloud network
is modeled by a non-proportional function of network link load and
computing resource consumption. To model both latency and energy,
we introduce binary variables into the multi-objective optimization
problem, that make the optimization task hard, or even impossible, to
solve on large networks. As a consequence, some heuristics are also
proposed to effectively find a sub-optimal solutions.

Note that the following optimization models solve a flow assignment
problem. To do that, a node-link approach was assumed, since it
has been shown to be more practical when utilizing the optimization
results to configure network devices [26]. More specifically, the op-
timization results must be transformed into paths together with their
respective output interfaces, and then transferred to the SDN controller
which updates flow tables in the switches. Using the node-link notation
presented in [26] this technical issue is easier to handle.

The used notation, meaning of the symbols, etc., related to the
formulated optimization problem are sketched in Table 1.

The constraints defining the feasible solutions of our optimization
problem are defined below. For clarity, we define various groups of the
constraints. This way, we start with the network constraints. The are
given below:

∑

𝑒
𝐴𝑒𝑣𝑥𝑒𝑑 −

∑

𝑒
𝐵𝑒𝑣𝑥𝑒𝑑 =

⎧

⎪

⎨

⎪

⎩

𝐻𝑑 if 𝑣 = 𝑆𝑑

0 if 𝑣 ≠ 𝑆𝑑 , 𝑣 ≠ 𝑇𝑑
−𝐻𝑑 if 𝑣 = 𝑇𝑑

𝑣 = 1, 2,… , 𝑉 𝑑 = 1, 2,… , 𝐷 (1)

𝑥𝑒 =
∑

𝑑
𝑥𝑒𝑑 𝑒 = 1, 2,… , 𝐸 (2)

𝑥𝑒 ≤ 𝐶𝑒𝜏𝑒 𝑒 = 1, 2,… , 𝐸 (3)

𝑥𝑒𝑑 ≤ 𝑀𝜖𝑒𝑑 𝑒 = 1, 2,… , 𝐸 𝑑 = 1, 2,… , 𝐷 (4)
∑

𝑒
𝐴𝑒𝑣𝜖𝑒𝑑 ≤ 1 𝑣 = 1, 2,… , 𝑉 𝑑 = 1, 2,… , 𝐷 (5)

Next, computing constraints are defined as follows:
∑

𝑟

∑

𝑑
𝑗𝑣𝑟𝑑 ≤ 𝑝𝑣 𝑣 = 1, 2,… , 𝑉 (6)

𝑗𝑣𝑟𝑑 ≤ 𝑀
∑

𝑒
𝐵𝑒𝑣𝑥𝑒𝑑 𝑣 = 1, 2,… , 𝑉 𝑣 ≠ 𝑆𝑑 𝑟 = 1, 2,… , 𝑅

𝑑 = 1, 2,… , 𝐷 (7)

𝐺min
𝑟 ≤ 𝑔𝑟𝑑 ≤ 𝐺max

𝑟 𝑟 = 1, 2,… , 𝑅 𝑑 = 1, 2,… , 𝐷 (8)
∑

𝑣
𝑜𝑣𝑟𝑑 = 1 𝑟 = 1, 2,… , 𝑅 𝑑 = 1, 2,… , 𝐷 (9)

𝑜𝑣𝑟𝑑𝑗𝑣𝑟𝑑 ≥ 𝑜𝑣𝑟𝑑𝑔𝑟𝑑 𝑣 = 1, 2,… , 𝑉 𝑟 = 1, 2,… , 𝑅 𝑑 = 1, 2,… , 𝐷
(10)
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Table 1
Notation used in relation to the optimization task.

Index Meaning of the index Constant Meaning of the constant

𝑣 = 1, 2,… , 𝑉 Network nodes 𝛤𝑒𝑘 The intercept of the 𝑘th linear segment
approximating a convex function of link delay vs.
link traffic load on link 𝑒

𝑑 = 1, 2,… , 𝐷 Demands (flows) between nodes pairs (note that a demand
from 𝑣1 to 𝑣2 is not the same as a demand from 𝑣2 to 𝑣1
and, in general, we can even distinguish among different
demands defined for the same pair of nodes)

𝛯𝑒 fixed unit cost of energy for link 𝑒 (we assume a
linear dependence between traffic volume on link 𝑒
and a resulting energy cost)

𝑒 = 1, 2,… , 𝐸 Network links (corresponding to interfaces that can be
switched on or off)

𝛹𝑣 fixed unit cost of energy for computing resources
associated with node 𝑣 (we assume a linear
dependence between computing load and a resulting
energy cost)

𝑘 = 1, 2,… , 𝐾 Linear segments approximating a convex function
representing link delay vs. traffic volume

𝛥𝑒 Energy cost of switching on link 𝑒

𝑟 = 1, 2,… , 𝑅 Computing services comprised in each demand 𝛬𝑣 Energy cost of switching on computing resources
associated with node 𝑣

Constant Meaning of the constant 𝐹𝑛 Normalization coefficient scaling overall energy
consumption of the infrastructure

𝑀 Big-𝑀 (a sufficiently large number) 𝐹𝛽 Normalization coefficient scaling overall delay
violation for all the demands satisfied in the network

𝐴𝑒𝑣 = 1 if link 𝑒 starts in node 𝑣; 0, otherwise Variable Meaning of the variable

𝐵𝑒𝑣 = 1 if link 𝑒 finishes in node 𝑣; 0, otherwise 𝑥𝑒𝑑 ≥ 0 Continuous: volume of a flow for demand 𝑑 on link 𝑒

𝐶𝑒 Capacity of link 𝑒 𝑥𝑒 Continuous: total capacity allocated on link 𝑒 to
flows

𝑆𝑑 Source node of demand 𝑑 𝑔𝑟𝑑 ≥ 0 Continuous: processing power consumed by service 𝑟
of demand 𝑑

𝑇𝑑 Destination node of demand 𝑑 𝑗𝑣𝑟𝑑 ≥ 0 Continuous: processing power consumed in
computing node 𝑣 satisfying service 𝑟 of demand 𝑑

𝐻𝑑 Predicted volume of the flow demand 𝑑 𝜁𝑒 Continuous: delay experienced on link 𝑒

𝛺max
𝑑 Latency requirements of demand 𝑑 (if a particular demand

can only be satisfied with higher latency than the required
one, a latency violation occurs)

𝜃𝑣𝑟𝑑 Continuous: delay introduced by processing service 𝑟
of demand 𝑑 in computing node 𝑣

𝑃𝑣 Processing power available in a computing node associated
with network node 𝑣 (the same indices apply to computing
and network nodes, as computing resources can be
associated with any network node; for the sake of
simplicity, the computing node associated with network
node 𝑣 will be further referred to as computing node 𝑣)

𝛽𝑑 ≥ 0 Continuous: overall (introduced by both network
transmission and computing processing) latency
experienced by demand 𝑑

𝛱𝑣 = 1 if computing node associated with network node 𝑣 is a
DC (a special case of a computing node that cannot be
turned off and has virtually unlimited computing
resources); 0, otherwise

𝛽violation
𝑑 ≥ 0 Continuous: violation of latency requirements of

demand 𝑑

𝐺min
𝑟 Minimum processing power that has to be assigned in a

computing node to handle service 𝑟
𝑛 Continuous: total amount of energy used in the

cloud network, comprising network and computing
resources

𝐺max
𝑟 Maximum processing power that has to be assigned in a

computing node to handle service 𝑟
𝜖𝑒𝑑 Binary: = 1 if link 𝑒 is a part of a path satisfying

demand 𝑑; = 0, otherwise

𝛩min
𝑟 Minimum latency with which computing service 𝑟 can be

satisfied
𝑜𝑣𝑟𝑑 Binary: = 1 if computing service 𝑟 of demand 𝑑 is

realized in computing node 𝑣; = 0, otherwise

𝛩max
𝑟 Maximum latency with which computing service 𝑟 can be

satisfied
𝑜𝑣𝑑 Binary: = 1 if any computing service of demand 𝑑 is

realized in computing node 𝑣; = 0, otherwise

𝛷𝑒𝑘 The slope of the 𝑘th linear segment approximating a
convex function of link delay vs. link traffic load on link 𝑒

𝜏𝑒 Binary: = 1 if link 𝑒 should be switched (to transmit
any data); = 0, otherwise

𝜌𝑣 Binary: = 1 if computing node 𝑣 should be switched
on (to handle any service); = 0, otherwise

The two additional computing constraints valid solely for the
first optimization model read as given below:

𝑜𝑣𝑑 ≥ 𝑜𝑣𝑟𝑑 𝑣 = 1, 2,… , 𝑉 𝑑 = 1, 2,… , 𝐷 𝑟 = 1, 2,… , 𝑅 (11)
∑

𝑟
𝑜𝑣𝑟𝑑 = 𝑅𝑜𝑣𝑑 𝑣 = 1, 2,… , 𝑉 𝑑 = 1, 2,… , 𝐷 (12)

The latency constraints are defined as follows:

𝜁𝑒 ≥ 𝛷𝑒𝑘𝑥𝑒 + 𝛤𝑒𝑘 𝑒 = 1, 2,… , 𝐸 𝑘 = 1, 2,… , 𝐾 (13)

𝜃𝑣𝑟𝑑 =
𝛩max
𝑟 − 𝛩min

𝑟

𝐺min
𝑟 − 𝐺max

𝑟
𝑗𝑣𝑟𝑑 +

𝛩min
𝑟 𝐺min

𝑟 − 𝛩max
𝑟 𝐺max

𝑟

𝐺min
𝑟 − 𝐺max

𝑟
𝑜𝑣𝑟𝑑
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Fig. 1. Illustration of the architecture.

𝑣 = 1, 2,… , 𝑉 𝑟 = 1, 2,… , 𝑅 𝑑 = 1, 2,… , 𝐷 (14)

𝛽𝑑 =
∑

𝑣𝑟
𝜃𝑣𝑟𝑑 +

∑

𝑒
𝜖𝑒𝑑𝜁𝑒 𝑑 = 1, 2,… , 𝐷 (15)

𝛽violation
𝑑 ≥ 𝛽𝑑 −𝛺max

𝑑 𝑑 = 1, 2,… , 𝐷 (16)

Finally, there are also energy constraints given:
∑

𝑑

∑

𝑟
𝑗𝑣𝑟𝑑 +𝛱𝑣 ≤ 𝑀𝜌𝑣 𝑣 = 1, 2,… , 𝑉 (17)

𝑛 =
∑

𝑒
(𝛥𝑒𝜏𝑒 + 𝛯𝑒𝑥𝑒) +

∑

𝑣
(𝛬𝑣𝜌𝑣 + 𝛹𝑣

∑

𝑑

∑

𝑟
𝑗𝑣𝑟𝑑 ) (18)

Finally, the optimization goal function is given as:

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 1
𝐹𝑛

𝑛 + 1
𝐹𝛽

∑

𝑑
𝛽violation
𝑑 (19)

Supplementary to the formal problem definition, Fig. 1 illustrates
the architecture, indexing of network nodes, different types of comput-
ing resources and link’s capacity.

The cloud network is composed of computing and networking re-
sources, modeled as follows. The network part is a unidirectional graph
with 𝑉 nodes and 𝐸 edges with capacity limitations applicable to
the links (𝐶𝑒). The computing resources can be associated with any
network node and are provisioned in two forms: Data Centers (𝛱𝑣 =
1, with virtually unlimited capacity) and edge resources limited in
terms of capacity (𝑃𝑣). Each demand 𝑑 originates in its source node
(𝑆𝑑) and terminates in its destination node (𝑇𝑑). To satisfy a demand,
sufficient network capacity should be reserved to carry the demand’s
volume (𝐻𝑑) between 𝑆𝑑 and 𝑇𝑑 . Additionally, 𝑅 computing services
are associated with each demand 𝑑. Thus, to satisfy the demand in
the computing domain, sufficient computing resources (range between
𝐺min
𝑟 and 𝐺max

𝑟 ) must be provisioned to process each computing service
𝑟 = 1, 2,… , 𝑅. Processing can be conducted in computing resources
associated with any network node traversed by the path of the demand
(including source and destination nodes).

Each demand 𝑑, has a latency threshold (𝛺max
𝑑 ) that must be met

not to violate the requirements. Both network transmission and pro-
cessing in computing nodes introduce additional latency according to
the models explained below.

To make notation of our optimization model readable, we grouped
constraints into network, computing, latency, and energy categories.
The model will be explained according to those categories.

Network constraints model resource allocation to satisfy demands
in the transmission dimension. Eq. (1) represents basic constraints,
responsible for enforcing flow conservation in intermediate nodes and
satisfying demands in the source and destination nodes. Eq. (2) is used
to determine the sum of all traffic flows in the network. Eq. (3) ensures

Fig. 2. Example of demand provisioning.

that links’ capacity is not exceeded by the demands, while Eq. (4) sets
a binary variable indicating if link 𝑒 is traversed by the path satisfying
demand 𝑑. The fact that flows cannot be bifurcated is ensured by
Eq. (5).

Computing constraints model how the computing part of each de-
mand is satisfied. Eq. (6) verifies that computing resources in each
computing node are enough to satisfy all the demands assigned to be
processed in the node. Eq. (7) ensures that computing resources associ-
ated with network node 𝑣 can be consumed only if a path satisfying
demand 𝑑 traverses node 𝑣. To satisfy any demand, each service 𝑟
comprised by that demand must be also satisfied by assigning comput-
ing resources within the range specific for that service (Eq. (8)). As
the service is the smallest part of the computing demand it has to be
entirely processed in a single computing node. This property is ensured
by Eq. (9). Eq. (10) ensures that computing node 𝑣 satisfying service 𝑟
of demand 𝑑 (i.e., 𝑜𝑣𝑟𝑑 = 1) reserves a proper amount of computing re-
sources (namely, equation 𝑗𝑣𝑟𝑑 = 𝑔𝑟𝑑 is enforced). Note that we multiply
binary and continuous variables; therefore, linearization is performed
(as this can be done with well-known linearization techniques, we skip
the details here).

Additional computing constraints in Eqs. (11) and (12) are valid
only for the first optimization model. The former equation is auxiliary
and ensures that realizing any of services 𝑟 of demand 𝑑 in node 𝑣
is equivalent to realizing demand 𝑑 in node 𝑣. The latter equation
enforces that all services 𝑟 = 1, 2,… , 𝑅 of the same demand 𝑑 are
realized in the same computing node 𝑣. Those constraints are ignored
in case of the second optimization model which assumes that services
𝑟 = 1, 2,… , 𝑅 of demand 𝑑 can be processed in different computing
nodes. Fig. 2 illustrates how demand can be satisfied in the modeled
architecture. The path between source and destination is presented
pointing that requested bandwidth is assigned solely on consecutive
links of that path. Furthermore, computing resources are assigned in
two first network nodes traversed by the path. The former one is an
edge node while the latter is DC node.

Latency constraints reflect the fact that latency is modeled as origi-
nating independently from two different sources: transmission through
the network and processing in computing nodes. Regarding the network
delay we assume delays experienced by traffic is dependent on traffic
load on the links according to a monotonously increasing function. We
decided to use a model based on the M/M/1 queue to obtain delay
from traffic load on a link, with respect to its capacity, as described
in Chapter 4.3.2 of [26]. According to this model, the delay function
can be approximated with a series of linear segments (the so-called
‘piecewise linear approximation’). Since the delay function is a convex,
increasing function, and we aim at minimizing the delay values in
the optimization goal, the convexity of the problem is maintained.
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Therefore, we can use a standard linearization procedure presented
in the mentioned chapter (eqs. (4.3.11)-(4.3.12) and (7.1.10)-(7.1.11)
in [26]) without necessity of applying non-continuous variables. The
linearization is performed according to Eq. (13).

Processing latency is separately modeled by Eq. (14), following
[27]. We assume that computing resources assigned to satisfy service 𝑟
may vary between 𝐺min

𝑟 and 𝐺max
𝑟 , and thus, it is reasonable to assume

that the more resources within range
[

𝐺min
𝑟 , 𝐺max

𝑟
]

are assigned, the
lower latency will be introduced. Therefore, the computing latency
varies in corresponding range between 𝛩min

𝑟 and 𝛩max
𝑟 . In Eq. (14)

variable 𝑗𝑣𝑟𝑑 ensures this linear relationship between assigned comput-
ing resources and resulting latency [27]. Additionally, binary variable
𝑜𝑣𝑟𝑑 introduces minimum latency (𝛩min

𝑟 ) even if maximum applicable
computing resources are assigned (i.e., when 𝑗𝑣𝑟𝑑 = 𝐺max

𝑟 ).
Eq. (15) calculates the overall latency experienced by demand 𝑑 as

a sum of the two previously explained contributions. Note that also
in this case we multiply binary and continuous variables, so further
linearization is performed. Finally, Eq. (16) finds the latency violation
for each demand. The value ∑

𝑑 𝛽
violation
𝑑 expressing the summarized

delay violation of all demands satisfied by the infrastructure is directly
applied in the optimization goal.

Similar to latency ones, energy constraints follow an energy con-
sumption model where energy consumption is due to both: network
links and computing nodes.

As for the network energy cost, we model energy consumption using
a non-proportional function comprising two components. The first one
reflects the baseline energy costs to keep a link active (𝛥𝑒𝜏𝑒), while
the second one represents variable energy cost of transferring specific
amounts of traffic through the link (𝛯𝑒𝑥𝑒). The fact that the energy
cost of switching link on is taken into account prevents us from using a
pure continuous linear modeling of this aspect. We decided to use the
mentioned energy cost model as:

• the presented model is simple, yet realistic, since it is frequently
reported as being appropriate for current SDN hardware [28] and
distributed systems [29];

• a simpler model, where energy cost characteristics is purely pro-
portional, does not reflect the behavior of current network hard-
ware;

• other, more complex, energy cost characteristics can also be
considered: if the traffic-dependent energy consumption increases
in a convex way, then we could linearize it as we did to model
delays. If it increases in a concave way; we should linearize it with
the use of binary variables, which introduce additional hindrances
to the optimization and further increase the complexity of the
problem.

Eq. (3) ensures that each link transmitting any amount of traffic is
switched on. As for energy consumption of computing infrastructure,
we model it in different ways for DCs and edge resources. The energy
consumption model for an edge node is analogous to the network link
energy model with the initial cost of switching on a node (𝛬𝑣𝜌𝑣) and
varying consumption proportional to the amount of utilized computing
resources (𝛹𝑣

∑

𝑑
∑

𝑟 𝑗𝑣𝑟𝑑). In case of DCs, we neglect the constant
part of equation and take into account only the component linearly
dependent from the assigned computing power. Such an approach is
reasonable, as edge resources are usually composed of small processing
units, like for example, single server dedicated to offer its resources for
computing tasks. Such a server can be easily switched off or hibernated
when it is not occupied by any particular computing demand. On
the other hand, DCs are large-scale facilities with virtually unlimited
computing resources being provided to numerous customers and for
different purposes. Thus, it would be non-realistic to assume switching-
off whole DC while the contribution of any single demand to the
constant part is negligible. However, linear part remains relevant as
any additional load increases energy consumption. This assumption
is modeled in Eq. (17), used to enforce that variable 𝜌𝑣 (indicating

that the computing resources in node 𝑣 are active) is set to 1. Fi-
nally, Eq. (18) ensures that overall energy consumption is a sum of
energy consumed in the network (first summation) and computing parts
(second summation). One must note that variable 𝑛 expressing overall
energy consumption is directly applied to the optimization goal.

In our problem, we use a multi-objective optimization. It is a well-
known problem that there is no single universal method for dealing
with multiple criteria simultaneously. Out of the viable options de-
scribed in [30] (weighted sum method, weighted min–max method,
weighted global criterion method, lexicographic method, bounded ob-
jective function method, and goal programming) we select the weighted
sum method due to its simplicity and an intuitive character, and since
other methods have more disadvantages from the viewpoint of our
particular optimization problem.

Two criteria are included in the optimization goal with different
normalization coefficients 𝐹𝑖, where 𝑖 represents 𝑛 (overall energy con-
sumption of infrastructure) and ∑

𝑑 𝛽
violation
𝑑 (summary delay violation

for all the demands satisfied in the network). As a result, the opti-
mization goal takes the form expressed by Eq. (19). While minimizing
overall energy consumption is intuitive, the latency part requires some
kind of clarification. The most straightforward approach is to consider
latency requirements as a constraint in the model. Such an approach
may lead to infeasibilities in situations where providing service in a best
effort is more convenient. On the other hand, the optimization goal can
be formulated to directly minimize the latency. This approach may lead
to unnecessary energy and resource consumption in scenarios when
sufficient latency for particular demands may be ensured at lower cost.
Therefore, minimizing overall violation of latency requirements brings
the most expected results which are to ensure satisfactory quality of
service without any unnecessary costs in terms of energy or resources.

4. Heuristic

The problem formulated in Section 3 is -complete due to the
numerous binary variables modeling non-linear dependencies in multi-
objective optimization problem, and some heuristics should be pro-
posed to effectively find a sub-optimal solution.

The formulated optimization models address static optimization
scenarios only. Thus, heuristic proposed in this section follow anal-
ogous assumptions and constraints. The aim is to allocate network
and computing resources assigning the complete set of demands in the
network. Demands are listed according to the decreasing order of their
network demand volumes (𝐻𝑑). The rationale is to handle the most
network demanding flows first.

The proposed heuristic is inspired by the concept of shortest paths
with some modifications of weights assigned to the edges. Thus, when-
ever stated that the shortest path is find or established, it means that
weights are respected by an algorithm. The default weight for each
link is equal to 100. In case when there are many equivalent paths the
algorithms arbitrarily select one of them.

To make the description more compact, in the following we refer
computing resources of a network node as ‘resources in the node’ and
network nodes associated with a DC are denoted as ‘DC nodes’, while
all other nodes are denoted as ‘edge nodes’.

General heuristic workflow. The schema our heuristic follows in relation
to each demand 𝑑 is given below (the details of each step are explained
in the consecutive paragraphs):

1. create an auxiliary graph on the basis of the network topology,
2. modify weights assigned to the network edges in a way that fully

reflects the corresponding optimization problem and aim,
3. find the path between the demand source (𝑆𝑑) and destination

(𝑇𝑑) using one of the three proposed modes with two of them
introducing some preference for paths traversing data centers,
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Fig. 3. Flowchart diagram of the proposed heuristic.

4. assign computing resources to handle computing tasks of the
demand using one of the three proposed sub-algorithms, where
especially one is designed to balance the trade-off between
resource/energy consumption and achieved latency,

5. if computing resources are not sufficient to handle the demand
on the shortest path, perform corrective actions taking advan-
tage of virtually unlimited resources in DC and possibly allow
for partial service degradation in an incremental way.

Furthermore, once all of the demands are handled, an additional op-
timization step is conducted to further improve the results in terms of
both energy consumption and overall latency violation. Despite using
the well-known approach that is based on the shortest path algorithm
performed on an auxiliary graph, the proposed heuristic comprises
numerous novel aspects briefly mentioned in each bullet and carefully
explained below. General workflow of the heuristic is presented in
Fig. 3.

Creation of an auxiliary graph. For each demand, we consider a separate
auxiliary graph composed by removing from the graph all the edges

that are not able to handle the request network load (𝐻𝑑) due to the
insufficient unoccupied link capacity (𝐶𝑒 − 𝑥𝑒).

Modification of the weights. Three modifiers are applied to the default
weights of edges. First, the weight is zeroed for all the links adjacent
to DC nodes. The rationale is to increase the chance that the shortest
path will be directed through the DC nodes having virtually unlimited
computing resources.

Second, the weight of each link is multiplied by a factor propor-
tional to the delay that this link introduces. The factor varies from
zero (exclusively for minimal traffic) to 1.1 (inclusively for overloaded
links): (0, 1.1]. If a particular link is not handling any traffic, its weight
remains unchanged which means it is relatively high (not reduced is
equal to 100). This mechanism reduces the number of links that are
switched on in the network and helps decreasing energy consumption.

The last modifier reflects the state of the computing resources in
the node to which a particular link is directed. Namely, the weight
of the link is multiplied by a factor proportional to the utilization of
computing resources of the link’s destination node. As a consequence,
least loaded edge computing nodes are preferable. This mechanism di-
rectly increases the chances that sufficient computing resources will be
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available on the shortest path. Simultaneously, if computing resources
are switched off, the weight is not reduced in order to limit the energy
consumption imposed by switching on computing resources.

One needs to note that these modifiers operate as separate mech-
anisms introduced in our heuristic in the particular order defined
above. It is the result of a comprehensive analysis which is not re-
ported in the paper for the sake of brevity. The aim is to fully reflect
the corresponding optimization problem making this stage a novel
contribution.

Finding the shortest path. The heuristic can be configured to search for
the shortest path in these three different manners: direct,
preferDC, and throughDC. The direct approach finds the shortest
path between the demand’s source and destination using Dijkstra
algorithm run on the auxiliary graph [31]. It is the most intuitive
approach, taking into account only weights previously assigned to the
edges.

The preferDC approach is a mechanism that analyzes all equiva-
lent shortest paths established with respect to the same rules as in case
of the direct method. Namely, from the set of those shortest paths it
selects any one that traverses a DC node.

The throughDC finds the shortest path between source and desti-
nation, but under the constraint that the path traverses the DC node.
The aim is to place all the computing tasks in DCs and switch off
all edge computing resources. It is expected to limit the energy con-
sumption related to the computing infrastructure, but it will led to an
increased utilization of network resources.

The rationale of those various configuration options is to introduce
the possibility to adjust the heuristic based on different optimization
aims and investigate the impact on the final result. The fact that differ-
ent levels of preference for paths traversing data centers are introduced
justifies the novelty of this procedure.

Assignment of computing resources. Computing resources requirement,
for each demand, varies in a predefined range limited by lower bound
𝐺min and upper bound 𝐺max (following the model proposed in [27]).
Therefore, the first step is to determine the amount of resources to be
assigned. The proposed heuristic is configurable in this aspect and three
possible independent modes are available. The two extreme approaches
are to assign 𝐺min or 𝐺max resources to the nodes where we decide to
place them. The rationale of the former one (further referenced as 𝐺min)
is to achieve the lowest possible computing resources utilization and
energy consumption. On the other hand, the latter approach (further
referenced as 𝐺max) minimizes latency introduced by the computing.

A more sophisticated approach (denoted as networkAware) is
proposed in our heuristic to balance the trade-off between resource/
energy consumption and achieved latency. The networkAware mode
takes advantage of the fact that a path satisfying network requirements
is already known. Thus, the algorithm may estimate the latency origi-
nating from the network by multiplying the number of links in the path
and average latency determined by the link’s latency model. After that,
the latency threshold 𝛺max

𝑑 for demand 𝑑 is decreased by the estimated
transmission latency. The rationale is to estimate how fast services must
be processed to meet latency requirements. The resulting time is then
translated to the amount of computing resources to be assigned, again
with the usage of computing latency model. One must note that in case
when latency requirements for the computing part are too strict, then
𝐺max amount of resources will be assigned to minimize the value of
latency violation 𝛽violation

𝑑 . Once the amount of computing resources is
determined, the assignment phase begins. If a path presumed to handle
the request traverses a network node associated with DC, then all the
services are handled in that DC. This assumption takes advantage of
the fact that DCs have virtually unlimited computing resources, and
thus, cannot get congested contrary to edge nodes which are limited.
If any DC node is available on the path, then computing resources
are assigned in the first node that, jointly, has enough computing
resources and some part of its resources is already occupied (that is, the

Table 2
Explanation of abbreviations denoting heuristic configurations.

Approach to finding
shortest path

Computing resource
assignment

Abbreviation

𝐺min directMIN
direct 𝐺max directMAX

networkAware directNA

𝐺min preferDCMIN
preferDC 𝐺max preferDCMAX

networkAware preferDCNA

computing resources are on). If such a node does not exists, then the
later constrained is ignored and the only requirement is to offer enough
computing power (further corrective actions are described below). The
rationale is to limit the number of edge nodes that have to be turned
on and to achieve reduction in terms of energy consumption.

To summarize this step: computing resources are assigned according
to the described procedure and assuming one out of three different
approaches to define the expected amount of resources to be assigned.
In particular, the networkAware approach should be considered as an
innovative contribution. All of those approaches can be combined with
the three configuration options proposed for path selection. As a result,
nine combinations are available and become the subject of the study
performed in this paper as described in Section 5.2 and summarized in
Table 2.

Corrective actions. If computing resources are not sufficient to handle
the request on the presumed path, a following procedure is applied.
All the resources temporarily assigned to the demand are released and
the new shortest path traversing a DC node is established between the
demand’s source (𝑆𝑑) and destination (𝑇𝑑). All the services are handled
in the DC then. If it is not possible to find a path traversing any DC, the
algorithm again tries to utilize the shortest path but with the relaxed
constraints for computing resources. Namely, the algorithm iteratively
decreases the amount of computing resources to be assigned by 10%
in each round until there are enough computing resources available on
the path.

Post-allocation optimization. To further optimize the energy consump-
tion (𝑛) and limit overall latency violation ∑

𝑑 𝛽
violation
𝑑 , two additional

actions are performed once the allocation process is finished for all
the demands. The first one finds all demands 𝑑 that achieved a better
level of latency than required (𝛺max

𝑑 ) and tries to decrease amount of
computing resources allocated to handle those demands. The process
stops before the latency requirements for particular demand are vio-
lated (i.e., just when 𝛽violation

𝑑 = 0). The rationale is to utilize as few
computing resources as possible and still meet latency requirements.

Second action is to find all demands 𝑑 that exceed 𝛺max
𝑑 threshold

and, if possible, increase the amount of assigned computing resources
to reduce that violation. The process stops just after the latency require-
ments for particular demand are met (𝛽violation

𝑑 = 0). The rationale is to
eliminate any latency violations if only unassigned computing resources
are available in nodes satisfying computing demands that exceed the
threshold.

Reference approach. In addition to the proposed heuristic with different
configurations we formulated also a baseline approach that can be
considered as a benchmark for heuristic. In this case, demands are pro-
cessed in random order (as the one given in the SNDLib library [32]).
To handle request 𝑑, the shortest path between the source (𝑆𝑑) and
destination (𝑇𝑑) is found under assumption that weights are equal to
one for each network edge. Then, computing resources are assigned
in the first node 𝑣 on the path that has the sufficient amount of
these resources to satisfy at least one of the services 𝑟 comprised
by the demand. The consecutive computing services related to this
demand are satisfied according to the same schema. Such assignment
of computing resources is valid no matter if this shortest path traverses
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a DC. The requirements for computing resources are always minimal
(equal to 𝐺min

𝑟 for all 𝑟 = 1, 2,… , 𝑅). If there are no enough computing
resources to handle the request on the presumed path, all the resources
temporarily assigned to the demand are released and the new shortest
path traversing a DC node is established between 𝑆𝑑 and 𝑇𝑑 . All services
are handled in the DC then. Any additional optimization actions are
performed after the resources have been assigned. To sum up, the
reference approach considered in our studies is, therefore, a simple
shortest path based approach which lacks all of the improvements
proposed in our algorithm.

5. Validation

To validate our study we employed realistic assumptions that are
described further in this section. Afterwards, numerical results are
presented and carefully analyzed.

5.1. Assumptions

Resource dimensioning. Network resources are described by the band-
width available on each network link and expressed in Mbps. To model
realistically computing resources we consider that the three different
types of resources, i.e., CPU, RAM and storage, are proportionally
scaled, and thus, are usually proportionally utilized.

However, each type of computing resources can still be expressed
in different units. For example, in case of computing, available clock
cycles (e.g. [4,33,34]), number of cores (e.g. [17,35,36]), or virtual
units (e.g. [11,37]) can be considered.

In our work, based on the conducted research, we have decided to
express network resources with a single value representing throughput,
while computing resources are represented by a number of available
cores. Particular absolute values are not critical because it is more
important to properly scale both types of resources in relation to
traffic demands. We follow assumptions taken in works considering 5G
scenarios, e.g., [11,17,34]. Thus, we assumed that link capacity is equal
to 100 units, data centers with virtually unlimited capacity, and each
edge node with 2𝑥 number of cores, where 𝑥 = 5, 6, 7, 8.

Demand model. Those heterogeneous resources are consumed by cor-
responding parts of demands arriving to the infrastructure. Volume of
network demands between each pair of nodes is obtained from the
SNDlib project [32] and further scaled separately for each considered
topology. Nevertheless, it is important to properly adjust requirements
on computing resources. Authors of [17] provided a mapping between
bandwidth required by different VNFCs and CPU core usage for VNFs
comprised by those chains. A similar approach was taken in [37], but
only a single type of generic service chain was considered. Ref. [38] is
the third recent source of the mapping between throughput and CPU
requirements of particular applications. Based on these three works, we
assume that each demand in our model will comprise 3 generic services
(𝑅 = 3). Furthermore, 𝐺min

𝑟 is equal to 1 CPU for each service 𝑟 of
demand 𝑑. In the same time, 𝐺max

𝑟 is equal to 2, 4 and 16 for 𝑟 = 1,
𝑟 = 2 and 𝑟 = 3, respectively. For the first model assuming that all three
services must be satisfied in the same computing node, the minimum
and maximum assigned computing resources are equal to 3 (∑𝑟 𝐺

min
𝑟 ,

sum of 𝐺min
𝑟 for three services) and 22 (∑𝑟 𝐺

max
𝑟 , sum of 𝐺max

𝑟 for three
services), respectively.

Each demand in our models is subject to a latency threshold
(𝛺max

𝑑 ). Several works propose thresholds for various services. Ref. [27]
considers conversational services, streaming services, and background
services assuming that latency threshold equal to 150, 300, and 600 ms,
respectively. Another taxonomy was proposed in: [35] and [23].
Namely, web, video streaming, VoIP, and gaming services have latency
requirements equal to 500, 100, 100, and 60 ms, respectively. More
demanding services are considered in [17], where 1 ms of latency is a
threshold for augmented reality and smart factory services, and 5 ms of
latency must be ensured for massive IoT service. Finally, authors of [39]

focus on SDN-based industrial IoT applications with fog computing. The
considered services are: process monitoring, environmental monitoring,
fault diagnosis, product testing, and inventory management while
corresponding latency requirements for those services are equal to 10,
50, 20, 50, and 80 ms. As we are considering modern 5G services
(some recent examples of services can be found in [7]) offered through
WAN, we have decided to assume latency threshold equal to 20 ms.
The rationale is to assume a restrictive value due to the nature of 5G-
based services; however, the threshold cannot be as demanding as those
proposed in [17] because the services are offered over long distances.

Latency model. Latency originates transmission through the network
and processing in computing nodes as explained in Section 3. However,
it is important to estimate both values in a realistic way to verify if any
of the two contributions is not a dominant contributor to the overall
latency. For network links, latency value varies between 0 and 11 ms
depending on network load and is consistent with corresponding values
present in the literature (e.g., in [27]). Similarly, we considered differ-
ent approaches to the latency originating from processing performed
in computing nodes. Authors of [15] and [12] simply assume that for
generic VNF constant delay is equal to 10 and 0.5 ms, respectively.
A more sophisticated approach was proposed in [40] and [27], where
execution times of VNFs are randomly selected from range [10, 20]
ms and vary between 10 and 30 ms in function of utilization of a
computing node, respectively.

To ensure realistic assumptions regarding the minimum and maxi-
mum computing latency (𝛩min

𝑟 and 𝛩max
𝑟 , respectively), we have scaled

values present in the literature, respecting the fact that each demand
in our model will comprise 3 generic services (𝑅 = 3). As a result, 𝛩min

𝑟
is equal to 0.5 for each service while 𝛩max

𝑟 is equal to 3, 6, and 60
for 𝑟 = 1, 𝑟 = 2 and 𝑟 = 3, respectively. One needs to note, that for
the first model that assumes that all three services must be satisfied
in the same computing node, the minimum (∑𝑟 𝛩

min
𝑟 ) and maximum

(∑𝑟 𝛩
max
𝑟 ) latency in a node satisfying the demand is equal to 1.5 and

69, respectively.

Energy consumption model. In our model, energy is also consumed by
both transmission devices and computing nodes. Models for energy
consumption were carefully explained in Section 3. The relation be-
tween the cost of activating a link and the linear coefficient must be
carefully evaluated. According to [41] and [42], a router port consumes
20 and 1000 W of energy, respectively. However, in both cases the load-
dependent part is not considered. On the other hand, authors in [29]
showed that energy consumption of an idle 1 Gbps port is equal to 180
W, while a port working with the full rate consumes almost 200 W.
Similar values are presented in [43], with a switch consuming 245 W
when idle and 300 W when all of its ports operate under full load.
Considerations presented in [44] are more comprehensive in regards
to both switches and routers. A switch is assumed to consume 760 W
when totally idle while switching any of links adds 5 W to this value.
Simultaneously, for a router’s port energy consumption is expressed as
14.5 W/Gbps without considering any constant part. We tried to find
values which are most relevant in the 5G context and generic enough
to be suited to the partially conflicting values reported in literature.
Consequently, we assume that the energy cost of switching port on
equals 180 W, while every single Mbps of load adds 0.02 W to that
value, reaching 200 W under maximum utilization.

Concerning energy consumption of the computing infrastructure,
in works [41,43,44], and [45], authors reported various ranges of
server’s energy consumption as a function of load. For an idle server
the proposed values are 150, 121, 325, and 200 W, while the peak load
energy consumption is equal to 300, 750, 380, and 328 W, respectively.
Also in this case, our aim was to assume some generic values consistent
with the reported values, that could also fit in the 5G context. So, we
assumed that each edge computing node consumes 150 W if switched
on, while each demand introduces energy consumption equal to 5 ∗ 𝑔𝑟𝑑
(where 𝑔𝑟𝑑 is an amount of processing power consumed by service 𝑟 of
demand 𝑑).
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Fig. 4. The n6 topology.

Topologies and placement of DCs. The results are presented for four
different network topologies from the SNDlib project [32]: polska,
nobel-us, nobel-eu, and germany50. The topologies consist of
12, 14, 28 and 50 nodes; 18, 21, 41, and 88 links; and 66, 91, 378 and
662 demands, respectively. Additionally, one small regular network
topology referred as n6 (see Fig. 4) is also analyzed as a simple case
to validate correctness of the solution using the optimization model.

Furthermore, as locations of DCs in these networks have significant
impact on results also some realistic locations must be ensured. In the
polska topology, nodes Warsaw and Poznan are selected as gate-
ways supporting Internet Exchange Points (IXPs) for the whole country,
and most of DCs are placed in those cities. In the nobel-us topology,
Pittsburgh and Palo-Alto nodes host DCs as proposed in [46].
For nobel-eu, we follow work [47], where nodes Frankfurt and
Paris are suggested to host DCs. Finally, in the germany50 topology,
real life conditions force us to locate DCs in Frankfurt and Berlin
as both cities are widely known to host the biggest DCs in the country.
In the n6 node with index 𝑣 = 1 hosts DC (as shown in Fig. 4) to ensure
reasonable connectivity (node’s degree equal to 4) to the computing
facility.

Optimization goal scaling. Finally, we have also introduced some scaling
into the optimization goal. Namely, the overall energy consumption
(𝑛) was additionally divided by 20 (𝐹𝑛 = 20) while summary delay
violation remained unchanged (𝐹𝛽 = 1). The rationale is to obtain
approximately equal impact of both factors on the final goal value for
all the network architectures. We also conducted studies over differ-
ent proportions of both components of optimization goal, but those
considerations are not reported.

5.2. Numerical results

To present our results, we applied the following approach. In the
first step, we draw some general conclusions regarding the efficiency of
heuristics under different configurations. The next step is to investigate
some specific cases for particular networks and optimization models. A
combination of network and optimization model is referred as scenario,
while m1 and m2 abbreviations denote first and second optimization
models. Furthermore, we compare the various configurations of the
heuristic. Whenever we mention one of optimization models or prob-
lems in the context of heuristic performance, we mean that heuristic
solves the problem constrained according to assumptions of model.

In Table 2, abbreviations denoting the different configurations of
the heuristic are summarized for easy reference. Six different abbrevi-
ations are introduced to combine two approaches for finding shortest
path with three ways of assigning computing resources (as explained in
Section 4). Note that, whenever the throughDC approach to shortest
path finding process is applied, the results are independent of the
computing resource assignment algorithm. The reason is that in this
configuration services are always deployed in the DCs, and thus the

post-allocation optimization has full freedom to modify the amount of
assigned resources and, no matter which starting point is selected, the
resulting assignment is always the same. Therefore, this approach can
be simply denoted as throughDC.

5.2.1. General observations
Values of optimization goal achieved by different configurations

are presented in Table 3 to provide a general overview of the re-
sults. The first observation is that any kind of heuristic significantly
improves results when compared to the reference approach. This
has several reasons. First of all, the overall energy consumption is
much higher as most of the links and edge computing resources are
turned on, as the reference approach does not try to accommodate
traffic on links that are already switched on. Latency also suffers
because the reference approach assumes assignment of computing
resources with the minimal value (𝐺min

𝑟 ) for each service and any post-
allocation procedures are applicable. The final conclusion regarding
the reference approach is that the bigger is the topology, the more
significant is the difference between the reference approach and
various configurations of heuristic. This observation simply results from
the fact that in bigger networks statistical multiplexing can bring more
advantages to heuristic aimed at accumulating network and computing
load on selected links and computing nodes.

The second general conclusion regards the throughDC configura-
tion, which – as already explained – is independent of the way com-
puting resources are assigned. This configuration constantly provides
improvements in comparison to the reference approach; however,
efficiency of this configuration is the worst among all the options.
As all services are deployed in DCs, the post-allocation optimization
ensures that computing resources are either sufficient to eliminate
latency violation or they are assigned 𝐺max to satisfy the computing
demand. It turns out that any edge location must be turned on what
brings reduction in energy consumption. However, both the mentioned
advantages come at the cost of sub-optimal routing aimed at ensuring
that each path between 𝑆𝑑 and 𝑇𝑑 traverses a DC node. Then, significant
increase can be observed in: network resource utilization (indirectly re-
lated to the average path length), overall resource utilization, and also
maximum resource utilization over all network links. Those negative
consequences predominate, thus making throughDC inefficient.

Another general observation relates to the comparison of the di-
rect and preferDC approaches as regards the way they find the
shortest paths. In most of the cases, both methods combined with the
same algorithm for assigning computing resources provide the same
results. Differences may occur only when following three phenomena
jointly appear: (1) there is more than one shortest path between 𝑆𝑑
and 𝑇𝑑 ; (2) at least one of those paths traverses a DC node and (3) this
particular node is not selected by the direct method (it depends on
implementation of the shortest path algorithm).

To be more precise, the preferDC approach provides better re-
sults only when solving first optimization problem in the case of
nobel-eu and germany50 networks, and with combination with the net-
workAware resource assignment strategy. In those two cases, network
resources close to the DCs are sufficient to handle the additional traffic
routed through the DCs due to the preference of those computing
facilities. Only in these cases, the advantages (i.e., full flexibility of
computing resources assignment) resulting from placing services in DCs
overcome potential shortcomings of network performance degradation.
Only networkAware is able to achieve potential gains as it aims
at rationally assigning computing resources at edge locations; thus,
this approach limits the situations when corrective actions will direct
additional traffic to DCs increasing probability of network congestion.
The reason why preferDC is less relevant when solving second op-
timization problem comes from the fact that ability to spread services
over computing nodes makes it possible to more effectively utilize edge
locations over shortest paths not traversing DC nodes.

On the other hand, the direct algorithm brings advantages in
numerous scenarios, e.g., solving second optimization problem used on
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Table 3
Goal function values for different configurations of heuristic in all studied networks.

Sim. scenario reference directMIN directMAX directNA preferDCMIN preferDCMAX preferDCNA throughDC

n6 m1 1752.12 286.00 266.59 265.38 286.00 266.59 265.38 305.38
n6 m2 1752.12 263.49 267.45 263.49 263.49 267.45 263.49 301.75
polska m1 3800.30 728.18 688.60 672.88 728.18 688.60 672.88 841.18
polska m2 3800.30 676.52 708.46 676.52 676.52 708.46 685.33 838.07
nobel-us m1 5028.43 716.41 755.21 755.21 716.41 755.21 755.21 773.07
nobel-us m2 5028.43 687.31 691.27 687.31 687.31 691.27 687.31 760.38
nobel-eu m1 20075.73 3320.92 3475.23 3521.79 3320.92 3475.23 3475.23 4366.50
nobel-eu m2 20075.73 3157.96 3293.69 3157.96 3157.96 3293.69 3293.69 4338.63
germany50 m1 35104.49 4552.27 5983.59 8281.90 6255.37 5983.59 5983.59 8208.25
germany50 m2 35104.49 4339.28 4421.58 4339.28 6014.49 5347.09 5347.09 8172.04

Fig. 5. Optimization goal in function of different heuristic configurations in network n6.

networks polska and nobel-eu when combined with the networkAware
algorithm; and when solving second optimization problem applied to
the germany50 network, no matter which algorithm is exercised for
the computing domain; and when solving first optimization problem
used on germany50 when combined with the 𝐺min algorithm for the
computing domain. In all of those cases, network resources around DC
nodes are a potential bottleneck. Therefore, it is more reasonable to
distribute traffic over various shortest paths instead of accumulating
load in the areas adjacent to the DC. In other words, without perfect
dimensioning of resources, potential advantages in the computing
domain are predominated by negative consequences in the network
domain. This effect is especially noticeable in the germany50 network,
where differences between configurations are most significant. This
network is the biggest in terms of a number of nodes, demands and
links, while a number of large-scale DCs remains at the level of two.
Those facts lead to the following observations. The more demands exist
in the network, the more likely congestion near DCs will occur; and,
the longer are the paths, the more efficient and flexible edge locations
can be utilized to meet latency requirements. Those conclusions are
especially important as the germany50 network is characterized with
a topology common for MAN networks being the best target for 5G
slicing.

The last observation regards the comparison of effectiveness of solv-
ing optimization problems in some of the networks. The conclusions
are that, in general, solving the second optimization problem provides
better results in most cases (marginal exceptions for the n6 and polska
networks will be further explained during a topology-specific analysis).
The advantage of solving second problem is more significant for algo-
rithms that assign computing resources in a more greedy way (𝐺max

and networkAware). Finally, solving of second optimization problem

is most advantageous for the germany50 network which represents a
topology typical for MAN networks, especially important in the context
of 5G deployments.

5.2.2. Topology-specific analysis
The aim of the following analysis is to provide some insights for

particular topologies. Thus, general conclusions that are not directly
negated remain valid, and are only further extended by additional
observations.

Fig. 5 presents values of the optimization goal for the n6 network. As
this network is small, the number of shortest paths available between
each pair of nodes is strongly limited. Therefore, both direct and
preferDC approaches provide the same results. Two other interesting
observations concern the comparison solving effectiveness of optimiza-
tion models. Firstly, for directMIN and preferDCMIN, solving the
second problem provides a significant improvement, as ability to adjust
an assignment of computing resources with a service granularity can
be much more efficient comparing to the assignment of the whole
demand. Second, small deterioration of results can be observed for the
directMAX and preferDCMAX configurations when the solution of
second optimization problem is compared with the first one. The reason
for this phenomenon is that the first model enforces deployment of all
services comprised by a single demand in one computing node; thus,
a larger number of edge locations is activated when compared to the
second optimization model. As a consequence, post-allocation optimiza-
tion may allocate more resources and limit latency violations. However,
significant improvements in latency come at the cost of higher energy
consumption due to the increased number of edge locations being
turned on and due to larger amount of utilized computing resources.
Both factors are present in the optimization model. They balance each
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Fig. 6. Optimization goal in function of different heuristic configurations in network polska.

other making the final value of the optimization goal only slightly
different.

The results obtained for network polska are visualized in Fig. 6. Note
that differences between results obtained by various configurations
are not significant when normalized by the absolute values of the
optimization goal. However, even these differences suggest some in-
teresting conclusions. First of all, when solving the first problem it can
be observed that networkAware dominates 𝐺max, which is superior
to the 𝐺min approach combined with any shortest path algorithms. A
high value of the optimization goal achieved when the 𝐺min approach is
applied results from a considerable level of latency violation. It occurs
because during allocation with minimal possible computing resources
a fewer number of edge locations must be switched on. Thus, post-
allocation optimization is not able to increase the amount of assigned
computing resources to the threshold that may limit the violation. On
the other hand, 𝐺max enforces much more edge locations to be turned
on, and thus the latency violation can be minimized but at the cost of
additional energy consumption. The networkAware approach is able
to find a reasonable trade-off between those two criteria. It is possible
due to the fact that in the polska topology the number of DCs in com-
parison to the number of nodes and demands is quite high. Therefore,
latency in computing domain is a bottleneck that should be reasonably
overcome. An interesting observation is that such conclusions are not
valid when solving the second optimization problem. The directMIN,
directNA, preferDCMIN, and preferDCNA approaches can more
effectively assign computing resources during post-allocation proce-
dures with a service granularity ensured by assumptions of the second
optimization model. On the other hand, despite turning on more edge
locations, directMAX and preferDCMAX are not able to take advan-
tage of statistical multiplexing to effectively utilize those computing
resources, and simultaneously, to direct less traffic to the DCs where
virtually unlimited amount of computing resources can be used to
minimize latency violations. The conclusion is that in case of small
topologies, where a number of demands is also relatively small, some
additional planning tools can be useful to effectively utilize resources
being turned on.

The last counter-intuitive result that can be observed in the polska
topology regards the fact that solving the first optimization problem
provides better results for the directMAX, directNA, preferD-
CMAX, and preferDCNA configurations. The reasons are exactly the
same as in case of the n6 topology. Namely, the first model enforces a
deployment of all services comprised by a single demand in one com-
puting node, and thus, a larger number of edge locations is turned on

when compared to the second optimization model. As a consequence,
post-allocation optimization may allocate more resources and limit
latency violation. However, also in case of this topology, significant
improvements in latency come at the cost of higher energy consumption
due to the increased number of edge locations being turned on and a
bigger amount of utilized computing resources. Both factors are present
in the optimization task and balance each other — hence, only slightly
different final value of the optimization goal.

Fig. 7 presents results collected in the nobel-us network. The first
interesting observation relates to the fact that in case of solving the first
problem, most of the configurations do not provide much better results
than the throughDC approach. It is a consequence of the fact that DCs
are associated with nodes that are often traversed by shortest paths, no
matter which shortest path algorithm was applied. It further implies
that post-allocation optimization assigns computing resources almost
equal to 𝐺max, no matter if the 𝐺max or networkAware approach
was applied. The directMIN and preferDCMIN strategies are able
to significantly minimize the optimization goal in case of solving the
first problem. Both configuration assign minimum possible computing
resources needed to handle requests, and finally, less edge locations
must be turned on. Moreover, it is less likely that corrective actions
will direct a request to the DC which is not on the shortest path. In
consequence, both energy consumption and network resource utiliza-
tion are reduced. This positive effect is slightly obscured by the fact
that latency originating from computing is higher, but still, such an
approach remains advantageous.

Analyzing the results of solving the second optimization problem we
can observe that the aforementioned location of DCs still ensures the
same behavior of the direct and preferDC approaches. Secondly,
advantage of all other configurations against the throughDC approach
is much more significant. Thanks to the ability of the second opti-
mization model to separately deploy different services comprised by a
single demand, edge resources can be utilized more effectively. This
phenomenon leads to less severe latency violations and additionally
limits the corrective actions delegating computing tasks to DCs that do
not reside on the shortest paths. We can conclude that these approaches
are applicable for networks such as nobel-us, that is to infrastructures
in which DCs are located in nodes with a high betweenness centrality
parameter. This value denotes the ratio of shortest paths traversing a
particular node to the total number of shortest paths existing in the
network.

The nobel-eu network is the first significantly bigger topology being
considered, but still the ratio of DC to edge nodes remains at the level
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Fig. 7. Optimization goal in function of different heuristic configurations in network nobel-us.

Fig. 8. Optimization goal in function of different heuristic configurations in network nobel-eu.

typical for WAN infrastructures. Results are presented in Fig. 8. One
needs to note that, due to high absolute values of the optimization
goal, most of the differences between approaches are not significant. It
means that effectiveness is ensured by most of the configurations when
solving both optimization problems, this directly stems from the fact
that DCs can be easily accessed and are likely to be traversed by shortest
paths between numerous pairs of nodes. Thus, the preferDC option
only slightly changes results when compared to the direct method,
and simultaneously, different computing resource assignment methods
deploy services with quite high computing power taking advantage
of virtually unlimited capacity of DCs. This further leads to similar
levels of energy consumption and latency in the computing domain.
This effect is a bit weaker when solving the first optimization problem;
however, in this case, results obtained by different computing resource
allocation mechanisms are similar to the ones related to utilization of
network resources. Such a effect occurs as heuristic for the first model
less efficiently utilizes edge locations and corrective actions are more
likely to occur (by directing traffic to DCs).

Secondly, when solving both optimization problems, the 𝐺min ap-
proach is more efficient than two other options. The reason is that

during the allocation phase the 𝐺min approach turns on a smaller
number of edge locations and less frequently forces corrective actions
which direct demands to DC. Therefore, energy consumption is reduced
in both domains, and so is latency. These advantages come at the cost
of increased latency in the computing domain since less computing
resources can be assigned during post-allocation optimization. Still, the
𝐺min approach dominates other methods.

Finally, a counter-intuitive result can be observed when comparing
directNA with preferDCNA simultaneously when solving both op-
timization problems. Namely, the preference for DCs slightly improves
results obtained when solving the first problem, as only a bit higher
network resource utilization and energy consumption is dominated by
improvement in the latency violation aspect. On the other hand, in
the case of solving the second optimization problem the preference
for DCs results in a significant increase of average path length and
consequently, in an increase on the amount of computing resources
assigned to handle requests. Both disadvantages imply a decreased gain
related to the latency in the computing domain and they finally result
in a worst (i.e., higher) value of the optimization goal.

The German network (germany50) is the last considered topology,
results are presented in Fig. 9. It is especially important as this network
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Fig. 9. Optimization goal in function of different heuristic configurations in network germany50.

is a representative of MAN networks with a significantly higher number
of nodes and demands when compared to the number of DCs. Such
scenario is especially relevant when considering 5G networks as it is
the most intuitive ecosystem for deployment of slices.

Let us start by analyzing the solution of the first optimization prob-
lem and the direct shortest path algorithm combined with various
computing resource assignment methods. The 𝐺min approach provides
significantly better results as it engages less edge nodes, and simul-
taneously, is less likely to cause corrective actions directing demands
to significantly more distant DCs. On the other hand, both the 𝐺max

and networkAware approaches try to assign much more computing
resources to limit latency originated in the computing domain. As a side
effect, edge nodes become overloaded and demands must be handled
in DCs. Therefore, energy consumption and network utilization are
increased, which further causes increase in the overall latency. The
networkAware configuration causes even more problems, as it under-
estimates the expected load on several links by further diminishing the
latency. One needs to note that the effect of such an underestimation
provides even worse results than the throughDC approach (which
from the very beginning directs all the traffic to DCs).

On the other hand, the preference for DCs imposed by the
preferDC approach performs better when combined with
networkAware, as it eliminates the underestimation explained above.
Simultaneously, this preference diminishes the output performance of
preferDCMIN when compared to directMIN because of the change
imposed in routing causes by engagement of edge nodes that cannot
be utilized as effectively as in case of the direct shortest path
mechanism.

When analyzing results obtained for the second optimization model,
we can observe superior results when the direct shortest path mech-
anism is combined with any algorithm used for assignment of com-
puting resources. Ability to deploy services comprised in a single
demand on different computing nodes creates an opportunity to effec-
tively reduce the number of edge locations involved by the 𝐺max and
networkAware approaches. Furthermore, post-allocation optimiza-
tion is able to ensure desired latency in the computing domain more
efficiently.

At the same time, the preferDC approach performs better in the
preferDCMAX and preferDCNA configurations involving slightly
more edge locations being able to handle more services with minimal
cost in terms of energy and network resource utilization. However,
preferDC approach compared to networkAware, causes a slight
increase in average path length and network resource utilization.

Table 4
Summary of parameters for CPLEX calculations for different networks.

Scenario Solution
found?

Stop reason Execution
time [h]

Achieved
solution
gap [%]

n6 m1 Yes Optimum found 10.1 0.01
n6 m2 Yes Optimum found 43.8 0.01
polska m1 Yes RAM limit achieved 16.8 9.32
polska m2 Yes RAM limit achieved 29.7 10.42
nobel-us m1 Yes Time limit achieved 48 14.29
nobel-us m2 Yes Time limit achieved 48 17.13
nobel-eu m1 Yes Time limit achieved 48 12.31
nobel-eu m2 Yes Time limit achieved 48 13.56
germany50 m1 No Time limit achieved 48 N/A
germany50 m2 No Time limit achieved 48 N/A

Finally, the most important conclusion regards the comparison be-
tween solutions for the optimization models. Solution of the second
model constantly provides results superior to the ones obtained with
the first model, as concerns corresponding configurations of heuristic.
Ability to deploy different services of the same demand in various
computing nodes brings the most significant advantages, when the
direct shortest path mechanism is enabled. In those configurations
effective utilization of edge locations can bring the most significant
improvements by reducing a number of situations when corrective
actions directing demands to DC are needed. As a result, network
resource utilization is decreased, along with energy consumption and
overall latency. In case of the directNA configuration, solution of the
second model reduces a value of the optimization goal by more than
45%. Those observations prove that a proper modeling of 5G slices is
especially important in MAN-like architectures which are most common
for these purposes.

5.2.3. Comparison with near-optimal solutions
Prior to presenting the exact ILP results obtained through CPLEX

software, a couple of observations must be pointed out. Calculation
parameters are summarized in Table 4. Due to the complexity of the
optimization models, execution time was limited to 48 h, as longer
calculations did not bring significantly better results in terms of the
achieved solution gap (i.e., optimization gap between the relaxed and
best integer solutions). The calculations were conducted in parallel on
three servers in our local data center, each equipped with 24 GB of
RAM memory and 12 CPUs with clock frequencies equal to 2.67, 2.8 or
2.93 GHz, depending on the machine, and on the node of Prometheus
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Table 5
Ratios between the best and the worst configurations of heuristic and comparison to solutions provided by CPLEX.

scenario The best configuration(s) The worst configuration(s) Best/worst ratio Best/CPLEX ratio Worst/CPLEX ratio

n6 m1 directNA, preferDCNA throughDC 0.87 1.11 1.27
n6 m2 directMIN, directNA, preferDCMIN, preferDCNA throughDC 0.87 1.16 1.33
polska m1 directNA, preferDCNA throughDC 0.80 1.33 1.66
polska m2 directMIN, directNA, preferDCMIN throughDC 0.81 1.41 1.75
nobel-us m1 directMIN, preferDCMIN throughDC 0.93 1.17 1.26
nobel-us m2 directMIN, directNA, preferDCNA, preferDCMIN throughDC 0.90 1.16 1.28
nobel-eu m1 directMIN, preferDCMIN throughDC 0.76 1.57 2.06
nobel-eu m2 directMIN, directNA, preferDCMIN throughDC 0.73 1.59 2.19
germany50 m1 directMIN directNA 0.55 – –
germany50 m2 directMIN, directNA throughDC 0.53 – –

supercomputer equipped with 128 GB of RAM memory and 24 CPUs
each of clock frequency equal to 2.5 GHz. Local machines were using
CPLEX in version 12.5 while on supercomputer node the most recent
version 12.10 was used. The best achieved results from all the machines
are presented in Table 4.

For the n6 network we were able to achieve an optimal solution
while for nobel-us and nobel-eu 48 h long calculations enabled achieving
the gap between 12.31 and 17.13%. In the case of polska network even
a huge amount of RAM available on a supercomputer node was not
sufficient to finalize computing, however, achieved solution gap is at
an acceptable level. Furthermore, for germany50 CPLEX was not able
to find a solution and estimate the gap even after 48 h of calculations.
One must note that execution times are at orders of magnitude higher
when compared with heuristics providing solutions for any topology
within single seconds.

Let us now investigate the relation between the optimization goal
value achieved by the best and the worst configurations of the heuristic
and to compare those results with the ones provided by CPLEX. In
Table 5, we enumerate consecutive configurations of heuristic (columns
are related to various network topologies) by providing the best and the
worst results (more than one configuration means that all mentioned
options provided exactly the same result). Furthermore, the ratio be-
tween the best and worst values of the optimization goal is provided,
as well as the relation between the best/worst results obtained by the
heuristic and the value of optimization goal achieved by CPLEX (two
last columns).

The following conclusions can be drawn based on the presented re-
sults. When solving the second optimization problem, which is most rel-
evant to the 5G network slices, the directMIN and directNA config-
urations always achieve the best result. Simultaneously, the preferDC
shortest path algorithm performs very well in all networks, except
for germany50, especially when combined with the 𝐺min approach and
occasionally with networkAware. This means that it is reasonable to
prefer DCs only in infrastructures where number of DCs is sufficient and
those DCs are associated with network nodes of high degree and high
betweenness centrality. This is usually not the case for MAN networks,
as represented by germany50 topology.

On the other hand, the 𝐺min resource assignment method does not
perform well when solving the first optimization problem applied to
relatively small networks (n6 and polska). In the same time, the 𝐺max

approach does not provide the best results in any of the networks. It
means that a blind assignment of maximum computing resources is not
efficient and limitations intelligently applied by the networkAware
approach are useful and may lead to heuristic solutions closer to the
optimal.

As mentioned before, the germany50 topology is adequate for 5G
slices applications being considered in this work. Thus, it is even more
important to note, that in this network, the best results are obtained
when solving the second optimization model along with directMIN
and directNA (analogously to other networks). At the same time,
the directNA configuration brings the worst result when solving the
first optimization problem applied to the same network. This scenario
(the first optimization model for the germany50 topology) is a perfect

example of a mismatch between a model (not suited to the 5G slices
and NFV deployments) and an infrastructure (representing typical en-
vironment for 5G slices deployment). It is the only scenario, for which
throughDC is not the worst configuration and which is replaced by
the directNA, for all other scenarios, provides results closest to the
optimal.

Furthermore, the following conclusions may be drawn when con-
sidering three ratios presented in Table 5. The less complex is the
topology, the closer to the optimal solution are the results achieved by
both the best and the worst configuration. This phenomenon is quite
intuitive, as in more complex networks the optimal solution may be
extremely sophisticated and only static optimization methods are able
to get close to it, contrary to the heuristic being based on a kind of
modification of the shortest path algorithm. Finally, for more complex
networks, a smaller number of configurations is able to achieve result
being equally close to the optimal solution. At the same time, the
difference between the best and the worst result is bigger. However,
an optimized placement of DCs may be significantly better for any
configuration of the heuristic, as can be observed in case of the nobel-us
topology.

In Table 6, more detailed results are provided for each network
topology, optimization model and three solving methods: results ob-
tained by CPLEX, and the best, and the worst, configuration of heuristic.
In addition to an optimization goal value, in consecutive columns,
the following metrics are presented: overall energy consumption in
both domains, overall delay violation, overall computing resources
assigned, ratio of activated edge locations to the total number of edge
nodes, average length of all network paths, and the amount of network
resources utilized to satisfy network demands.

CPLEX always returns the best results due to its ability to effectively
utilize network resources. It is reflected by the fact that an average
hop number of paths satisfying demands is significantly increased
when compared to the shortest path routing and the best heuristic
configuration. At the same time, overall network resource utilization
is significantly lower. This is possible as demands of the highest re-
quirements on network resources (𝐻𝑑) are routed through the shortest
paths while less demanding requests are intentionally routed through
the less congested network areas.

As a result of such an optimization CPLEX rarely turns on any edge
location, and this significantly decreases overall energy consumption.
All computing services can be successfully handled in DCs without
imposing additional network-originated latency thanks to the fact that
network traffic is evenly distributed over the less congested network.
It is confirmed by the delay violation equal to zero, while the assigned
computing power remains lower than in case of heuristic.

Therefore, even the best configuration of heuristic provides worse
results for most of the factors. It is especially important in case of
energy consumption and delay violation, as both factors have a direct
impact on the optimization goal value. The only parameter improved
by the heuristic when compared to the CPLEX method is average length
of path. It confirms the fact that heuristic is based on a modified
shortest path algorithm with additional respect of existence of the
computing domain. However, even with a lower average path length,
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Table 6
Detailed results for different solution methods applied to both optimization models in all studied networks.

Scenario Solving method optimization goal Energy consumption Delay violation Computing power Edge usage Avg. hops Network usage

n6 m1
CPLEX 239.95 4798.99 0.00 560.61 0.00 2.40 797.05
Best heuristic 265.38 5307.68 0.00 566.22 0.40 1.83 830.00
Worst heuristic 305.38 5981.63 6.30 616.03 0.00 2.43 1074.00

n6 m2
CPLEX 226.82 4536.37 0.00 508.09 0.00 2.23 797.02
Best heuristic 263.49 5036.87 11.60 542.05 0.20 1.83 830.00
Worst heuristic 301.75 5908.87 6.30 601.48 0.00 2.43 1074.00

polska m1
CPLEX 506.38 10127.55 0.00 1228.31 0.09 3.24 1301.18
Best heuristic 672.88 11897.60 78.00 1263.64 0.64 2.94 1470.50
Worst heuristic 841.18 11816.87 250.33 1420.02 0.00 3.94 1837.90

polska m2
CPLEX 479.12 9582.41 0.00 1119.40 0.00 3.42 1270.46
Best heuristic 676.52 11107.29 121.16 1165.49 0.45 3.00 1491.60
Worst heuristic 838.07 11754.70 250.33 1407.59 0.00 3.94 1837.90

nobel-us m1
CPLEX 613.85 12277.00 0.00 1587.57 0.00 4.81 958.89
Best heuristic 716.41 13989.22 16.95 1707.53 0.42 3.57 1078.70
Worst heuristic 773.07 13908.56 77.64 1768.98 0.00 3.92 1182.16

nobel-us m2
CPLEX 591.77 11835.40 0.00 1463.01 0.08 3.76 1020.24
Best heuristic 687.31 13671.49 3.73 1643.98 0.42 3.57 1078.70
Worst heuristic 760.38 13654.80 77.64 1718.23 0.00 3.92 1182.16

nobel-eu m1
CPLEX 2117.69 42353.70 0.00 6664.90 0.00 5.63 1462.87
Best heuristic 3320.92 44511.83 1095.33 6490.27 0.50 4.99 1524.00
Worst heuristic 4366.50 49886.26 1872.19 7917.71 0.00 6.03 1886.80

nobel-eu m2
CPLEX 1984.03 39680.60 0.00 5986.38 0.04 5.59 1432.82
Best heuristic 3157.96 43751.26 970.40 6338.16 0.50 4.99 1524.00
Worst heuristic 4338.63 49328.80 1872.19 7806.21 0.00 6.03 1886.80

germany50 m1
CPLEX – – – – – – –
Best heuristic 4552.27 74763.48 814.10 10857.46 0.44 6.69 2309.60
Worst heuristic 8281.90 88620.81 3850.86 13033.46 0.75 7.70 2674.80

germany50 m2
CPLEX – – – – – – –
Best heuristic 4339.28 73620.99 658.23 10628.96 0.44 6.69 2309.60
Worst heuristic 8172.04 85732.20 3885.43 13893.16 0.00 8.41 3320.00

the overall consumption of network resources remains higher in case of
heuristic which sequentially assigns resources for consecutive demands.
In general, the scarce utilization of edge resources is possible due to low
energy cost of network infrastructure compared to computing, it also
depends on source and destination of nodes and latency constraints.

On the other hand, when analyzing results achieved by the worst
configuration of heuristic, one should note that in most cases any edge
location is turned on. However, such a blind deployment of computing
services solely in DCs comes at the cost of significantly higher network
resource utilization, what further imposes higher requirements on com-
puting resources in order to decrease the overall delay. Even in this
case, delay requirements are often violated and energy consumption is
increased.

Another set of conclusions explaining a couple of further counter-
intuitive results that can be observed based on the results presented
in Table 6. In the three cases, the CPLEX solver engages a single edge
node to handle services. It is because a potential penalty for directing
more traffic to DCs is higher than the cost of turning on edge location
which is further fully utilized. In all three cases the best configuration
follows the preference of edge utilization as the percentage of edge
resources being tuned on is highest among all the scenarios. There
are also three cases when the worst configuration of heuristic achieves
lower energy consumption than the best one. In those cases, heuristic
had to intentionally increase an average path length and edge nodes
utilization to distribute the load among more resources with the aim to
minimize overall delay violation. Finally, there is only a single situation
when the worst heuristic outperforms the best result in the context of
delay violations. It happens in a very small network, where network
latency is not an important contributor to the overall goal value. At
the same time, limitations on computing resources in an edge location
engaged by the best heuristic resulted in an additional computing delay.

The last aspect to be studied is comparison of both optimization
models applied to different networks. All detailed results achieved by
different solving methods are, in general, worse in case of the first

optimization model. It is a result of increased flexibility ensured by
the second model. Due to the potential of statistical multiplexing,
less computing resources are needed. It is expressed by lower edge
usage and assigned computing power, what further decreases energy
consumption without introducing additional delay violations. However,
interesting results can be observed. In case of the polska network when
solving the first optimization problem, the best heuristic ensures a
lower delay violation. The reasons have been already explained during
detailed studies of this topology, and additional parameters presented
in Table 6 only confirm that more edge locations engaged by the first
optimization problem create an opportunity to assign more computing
resources during post-allocation optimization. The trade-off of higher
energy consumption makes the final optimization goal value of solution
for both models almost equal to each other with a minimal advantage of
the solution of first optimization model. Finally, in case of the nobel-us
network, the network usage parameter is deteriorated when solving the
second optimization compared to the first one. It happens despite the
fact that in the same time average path length is decreased. It is because
that in order to minimize optimization goal value, demands of higher
network requirements have been handled by the longer paths. This
counter-intuitive result is an indirect consequence of deployment of
DCs in association with network nodes characterized with large values
of betweenness centrality and degree.

6. Conclusions

This paper addresses the problem of satisfying requirements of
modern services deployed in heterogeneous cloud networks compris-
ing both cloud and edge computing nodes interconnected through an
SDN network. The optimization task is a complex multi-objective ILP
problem covering latency, energy and network performance indicators.
The 5G network is considered as an example of a cloud network,
where slices, defined as a set of virtual resources, are provisioned
to satisfy demands. Furthermore, the relevant models of latency and
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energy consumption are formulated based on a comprehensive review
of the state-of-the-art. Latency and energy requirements are taken from
relevant use cases recently studied for 5G networks. As the defined op-
timization tasks are difficult, or even impossible, to solve for large-scale
network instances, a configurable heuristic is also proposed.

We performed our numerical evaluations in various network topolo-
gies and several contexts. Namely, different configurations of the
heuristic were analyzed. It was shown that the heuristic is able to
effectively provide satisfactory results for large-scale problems and
both optimization models. This way, we are able to justify that the
proposed approach is well suited. Efficiency of the proposed heuristic
is significantly better when compared to the reference approach based
on shortest path algorithm. Moreover, the importance of matching
between optimization model and heuristic configuration to the 5G
ecosystem properties was assessed utilizing the topology that represents
MAN-like infrastructure being typical target for slice deployments.
Additionally, the performance of the proposed heuristic was com-
pared against the near-optimal solutions. For all the experiments,
realistic assumptions and configuration values are taken based on the
comprehensive review of the available literature.

To briefly summarize the most important conclusions, four different
areas are addressed in the following paragraphs.

6.1. Infrastructure-related conclusions

The first important remark concerns the fact that any preference
of big data centers to deploy computing services is reasonable only
in infrastructures with carefully dimensioned and balanced network
and computing resources. Additionally, network resources in the close
proximity to the DCs must be sufficient to handle excess traffic. Only if
these requirements are met, the advantages of full flexibility of com-
puting resource assignment in DCs overcome potential shortcomings
stemming from the network performance degradation. Otherwise, it is
more reasonable to distribute traffic over various shortest paths. The
attractiveness of preference towards big computing facilities can be
strengthened when those DCs are properly placed in the network, for
example, in conjunction with network nodes of high degree and high
betweenness centrality.

Comparing the performance of different solving methods as a func-
tion of infrastructure architecture, the following conclusions can be
drawn. The less complex is the topology, the closer to the optimal
solution are the results achieved by any configuration of the heuris-
tic. This phenomenon directly follows the fact that in more complex
networks only static optimization methods are able to get close to the
optimal solution, which is significantly different from the most intuitive
solutions. Simultaneously, for more complex networks, the difference
between results achieved by various configurations of the heuristic is
more significant. Therefore, to conduct valuable research it is required
to analyze architectures typical for 5G slicing and NFV deployments.

6.2. Conclusions regarding configuration of the heuristic

One of the most important observation relates to the general ad-
vantage of the networkAware approach used to assign comput-
ing resources. This approach aims at reasonably assigning computing
resources at edge locations; thus it limits the situations when cor-
rective actions will direct additional traffic to DCs and, as a conse-
quence, increase probability of congestion in the network domain.
The networkAware approach also allows to take advantage of the
second optimization model’s properties making it more suitable to 5G
networking.

Simultaneously, it is not reasonable to blindly direct services to DCs
as performed in the case of the throughDC shortest path algorithm.
As already pointed, even a slight preference of DCs should be care-
fully considered and applied only in selected scenarios. Therefore, the
direct shortest path algorithm is the most universal applicable in

majority of scenarios, including the most desirable infrastructures with
optimally deployed DCs.

In conclusion, the direct shortest path algorithm combined with
the networkAware approach used for assignment of computing re-
sources (denoted in the paper as directNA) is expected to provide the
best results in most scenarios. In some selected scenarios, very promis-
ing results can also be achieved by the directMIN, preferDCNA,
and preferDCMIN configurations. It is also important to note that the
most promising directNA configuration performs poorly in the case
of a mismatch between the optimization model and basic assumptions
regarding the 5G infrastructure. This issue will be address in the two
consecutive sections below.

6.3. Comparison of the formulated optimization models

The second optimization model provides better results (lower value
optimization goal) in most cases, with only marginal exceptions. Fur-
thermore, the achieved detailed quality indicators are in general in-
ferior in case of the first optimization model. Especially, lower edge
usage and assigned computing power can be observed in case of second
model. It further decreases energy consumption without introducing
additional delay violations. This predominance results from increased
flexibility ensured by the second model and, related to it, statistical
multiplexing.

Furthermore, the second optimization problem, which is most rele-
vant to the 5G network slices, takes the most significant advantages
of the direct shortest path algorithm combined with the net-
workAware approach used for assignment of computing resources.
Moreover, superiority of second model can be especially observed in
case of infrastructures relevant to the 5G slices (in our work, repre-
sented by the germany50 topology).

6.4. 5G-specific conclusions

Finally, conclusions regarding the 5G slices and VNF deployments
are summarized here. The German network (germany50) is the topol-
ogy that represents MAN-like infrastructures being especially relevant
when considering 5G networks as the most intuitive ecosystem for
deployment of slices. One of the properties of such an infrastructure
is related to the significantly higher number of nodes and demands
when compared to the number of DCs. Due to that it is more likely to
create congestions near DCs. Additionally, MAN networks are usually
more complex and average paths are longer in comparison to other
infrastructures. Thus, it is possible to more effectively and flexibly uti-
lize edge locations to meet latency requirements. Furthermore, location
and a total number of DCs in MAN networks are usually not satisfying
due to the practical constraints. Therefore, any preference of DCs in
case of 5G slices should be carefully investigated before the service
and VNF deployment in order not to deteriorate the performance
of the infrastructure. That is why the directMIN and directNA
configurations perform best in the germany50 topology. However, for
the latter this happens only in case of solving the second optimization
model. All of those properties result in the most demanding character
of MAN networks, and – in consequence – the resulting differences
between the results achieved by different solution methods are most
significant.

The fact that the directNA configuration, which outperforms
other configurations in different scenarios, brings the worst result
for the first optimization model applied to the MAN infrastructure
demonstrates that a proper modeling of 5G slices is especially impor-
tant in MAN-like architectures. Namely, the first optimization model
applied to the germany50 topology is a perfect example of a mismatch
between a model (not tailored for the 5G slices) and an infrastructure
(representing a typical environment for 5G slices deployment).

Despite the fact that it was possible to draw conclusions summarized
above, several possible avenues for future work can be envisioned.
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First of all, our optimization model can be extended by considering
more sophisticated relations between services (e.g. services varying
from demand to demand, or network requirements changing after
satisfying particular services). Second, we so far we have assumed that
both optimization criteria are, approximately, equally important for a
network or service provider. However, there is a potential for more
detailed studies on multi-objective aspect of the problem, e.g., different
weights of both factors can be used, Pareto-based investigations can be
performed, etc. Finally, both the optimization model and the proposed
heuristic can be studied in a more sophisticated infrastructure compris-
ing both wide area and metro area networks interconnected in selected
locations.
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