
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020 1075

A Disaggregated Packet Processing Architecture
for Network Function Virtualization

Shihabur Rahman Chowdhury , Student Member, IEEE, Anthony, Haibo Bian,

Tim Bai , and Raouf Boutaba , Fellow, IEEE

Abstract— Network Function Virtualization (NFV) promises to
reduce the capital and operational expenditure for network oper-
ators by moving packet processing from purpose-built hardware
to software running on commodity servers. However, the state-
of-the-art in NFV is merely replacing monolithic hardware with
monolithic Virtual Network Functions (VNFs), i.e., software that
realizes different network functions. This is a good first step
towards transitioning to NFV, however, common functionality is
repeatedly implemented in monolithic VNFs. Repeated execution
of such redundant functionality is particularly common when
VNFs are chained to realize Service Function Chains (SFCs) and
results in wasted infrastructure resources. This stresses the need
for re-architecting the NFV ecosystem, through modular VNF
design and flexible service composition. From this perspective,
we propose MicroNF (µNF in short), a disaggregated packet
processing architecture facilitating the deployment of VNFs
and SFCs using reusable, loosely-coupled, and independently
deployable components. We have implemented the proposed
system, including the different architecture components and
optimizations for improving packet processing throughput and
latency. Extensive experiments on a testbed demonstrate that:
(i) compared to monolithic VNF based SFCs, those composed
of µNFs achieve the same packet processing throughput while
using less CPU cycles per packet on average; and (ii) µNF-based
SFCs can sustain the same packet processing throughput as those
based on state-of-the-art run-to-completion VNF architecture
while using lesser number of CPU cores.

Index Terms— Network function virtualization, microservices,
middleboxes, virtual network function decomposition.

I. INTRODUCTION

NETWORK operators ubiquitously deploy hardware mid-
dleboxes [2] (e.g., Network Address Translators (NATs),

Firewalls, WAN Optimizers, Intrusion Detection Systems

Manuscript received April 15, 2019; revised November 26, 2019; accepted
January 28, 2020. Date of publication April 8, 2020; date of current version
May 21, 2020. This work was supported in part by the NSERC Create
Program on Network Softwarization and in part by an NSERC Discovery
Grant. This work also benefited from the use of Tembo compute cluster at
the University of Waterloo. This article was presented in part at the 2019 5th
IEEE International Conference on Network Softwarization. (Corresponding
author: Shihabur Rahman Chowdhury.)

Shihabur Rahman Chowdhury and Raouf Boutaba are with the David
R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: sr2chowdhury@uwaterloo.ca;
rboutaba@uwaterloo.ca).

Anthony is with Huawei Technologies Canada, Markham, ON L3R 5A4,
Canada (e-mail: anthony.anthony@uwaterloo.ca)

Haibo Bian is with Bioinformatics Solutions Inc., Waterloo, ON N2L 6J2,
Canada (e-mail: haibo.bian@uwaterloo.ca).

Tim Bai is with Desire2Learn Canada, Kitchener, ON N2G 1H6, Canada
(e-mail: tim.bai@uwaterloo.ca).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.2986611

(IDSs), etc.) to realize different network services [3]. Despite
being an integral part of modern enterprise and telecommu-
nication networks, middleboxes are proprietary, have little to
no programmability and vertically integrate packet process-
ing software with the hardware. Such closed and inflexible
ecosystem explains the high capital and operational expendi-
tures incurred by network operators. This led to the Network
Function Virtualization (NFV) movement initiated in 2012 [4].
NFV proposes to disaggregate the tightly coupled Network
Functions (NFs) and hardware middleboxes, and deploy the
NFs as Virtual Network Functions (VNFs) on commodity
servers. Through this disaggregation, NFV promises to reduce
CAPEX by consolidating multiple NFs on the same hardware,
and reduce OPEX by enabling on-demand flexible service
provisioning.

Significant effort has been dedicated to NFV research
since its inception [5], including for: resource allocation
and scheduling [6], middlebox outsourcing [3], [7], man-
agement platforms [8]–[10], fault-tolerance [11]–[14], state
management [15]–[18], traffic steering through VNFs [19],
and programming models and runtime systems to support
VNFs and SFCs [20]–[26]. However, a common trait observed
in these works is the one-to-one substitution of monolithic
hardware middleboxes by their monolithic VNF counterparts.
Indeed, this is a logical first step for transitioning to NFV.
However, monolithic VNFs can be a barrier to achieving
fine-grained resource allocation and scaling, and can lead to
wasted infrastructure resources.

A fundamental problem with monolithic VNF implemen-
tation is that many packet processing tasks such as packet
I/O, parsing and classification, and payload inspection are
repeated across a wide range of enterprise NFs [27]. This has
several negative consequences. First, redundant development
and optimization effort on these common tasks across different
VNFs. Second, monolithic VNFs restrict how many packet
processing tasks can be consolidated on the same hardware.
For instance, a Firewall and an IDS, both perform packet
classification [24]. Since the VNFs are monolithic, we cannot
consolidate packet classification as a single function, allocate
just enough resources for processing the cumulative traffic
of the Firewall and the IDS, and deploy the classifier as a
single entity. Third, monolithic VNFs impose coarse-grained
resource allocation and scaling. This non-exhaustive list of
issues poses a barrier in achieving the agility promised by
NFV. In this regard we set out to answer the following
question: What is an appropriate software architecture for

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6232-2027
https://orcid.org/0000-0002-6090-7988
https://orcid.org/0000-0001-7936-6862

1076 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 1. Common packet processing tasks across NFs.

VNFs that will enable better function consolidation on the
same hardware and finer-grained resource allocation while
maintaining the same level of performance as state-of-the-art
approaches?

There is a substantial body of research on modular packet
processing software [20], [22], [23], [28], [29]. However,
in most cases the end-product is still a monolithic software,
which typically executes in a run-to-completion mode, i.e.,
applies all the functionality of an NF or even an SFC
on a batch of packets read from the Network Interface
Card (NIC) before they exit the system. This model is
usually easier to scale, however, it still suffers from the
coarse-grained resource allocation imposed by monolithic
software.

In this paper, we aim at building VNFs from simple
building blocks by taking advantage of the commonality
of packet processing tasks. To this end, we propose μNF,
a disaggregated packet processing architecture. μNF takes the
disaggregation of middleboxes one step further and decom-
pose VNFs into independently deployable, loosely-coupled,
lightweight, and reusable packet processors, that we call
MicroNFs (μNFs for short). VNFs or SFCs are then real-
ized by composing a packet processing pipeline from these
independently deployable μNFs. Such decomposition will
allow finer-grained resources allocation, independent scaling
of μNFs thus increased flexibility, and independent develop-
ment and maintenance of packet processing components. μNF
is built on the thesis of CoMb [27] that consolidating com-
mon packet processing tasks from multiple NFs may lead to
better resource utilization. However, CoMb’s focus was not to
address the engineering challenges for realizing such a system
(e.g., software architecture, performance optimizations), which
is the key contribution of this paper. Specifically, we have the
following contributions:

• A quantitative study to demonstrate how repeated appli-
cation of common packet processing tasks in an SFC can
affect CPU resource utilization (Section II).

• An architecture for composing VNFs and SFCs
from independently deployable, loosely-coupled, light-
weight, and reusable components that we call μNFs
(Section IV).

• Implementation of architecture components including the
μNFs, communication primitives between μNF, and CPU
sharing between μNFs to improve CPU utilization with-
out sacrificing packet processing throughput (Section VI).

• Optimizations for improving packet processing through-
put of μNFs on multi-socket NUMA machines, and
packet processing latency in μNF-based network services
(Section V).

• Evaluation of the system through testbed experiments
(Section VII). Our key findings are: (i) compared to an
SFC composed from monolithic VNFs, μNFs can achieve
the same throughput using less CPU cycles per packet on
average; (ii) μNFs can sustain the same packet process-
ing throughput as the state-of-the-art run-to-completion
VNF architecture [23] using lesser number of CPU
cores.

II. MOTIVATION

Our motivation for developing a disaggregated packet
processing architecture stems from the observation that many
packet processing tasks, such as packet I/O, parsing and
classification, and payload inspection are repeated when VNFs
are chained in an SFC. We demonstrate this using the
SFC in Fig. 1(a), typically found in enterprise Data Centers
(DCs) [30]. This SFC consists of the following VNFs:

• WAN Optimizer: Placed at a DC and WAN
boundary for optimizing WAN link usage, e.g.,

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1077

Fig. 2. Motivational experiment scenarios.

compresses/decompresses HTTP payload to reduce
WAN traffic [31].

• Edge Firewall: Allows or denies packets based on
layer 2-4 header signature.

• Monitoring Function: Consists of different counters such
as a packet size distribution counter, a counter for packets
containing certain URLs, etc.

• Application Firewall: Filters packets based on applica-
tion layer information, e.g., block HTTP requests with
embedded SQL injection attacks (similar to [32]).

• Load Balancer: Distributes packets to back-end servers
based on flow signature.

We can decompose these VNFs into smaller packet process-
ing tasks as shown in Fig. 1(b). Clearly, tasks such as
packet I/O, parsing and classifying HTTP packets are repeated
in these VNFs. In a monolithic implementation, developers
will separately implement and optimize these tasks in the
respective VNFs. Among other consequences, the benefits of
optimization in one implementation cannot be leveraged into
others because of the tight coupling between the tasks.

An elaborate qualitative discussion on the drawbacks of
repeating common tasks across VNFs in an SFC can be
found in [33]. In this paper, we perform an experimental
study to demonstrate possible performance implications of
repeating common packet processing tasks in an SFC by
comparing between the following two deployment configu-
rations: (i) Click [28] based monolithic VNFs chained using
virtual Ethernet (veth) pairs (Fig. 2(a)); and (ii) a single Click
configuration implementing the functionality of the same SFC
from configuration-i, while removing the repeated common
elements (Fig. 2(b)). For both cases we play the same traffic
(HTTP packet trace generated from access log for a moderate
size public web-service (≈15K hits/month)) and measure the
average CPU cycles/packet required by each type of Click
element. Our objective is to measure the wasted CPU cycles
for repeating common tasks across an SFC. Note that this

TABLE I

RESULTS FROM MOTIVATIONAL EXPERIMENT

study complements that of the one presented in [27] by
demonstrating the impact on an SFC rather than considering
single middlebox applications.

We deployed the following simplified form of the SFC
from Fig. 1(a): Edge Firewall → Monitoring Function →
Application Firewall. We implemented our own Click elements
(HttpClassifier, CountUrl, and ValidateUrl) when Click’s ele-
ment library did not have any elements with similar function-
ality. We also instrumented the Click elements to measure the
number of CPU cycles spent in processing each packet.

We present the savings in CPU cycles obtained from
removing repeated elements in the optimized configuration,
i.e., configuration-(ii) in Table I. We observed a per element
savings of up to ≈70%. However, as shown in Table I, not
all elements contribute equally to packet processing, hence,
the overall gain at the end is 29.5%, which is still significant.

This result further motivates re-architecting VNFs by
exploiting the commonality in packet processing in a way
to achieve better resource utilization. To this end, we argue
in favor of adopting a microservice-like architecture [34] for
building VNFs and SFCs. We propose to disaggregate VNFs
into independently deployable packet processors, that we call
μNFs. VNFs or SFCs can then be realized by orchestrating
a packet processing pipeline composed from the μNFs. With
this, one can think of applying optimizations such as consoli-
dating multiple instances of a common packet processing func-
tion into a single instance for better CPU utilization. We will
experimentally demonstrate CPU utilization gains from using
a μNF-based SFC over that composed from monolithic VNFs
(i.e., configuration-(i)) in Section VII-C.2.

III. DESIGN GOALS AND CHOICES

Our objective is to re-architect the VNFs by exploiting
their overlapping functionality enabling finer-grained resource
allocation and achieving better resource utilization. To achieve
these objectives we start with the following design goals:

Reusability Frequently appearing packet processing func-
tions should be developed once and shared across VNFs.

Loose-coupling: Packet processing functions should not be
tightly coupled, so that they can be deployed and scaled
independently, allowing fine-grained resource allocation.

Transparency: Implementation of a packet processing func-
tion should not be affected by their communication pattern
(e.g., one-to-one, one-to-many, etc.).

Lightweight communication primitives: Communication
between packet processing elements should not incur signifi-
cant overhead hurting the overall performance.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1078 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

The first goal can be achieved by dividing large packet
processing software into smaller packet processing tasks or
functionality. Then to achieve the rest of the goals we have
the following two design alternatives [35]:

Run-to-completion: Packet processors are implemented as a
set of identical threads or processes, each implementing the
entire packet processing logic (i.e., an NF or even an SFC).

Pipelining: Packet processors are implemented by compos-
ing a pipeline of heterogeneous threads or processes, each
performing a specific packet processing task.

The state-of-the-art modular VNF designs such as
ClickOS [20] and NetBricks [23] have adopted a run to
completion model, where packets are passed between different
functions in the same address space and processed in a single
thread or process. When more processing capacity is required,
the whole VNF (or SFC) instance is scaled out and traffic
is split between the instances using NIC features such as
RSS [36]. One limitation of this model is that it is hard to right
size resource allocation to individual components because of
the tight coupling between them. In contrast, pipelining mode
satisfies more of our design goals. Individual components can
be allocated their own resource, independently deployed and
scaled (loose-coupling), and it is easier to decouple how ele-
ments process packets from their underlying communication
pattern (transparency).

IV. SYSTEM DESCRIPTION

A. Assumptions

We assume that the network operator owning the infrastruc-
ture has control over the VNFs that are being deployed.
These VNFs can be deployed at the telecommunication central
offices or Internet Service Provider point-of-presences (PoPs)
converted into edge data centers [37], [38]. When SFCs
are deployed inside these edge data centers their VNFs are
typically in the same layer-2 domain.

We do not consider Virtual Machines (VMs) as the choice
of deployment for individual μNFs since that would add a
significant overhead for μNF to μNF communication [23].
Moreover, we also do not require separate OSs and kernel
features for deploying the μNFs, which is typically provided
by VMs. Rather we choose using either processes or containers
for μNF deployment. At this point we leave the choice of
using processes or containers to the network operator since
our evaluation results demonstrated similar performance.

We assume that the μNF descriptions (e.g., what type of
operation the μNF performs on what part of the packet header
or payload) and template for composing VNFs from μNFs will
be provided by the VNF providers. The SFC request will come
from the network operator. Currently, we use JSON format for
SFC specification. However, we do not restrict ourselves as to
what can be used for specifying SFCs. We plan to support
standards such as TOSCA [39] and YANG [40].

Finally, we assume that the μNF developers will provide
configuration generator for each μNF. This will generate
the necessary configuration for a μNF (e.g., the types of
communication primitives to create), when presented with a
μNF type and its connectivity with neighboring μNFs.

Fig. 3. System architecture.

B. System Architecture: Birds Eye View

A high level view of our system is presented in Fig. 3(a).
It comprises the following components: a μNF orchestrator,
per physical server orchestration agent, μNFs, and Rx and Tx
services for reading packets from and to the NICs, respectively.
The northbound API facilitates SFC life-cycle management
and monitoring, and allows network operators to interact with
the system. The μNF orchestrator is responsible for making
global decisions such as μNF placement across physical
servers to realize SFCs and make μNF migration decisions,
among others.

The orchestration agent acts as the local orchestration
endpoint for a given machine. A southbound API between the
global orchestrator and orchestration agents facilitates their
communication. For example, the μNF orchestrator can use
the southbound API for requesting local orchestration agents
to allocate resources for μNFs, deploying μNFs with proper
configuration and create the communication primitives for
μNF to μNF communication.

The smallest deployable units in the system are the μNFs.
μNFs usually perform a specific packet processing task
and are independently deployable loosely-coupled entities.
As described earlier in Section III, one of our design goals is
to keep the μNFs simple and keep the communication pattern
between μNFs transparent from how they process the packets.

Finally, we have two special μNFs, namely the Rx and
Tx services, responsible for reading packets from and writ-
ing packets to the NIC, respectively. These two services
collectively form a lightweight software data path for the
μNFs. By isolating these two services from the μNFs we
have the flexibility to adjust I/O batch sizes according to
the consumption/production rate of the μNFs. Moreover, such
separation allows us to make the operations on hardware
transparent to other packet processing μNFs.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1079

C. System Components

1) μNF Orchestrator: The μNF orchestrator is responsible
for realizing an SFC by orchestrating a packet processing
pipeline consisting of μNFs across multiple machines. Net-
work operators can interact with the orchestrator through
a north-bound API. The orchestrator is also responsible
for global management decisions such as handling machine
failures, making scaling decision, etc.

2) μNF Orchestration Agent: μNF orchestration agent is
the local orchestration endpoint on a physical machine. It has
a northbound API for the μNF orchestrator to act on it.
The agent is responsible for performing local actions such as
deploying μNFs, creating communication primitives to enable
inter μNF communication on the same machine, etc.

3) μNFs: A μNF is the unit of packet processing in
the system as well as the unit of deployment and resource
allocation. It consists of a number of IngressPorts, a number
of EgressPort and a PacketProcessor (Fig. 3(b)). The Ingress-
Ports and EgressPorts provide methods to pull packets from
and push packets to the previous and the next μNF in the
packet processing pipeline, respectively. When μNFs from
different VNFs are consolidated, the IngressPort to EgressPort
mapping table helps in routing packets to different branches
of the pipeline.

The aforementioned ports are of abstract type and can
have different implementations (details in Section VI). One
of our design goals is to keep packet processing logic of
μNFs oblivious to μNF to μNF communication pattern. The
port abstraction simplifies μNFs’ design and implementa-
tion and keeps them loosely coupled with each other. For
instance, we implement a LoadBalancedEgressPort that has
the same interfaces as EgressPort. However, the implementa-
tion distributes packets to multiple next-stage IngressPorts in
a round-robin fashion. From a μNF’s point-of-view this dis-
tribution of packets to multiple next stage μNFs is completely
transparent.

4) Rx Service: Rx service is the interface between host
NIC(s) and the μNFs. Rx service keeps hardware specific
configurations (e.g., number of NICs, number of Rx queues)
and operations (e.g., flow classification in either hardware or
software based on NIC capabilities) transparent to the μNFs.
The Rx service can be thought of as a lightweight data path
(similar to [41], except that complex data path functions are
implemented as independent μNFs in our system).

5) Tx Service: Tx service sits between the μNFs and the
host NIC. Common Tx specific tasks such as tagging packets
of the same SFC, rewriting destination MAC address with next
hop MAC address, writing packets to different NIC Tx queues,
etc., are consolidated inside the Tx service.

D. SFC Deployment

As discussed earlier, the μNF orchestrator is the entry point
for the network operators to deploy an SFC composed of
μNFs. One of our goals is to ensure that from the network
operators point-of-view the SFC request does not look differ-
ent from what they are used to seeing, i.e., they should not
be required to specify μNF specific configurations. It is up to

the orchestrator to determine the optimal composition of μNFs
that offers the semantics of the user requested SFC.

1) Inputs: In what follows, we describe the inputs to the
orchestrator in a bottom up fashion:

a) μNF Descriptor: A μNF descriptor defines different
attributes of a μNF. Currently, we support the following
attributes: statefulness of the μNF and types of action (e.g., No
Operation (NOP), ReadOnly, or ReadWrite) a μNF performs
on the packet headers at different protocol layers. For instance,
the following is a descriptor for a layer 3-4 classifier that
performs only ReadOnly operation on the packet headers:

PacketProcessorClass: "TCPIPClassifier"
Stateful: "Yes"
L2Header: "NOP"
L3Header: "ReadOnly"

Meta-data about the μNFs assist in performing optimiza-
tions (detail discussion in Section V) when composing SFCs.

b) VNF templates: A VNF template is a blueprint of
realizing a VNF from μNFs and we represented it by a packet
processing graph composed of the constituent μNFs. VNF
templates can be considered analogous to VNF descriptors
defined in ETSI NFV MANO specification [42]. A VNF
template consists of the nodes of the processing graph (i.e.,
the μNFs) and the links representing the order of packet
processing between μNFs. The links can be labeled with
the output of the source μNF for that link. Labels act as a
filter, i.e., only packets producing results equal to the label
are forwarded along that link. Examples of VNFs and VNF
templates are presented in Fig. 1(b). If we take the Application
Firewall VNF from Fig. 1(b) as an example, it is composed
from six independently deployable μNFs. Annotations on the
edges represent classification results at different stages, e.g.,
whether a packet contains HTTP payload or not.

c) SFC: An SFC request is a directed graph, where
the nodes are the VNFs and a directed link between two
nodes represents the order that traffic should follow. Links
can have labels in an SFC indicating VNF specific output.
μNF descriptors provided by VNF providers may include more
or less information than what we have described. The lesser
information they contain, the lesser constraints we may have
in placing the constituent μNFs.

2) Sequence of Operations for SFC Deployment: The μNF
orchestrator combines the constituent VNF templates of an
SFC, removes redundant μNFs and builds a μNF forwarding
graph with the same semantics as the SFC request. The
graph construction phase can take μNF specific meta-data into
account to perform optimizations such as consolidating mul-
tiple μNF instances of the same type into one and performing
optimization such as parallelizing the executing of multiple
μNFs on the same packet whenever possible.

After the μNF orchestrator builds an optimized μNF
processing graph and determines the placement of μNFs,
it then requests agents on the selected machines to deploy their
parts of the graph. μNF orchestrator also generates configura-
tion of each μNF in the graph by leveraging the developer
provided configuration generators and provides the agents
with these generated configurations. Upon receiving the μNF

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1080 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

processing subgraph and the configurations, the agent first
allocates the necessary resources, creates the communication
primitives, and deploys and connects the μNFs using the
instantiated communication primitives.

E. Auto-Scaling

We propose to use a simple packet drop monitoring based
mechanism to take auto-scaling decisions. Once μNFs are
deployed, the local agents continuously monitor for packet
drops on all EgressPort – IngressPort pairs. A consistent drop
indicates that the μNF attached to the IngressPort is not able
to match the processing rate of the μNF attached to the
EgressPort. This triggers an auto-scaling event in the agent.
The agent then spawns another instance of the bottleneck μNF
and modifies the corresponding EgressPort in the pair to a
LoadBalancedEgressPort (described in Section IV-C), which
load balances traffic across the scaled-out instances.

However, there is a delay between detecting consistent
packet drop and actually deploying another μNF instance
to mitigate packet drops. Since the agent is continuously
monitoring, it will keep seeing a packet drop during this period
and trigger another scale-out event even before the first one
completes. To avoid this, we assign a cool down timer to
the μNF that is being scaled-out and do not trigger another
scale-out event until the cool down timer has expired.

V. OPTIMIZATIONS

A. Pipelined Cache Pre-Fetching

One potential issue that might arise from our design of μNF
is when using multiple processors in a NUMA configuration.
In such configuration, each processor socket has its local
memory bank and the access time to local and remote memory
banks are not uniform. Processing packets on a NUMA zone
(i.e., socket) other than the one where the NIC is attached has
performance implications due to remote memory invocation.
To circumvent this problem, we perform a pipelined cache
pre-fetching inside every μNF. It works as follows. Before
processing a batch of packets, a μNF first pre-fetches a
cache-line from the first k packets in the batch. Then it
proceeds to process the batch. While packet i from the batch is
being processed, a cache-line from packet i+ k is pre-fetched
into the cache. In this way, when a packet is being processed,
the first level cache is very likely to be warm with a cache-line
worth data from that packet (which contains the header fields).
Thus potentially increasing the first level cache hit rate and
masking the remote memory access latencies to some extent.
We experimentally evaluate the impact of this optimization
in Section VII-B.2.

B. Parallel Execution of μNFs

In a pipelined packet processing model, the packet process-
ing elements typically operate on a batch of packets in a
sequential manner. This is often unavoidable since one μNF
only processes the set of packets as determined by the previous
stage μNF. For instance, in Fig. 1(b), the L7 classifier μNF
in the Application Firewall determines the set of packets to

be processed by the URL Validator μNF. However, there are
scenarios where sequential packet processing can be avoided.
For example, in the monitoring function from Fig. 1(b),
the counting function performs a read-only operation on the
packets. Therefore, if another counting function was part of
the Monitoring function, these two could be safely executed
in parallel on the same set of packets.

We parallelize the execution of consecutive μNFs from the
μNF processing graph that are placed on the same machine
by employing techniques similar to the ones discussed in [25],
[43], [44]. Parallelization is performed based on the type of
operation they perform on the packet header (specified in
μNF descriptor). When consecutive μNFs perform read-only
operations on the packet header, or operate on disjoint regions
of the header, or do not modify the packet stream (e.g., not
dropping packets), only then we parallelize their execution and
assign them distinct CPU cores on the same NUMA zone. One
issue with parallel execution is to ensure synchronization after
the parallel processing stage, i.e., a μNF β that is just after the
parallel processing state, should be able to start processing a
packet only if the packet has been processed by all the μNFs
in the parallel processing stage. Such synchrony is achieved
through special IngressPort and EgressPort implementations
(details in Section VI-D). These ports embed a counter as
packet meta-data before parallel execution begins. At the
parallel execution stage, each μNF atomically increases the
counter after its processing is complete. At μNF β, the Ingress-
Port ensures that only packets with appropriate counter value
are passed on to β’s PacketProcessor. Moving the synchrony
mechanism into ports thus keeps the μNF design simple.

VI. IMPLEMENTATION

One option for implementing the proposed system is to
adapt existing modular packet processing frameworks such as
Click [28] to a multi-process model. However, Click comes
with a lot of legacy code, some of which is not useful for our
case (e.g., scheduling multiple elements inside a Click binary).
Also, Click was originally designed and optimized for a run-to-
completion packet processing model, which is fundamentally
different from the pipeline model adopted by μNF. Therefore,
re-engineering Click and similar systems require significant
refactoring of many of their subsystems such as component
scheduling, packet transfer, etc., to make them efficiently
work in a pipeline model. Finally, we wanted to build the
system in a way such that it can process packets at 10 Gbps
line-rate at least (current de facto capacity for commodity
NICs) while maximizing CPU usage on the servers. It was
becoming cumbersome to optimize Click’s performance and
refactor its subsystems for pipeline model, hence, we decided
to build the system from scratch.

We have implemented a prototype of our system using C++
(agent and μNFs) and Python (orchestrator). At this point we
focus more on developing the μNFs and their communication
primitives. Therefore, our current orchestrator is limited in
functionality and acts more as a convenience mechanism for
testing. We use Intel DPDK [45] for kernel bypass packet I/O
and hugetlbfs [46] for sharing memory between μNFs.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1081

We plan to open-source our current implementation in the
near future. In the remainder of this section we describe the
implementation of the system components.

A. Agent

Agents are implemented in C++ and run as primary DPDK
processes. During initialization, an agent pre-allocates memory
buffers for the NIC to store incoming packets, and exposes an
RPC-based control API for the orchestrator. The orchestrator
can use this API to deploy part of a μNF processing graph
on a machine. When such a request is received by an agent,
it deploys the μNFs according to the orchestrator specified
configuration and creates the necessary communication primi-
tives (details in Section VI-D). Agents also monitor the μNFs
and take scaling out decisions.

B. μNF

μNFs are implemented by leveraging DPDK APIs. Each
μNF runs as a stand-alone secondary DPDK process. Since
DPDK allows only one process to be the primary, i.e., have
the privileges of memory allocation, μNFs run as secondary
DPDK processes. When required, μNFs obtain pre-allocated
objects from a memory pool shared with the agent. Memory
sharing between μNFs and between a μNF and the agent is
enabled by hugetlbfs. The hugetlbfs is mounted on a directory
accessible to both the μNFs and the agent, and contains virtual
to physical memory mapping of the shared memory regions.
One caveat in this shared memory model is that each process
should have exactly the same virtual address space layout in
order to successfully translate the shared virtual memory to
their physical locations. To do so we had to disable Address
Space Layout Randomization (ASLR), a Linux kernel feature
for preventing buffer overflow attacks [47]. This is a security
vulnerability and is a limitation in our current implementation.
However, this is also a limitation of the technology at hand
and solving it can be an interesting future work.

C. Rx and Tx Services

In our design, packet I/O is handled by Rx and Tx services
in order to hide hardware specifics from the other μNFs.
In our prototype implementation, the Rx service runs as a
separate thread inside the agent and is pinned to a physical
CPU core on the same socket where the NIC’s PCIe bus is
attached. It receives packets from a NIC queue in batches
and implements a classifier that dispatches the packets to
the appropriate μNFs. Currently, the classifier is based on
matching the following 5-tuple flow signature: (source-IP,
dest-IP, ip-proto, src-port, dst-port).

The Tx service abstracts the NIC Tx queues and imple-
ments common functions frequently required by the μNFs.
For example, in a multi-node deployment scenario, when a
μNF processing graph is deployed across multiple machines,
the Tx service encapsulates the packets belonging to a μNF
graph destined to another machine in a custom layer 2 tunnel
with appropriate tag and destination MAC addresses. The Rx
service on the other end of the tunnel distributes packets to the

Fig. 4. Port implementations.

appropriate μNFs based on the tags. These tags are determined
and configured by the orchestrator.

D. Port

As discussed earlier, a port provides packet I/O abstraction
for μNFs and decouples the implementation of a specific
communication pattern from a μNF’s packet processing logic.
This design choice helps to keep the μNF implementation
focused only on the packet processing part. We have two
broad classes of ports, IngressPort for receiving packets
from and EgressPort for sending packets to μNF(s). If not
stated otherwise, ports provide a zero-copy packet exchange
mechanism by exchanging the packet addresses instead of
full copies of the packets. IngressPort and EgressPort present
the following interfaces to the μNFs while hiding underlying
implementation details: (i) pull based IngressPort::RxBurst,
which populates an array with a burst of packet addresses;
(ii) EgressPort::TxBurst pushes a burst of packets to the
next μNF. Currently, we have the following specific imple-
mentations of IngressPort and EgressPort that allow different
communication patterns between μNFs.

1) NIC I/O Port: A NIC I/O port abstracts the rx/tx queues
in the hardware NIC. It allows μNFs to directly read from or
write to the NIC. We have leveraged the NIC specific DPDK
poll mode drivers (PMDs) for implementing ingress and egress
versions of NIC I/O Port. The DPDK PMDs bypass the OS
kernel and allow zero copy packet I/O from the NIC.

2) Point-to-Point Port: A point-to-point port allows a μNF
to push packets to or pull packets from exactly one other
μNF. We have implemented this port using a circular queue
(Fig. 4(a)). The ingress version of the port (PPIngressPort)
pulls a batch of packet addresses from a circular queue and
the egress version (PPEgressPort) pushes packet addresses for
a batch of packets to the queue. When a μNF’s PPIngressPort
and another μNF’s PPEgressPort share the same circular
queue, they can exchange packets with each other. The circular
queue in our implementation is an instance of rte_ring data
structure (a lock-less multi-producer multi-consumer circular
queue) from DPDK librte_ring library.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1082 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

3) BranchEgressPort: This port connects a μNF to multiple
μNFs that are processing packets in parallel. For instance,
in Fig. 4(b), μNFB and μNFC are executing in parallel.
To realize this execution model, μNFA can be made aware
of this configuration and pushes packet addresses to both
of the next state μNFs. μNFA will also need to embed
the necessary meta-data in packets to mark the completion
of μNFB and μNFC . This violates our design principle of
loose coupling between μNFs, and therefore, we developed
BranchEgressPort to transparently handle this type of branch-
ing. A BranchEgressPort contains multiple circular queues,
each corresponding to one μNF in the next stage. Each of the
circular queues can be shared with a PPIngressPort to create
a communication channel. For example, one of the circular
queues of μNFA’s BranchEgressPort is essentially the underly-
ing circular queue of μNFB’s PPIngressPort. A BranchEgress-
Port also initializes and embeds a counter inside each packet’s
meta-data area, which is used to mark the completion of packet
processing by all parallel μNFs.

4) MarkerEgressPort: A MarkerEgressPort works in con-
junction with a BranchEgressPort. It is the typical EgressPort
of a μNF part of a parallel processing group. This port atom-
ically increases the embedded counter in the packet before
putting the packet into a shared circular queue.

5) SyncIngressPort: A SyncIngressPort connects a set of
parallel μNFs to a single μNF that is potentially modifying
packets. This port is also an abstraction over a shared circular
queue. The queue is shared with other MarkerEgressPorts in
the parallel processing group. SyncIngressPort ensures that any
packet that is pulled out has been processed by all the parallel
μNFs. This synchronization is done by atomically checking the
counter embedded inside every packet by a BranchEgressPort.
SyncIngressPort pulls a packet only if the counter value equals
the number of μNFs in the parallel processing stage. In this
way, the next stage of a parallel processing stage proceeds
to process a packet only after all the μNFs from the parallel
processing stage have completed their processing. Note that
in order to keep the cost of atomically updating and checking
the embedded counters, we leverage the atomic instruction set
of modern CPUs.

6) LoadBalancedEgressPort: This is an EgressPort that load
balances packets pushed by a μNF to a number of next
stage μNFs. This port is particularly useful when μNFs are
scaled-out. Consider two μNFs a and b, connected with a
pair of ingress and egress point-to-point ports. If b is scaled
out then packets from a need to be load balanced across b
instances. This port transparently performs this load balancing.
Our current implementation has a round-robin load balancing
policy. However, more complex policies (e.g., ensuring flow
affinity) can also be implemented using this abstraction.

E. μNF Scheduling

In order to increase μNF density per physical machine,
we share a CPU core between multiple consecutive μNFs from
a μNF processing graph. This also enables these consecutive
μNFs to better utilize a CPU’s warm first level cache. How-
ever, like many other DPDK applications, μNFs operate in

Fig. 5. Impact of different scheduling schemes.

busy polling mode. Therefore, it can occur that one μNF out
of several others sharing the same CPU core, gets scheduled
on that core, and there is no packet at that moment to process.
This will waste CPU cycles during the time allocated for the
μNF. Therefore, a major challenge here is to carefully schedule
μNFs to minimize the wasted CPU cycles. This is a problem
of its own and merits separate investigation as seen in the
literature [48]. For our prototype implementation, we aim to
have a simple yet effective solution and first explore which
out of the box OS scheduler is the most suitable one.

Completely Fair Scheduler (CFS) is the default scheduler in
most Linux distributions [49]. CFS ensures fair sharing of a
CPU between competing processes by periodically preempting
them. However, there are other schedulers available in the
kernel, e.g., the Real Time (RT) scheduler [50]. RT scheduler
supports the following two scheduling policies: First-in-First-
out (FIFO) and Round Robin (RR). Unlike CFS, RT scheduler
does not ensure fairness, rather it ensures that a process only
releases a CPU after it has finished (FIFO) or its allocated
time quantum has expired (RR). To better understand which
scheduler and scheduling policy is a best fit, we performed
the following experimental study.

We deployed μNF chains of varying lengths on a single
CPU core, where each μNF performs very minimal packet
processing (swaps source and destination MAC addresses).
We measured the throughput of these chains for smallest
size (64 byte) packets using different scheduler and policy
combinations, namely CFS, RT with FIFO, and RT with
RR. We observed that CFS was preempting the μNFs too
frequently. As a consequence, there was a significant context
switching overhead and μNFs from the chain were being
scheduled when there was no packet available in their Ingress-
Ports. RT scheduling was not performing well either since
μNFs were getting uneven CPU time and were starving.
We observed a throughput of only a few thousand packets
per second.

Therefore, we added the following optimization in the
μNFs. A μNF voluntarily yields CPU in the following events:
(i) when there are no packets available in its IngressPort to
process, and (ii) after successfully processing k batches of
packets. This optimization (voluntary yielding) improved the
throughput by three orders of magnitude. We present results
for different scheduler and scheduling policies with voluntary
yielding optimization in Fig. 5.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1083

Fig. 5(b) shows the maximum length of a μNF chain that
can be deployed on a CPU core while maintaining 10Gbps line
rate throughput for 64B packets (≈14.88 Mpps). We found that
voluntary yielding with RT scheduling and FIFO policy can
support the maximum number of chained μNFs while oper-
ating at line rate. In Fig. 5(a) we demonstrate the throughput
for μNF chains of varying lengths sharing a single CPU core
for different combinations of scheduler and policy. From our
empirical evaluation, it is clear that the best combination to
use is voluntary yielding with RT scheduler and FIFO policy,
which is able to sustain higher throughput for any chain length
compared to any of the other combinations. The reason being,
CFS preempts a process as soon as its allocated time quantum
expires. Therefore, CFS can preempt a μNF in the middle of
processing a batch, making it less likely for the next scheduled
μNF to get packets from its IngressPort, thus wasting CPU
cycles. RT with FIFO mitigates the impact of preempting.
By combining voluntary yielding, we prevent other μNFs from
starving.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

1) Hardware Configuration: Our testbed consists of two
machines connected back-to-back without any switch. One
of them hosts the traffic generator, while the other hosts
the μNFs. Each machine is equipped with 2 × 6-core Intel
Xeon E5-2620 v2 2.1 Ghz CPU (hyper-threading disabled),
32 GB memory (distributed evenly between two sockets), and
a DPDK compatible Intel X710-DA 10 Gbps NIC.

2) Software Environment: We used DPDK v17.05 on
Ubuntu 16.04LTS (kernel version 4.10.0-42-generic). We dis-
abled Address Space Layout Randomization (ASLR) to ensure
a consistent hugepage mapping across the μNFs. We also
allocated a total of 4GB hugepages (evenly divided between
sockets). Additionally, we configured the machines with the
following performance improvement features:

• We isolated all CPU cores except core 0 on socket 0 from
the kernel scheduler. μNF processes and agent threads
were pinned to these isolated CPUs.

• CPU scaling governor was set to performance.
• Flow control in the NIC was disabled.
3) Prototype μNFs: We developed the following μNFs and

used them for different scenarios:
• MacSwapper: Swaps the source and destination MAC

address of each packet.
• IPTtlDecrementer: Parses IP header and decrements time-

to-live (TTL) field by 1.
• CheckIPHeader: Computes and checks the correctness of

IP checksum of each packet.
• L3L4Filter: Filters packets based on Layer 3-4 signature.
• HttpClassifier: Determines if a packet is carrying HTTP

traffic by checking the payload.
• ValidateUrl: Performs a regular expression matching on

URL in HTTP header to detect URLs containing SQL
injection attacks.

• CountUrl: Counts the number of packets in a batch that
contains a certain URL in its payload.

Fig. 6. Baseline performance.

4) Traffic Generation: We used pktgen-dpdk [51], and
Moongen [52] for throughput and latency measurements,
respectively. We determine the physical limits of our setup
by modifying the agent to receive batches of packets and echo
them back (single thread pinned on a CPU core). We observed
line rate throughput from this setup (i.e., 10 Gbps for all packet
sizes), hence, there are no bottlenecks present in the hardware
or configuration. For latency measurements, we set the packet
rate to 90% of maximum sustainable rate for that particular
deployment scenario.

B. Microbenchmarks

1) Baseline Performance of μNF: We first establish the
baseline performance that can be achieved by disaggregating
larger VNFs into μNFs. We pinned the agent’s Rx thread to a
CPU core and run a very simple μNF (MacSwapper) pinned
to a different CPU core in the same NUMA zone. We vary
packet size from 64 to 1500 Bytes and report the throughput in
Fig. 6. Throughput reaches line rate for smallest packet size on
10 Gbps NIC. We also deployed the same μNF inside a Docker
container and performed the same experiment to observe any
potential impact of containerization. Throughput results for
containerized μNF are very similar to those presented in Fig. 6,
and are hence not presented.

2) Impact of Pipelined Cache Pre-Fetching: We intend to
utilize all available CPU cores on a machine for deploying the
μNFs. However, in a NUMA system with multiple CPU sock-
ets, processing packets on a NUMA zone other than the one
where the packet was received can cause performance degra-
dation due to remote memory access overhead [53]. In this
experiment, we evaluate the impact of cache pre-fetching
optimization from Section V-B when packets are processed
by μNFs on different NUMA nodes.

We receive packets on NUMA zone 0 and process them
through a chain of two MacSwapper μNFs deployed on
separate cores at NUMA zone 1. We measure throughput of
this chain (for smallest size packets) while varying the number
of pipelined pre-fetched packets up to 50% of packet batch
size (batch size is set to 64). The results are shown in Fig. 7.
With pre-fetching disabled throughput drops to ≈30% of line
rate. However, with as little as ≈20% packets pre-fetched to
cache in a pipeline (8 out of 64 packets in a batch), throughput
improves by more than ≈ 3× and goes back to the line rate
for smallest packet size.

3) Impact of Parallelism in μNF Processing Graph: Intu-
itively, parallel execution of μNFs in the processing graph

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1084 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 7. Impact of pipelined cache pre-fetching.

Fig. 8. Impact of parallelism in processing graph.

is expected to reduce the processing latency for the pack-
ets through μNF processing graph. However, overheads are
associated with parallel executions because of atomically
increasing a counter on each packet during branching and
synchronizing as described in Section V-B. Depending on how
fast a μNF is processing packets, we may observe different
impacts of parallelism. To evaluate the effect of parallelism for
different packet processing costs, we add an artificial busy loop
after processing each packet in MacSwapper μNF. We create
a pipeline from four of these μNFs connected linearly for the
sequential case. For the parallel case, we create a two-way
branching after the first μNF (using BranchEgressPort) and
join the branches at the last μNF (using SyncIngressPort).
We vary the per packet processing cost from 100 to 700 CPU
cycles. We measure packet processing latency of the sequential
and parallel configurations using Moongen.

Results of this experiment (mean latency with 5th and 95th
percentile error bars) are shown in Fig. 8. When a μNF’s
processing cost is low (e.g., less than 100 cycles/packet),
the gains from parallelism are rather marginal compared to the
sequential case (less than 10% improvement in latency). The
gains become more evident when μNFs’ packet processing
cost increases and we see a good potential for improving
latency there (more than 20% for μNFs with 700 CPU cycles
per packet processing cost).

4) Impact of μNF Processing Graph Diameter: We create
μNF chains of different lengths (varied from 4 to 6) and
measure packet processing latency along the pipeline using
Moongen. The objective is to observe if packets start queuing
up in any stage of the processing pipeline or not. We have an
experiment setup similar to the scenario in Section VII-B.3.
We first measure latency with varying chain lengths and with-
out introducing any additional packet processing complexity
in our MacSwapper μNF. In this case, we observe a linear
increase in mean latency (Fig. 9(a)). Then we introduce

Fig. 9. Impact of µNF processing path length.

additional busy loops to emulate CPU cycles spent for packet
processing (similar to Section VII-B.3) and measure latency
for different lengths of μNF packet processing path. As we
observe from Fig. 9(b), latency increases linearly with μNF
complexity as well as with μNF processing path length.
Therefore, no buffering issues were encountered along the
pipeline.

C. Service Level Performance

1) Resource Efficiency Over Run-to-Completion Mode:
We compare μNF with NetBricks [23], the state-of-the-art
in software packet processing platform operating in run-to-
completion model. In particular, we perform the same exper-
iment as in [23] to reproduce results from Fig. 7 of the
original paper [23]. We developed similar packet processing
element using μNF (IPTtlDecrementer) as the one used in [23]
and deployed chains of different length in the following
configurations: (i) NB-MC: NetBricks with multiple threads,
each pinned to a dedicated CPU core, (ii) NB-1C: NetBricks
with single thread, (iii) μNF-1C: all μNFs packed on a single
CPU core, and (iv) μNF-MC: the chain is divided into k
clusters of consecutive μNFs such that each cluster packs
maximum number of μNFs to sustain line rate while sharing
a CPU core. For a fair comparison, for both NetBricks and
μNF we read packets from NIC without intervention from a
software switching layer. Note that in the original paper [23],
the authors spawned � threads for a chain of length � in
NB-MC configuration and were able to reach more than
10Gbps throughput. However, we do not have similar hardware
in our disposal at this moment, hence, for each chain length,
we deploy the minimum number of threads on distinct CPUs
until NetBricks reaches line rate for smallest packets. We also
performed the suggested performance tuning as in [23], [54].

The results from this experiment are shown in Fig. 10.
For the single CPU core scenario (i.e., NB-1C and μNF-1C),
μNF achieves better throughput than that of NetBricks with
increasing chain length. Because of operating in a run-to-
completion mode, NetBricks starts processing a new batch of
packets only after the previous batch has finished processing
through all the elements in the chain. In contrast, because of its
pipeline mode, μNF can schedule a packet processing element
to work on a new batch of packets as soon as that element
has finished processing the previous batch and hands it over
to the next element in the chain. This effectively increases the

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1085

Fig. 10. Comparison with NetBricks [23].

Fig. 11. µNF realization of the SFC from Fig. 2(a).

number of packets in the pipeline, resulting in a better packet
processing throughput compared to NetBricks as demonstrated
in Fig. 10. Indeed, there is context switching overhead involved
in a pipeline mode. However, by carefully yielding the CPU
as discussed in Section VI-E, μNF minimizes the impact of
such overhead on packet processing throughput.

We also observe from Fig. 10 that for a given chain length,
μNF can reach line rate using lesser number of CPU cores
compared to NetBricks. This is because, in pipeline mode
with appropriate scheduling, it is possible to reduce wastage of
CPU cycles and use the CPUs more effectively between packet
processing stages, compared to run-to-completion mode. How-
ever, to be fair in the comparison, NetBricks provides packet
ownership transfer by using underlying compiler features,
which is not provided by μNF. Another caveat in the result is
that, when we used more than 5 cores for NetBricks, the pack-
ets crossed a NUMA zone, which caused some performance
penalty as we can see from the non-linear core scaling for
longer chains.

2) Performance of μNF-Based SFC: We have developed
a set of μNFs (described in Section VII-A.3) for realizing
realistic VNFs and SFCs. We use these μNFs to deploy the
SFC used for the motivational experiment in Section II, i.e.,
Firewall → Monitor → Application Firewall. The resulting
μNF processing graph is shown in Fig. 11. We implemented
each individual μNF as close as possible to their Click
counterpart. We played the same traffic trace used in Section II.
Results in Table II show the relative savings in mean CPU
cycles per packet when using μNF processing graph over
monolithic VNFs (i.e., configuration-(i) from Section II). To be
fair, we did not compare packet I/O from NIC since it is
fundamentally different between μNF and Click. We counted
the cycles spent in reading to/from ring-based shared memory
since that is an added overhead in this disaggregated architec-
ture. We also benchmarked the deployment from Fig. 11 using
pktgen. We set the packet size to 200 bytes, the average packet
size reported in a recent study on a production data center [55].
Throughput reached 2.08 Mpps or 3.67 Gbps. We identified

TABLE II

CPU CYCLES SAVED PER-PACKET ON AVERAGE

the HttpClassifier μNF to be a bottleneck through a separate
benchmark. To test the scaling out of individual μNFs and
LoadBalancedEgressPort, we deployed the same SFC but with
two instances of HttpClassifier. We observed a near linear
increase in throughput, which is 4.1 Mpps or 7.2 Gbps.

VIII. DISCUSSION

A. Decomposition of Monolithic VNFs into μNFs

In this paper, we proposed a system to compose SFCs and
VNFs from independently deployable loosely-coupled μNFs.
Orthogonal to the system design is the identification of the
set of μNFs in the first place. From our initial survey this
appears to be rather challenging primarily because it requires
domain specific knowledge. Also determining the granularity
of such tasks is also non-trivial. On one hand, most of the
academic works propose low level packet processing functions
(e.g., TCP processing functions [25]) as VNF building blocks.
On the other hand, state-of-the-art commercial VNFs [56]
are composed from coarser-grained building blocks. Finer
granularity increases re-usability whereas coarser granularity
reduces overhead. The best way to decompose a VNF into
μNFs remains an interesting research question.

B. Packet Ownership Transfer

When a μNF is finished processing a packet and transfers
it to another μNF, the ownership of the packet should be
transferred to that other μNF as well, i.e., the previous μNF
should not be able to access the packet content using the
previously acquired packet handler. Virtual switches provide
this abstraction by copying packets between ports, so, the pre-
vious copy becomes invalidated. However, this is a difficult
problem to solve using a shared memory subsystem. In our
implementation, μNFs rely on the hugetlbfs to obtain
virtual-to-physical memory translation of the packet addresses.
This file system should be accessible to the μNFs to ensure that
they can always obtain a valid translation. This requirement
also raises the issue that μNFs can always read packet content
even after the packet has been transferred to other μNFs,
and consequently, ownership is not transferred. Ownership
transfer between multiple processes has been studied in HPC
systems [57]. However, the state-of-the-art in that area still
performs at least one message copy, which in our case would
add a significant latency in packet processing. Ownership
transfer in shared-memory multi-process system with zero-
copy remains an open question. As a workaround in our
implementation we create disjoint segments in the huge table
area and assign one area to μNFs of the same processing
graph. This does not solve the problem 100%, however,
it provides isolation between μNFs from different processing
graphs.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1086 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

C. Future Work

In this paper, our design and implementation was primarily
focused on developing a working solution and addressing the
engineering challenges for enabling VNF and SFC compo-
sition from independently deployable μNFs while operating
at line rate. We also focused our evaluation on whether our
prototype system is able to deliver its promise, i.e., provide
better resource utilization by eliminating redundancies and
finer grained resource allocation. However, to get the best
out of such architecture there are other interesting research
questions that we have not addressed in this paper. These
include μNF graph optimization to incorporate parallelization
and consolidation of μNF instances, optimal placement of μNF
graph across multiple machines, scaling out μNF instances
across multiple machines, state management between scaled
out instances, fault-tolerance, and scheduling of μNF instances
for better resource utilization among others. Some of these
problems may be of interest to the broader research commu-
nity. For our part, we plan to improve our current system by
addressing some of the aforementioned problems in the future.

IX. RELATED WORKS

A. Modular Packet Processing

The development of modular packet processing software has
a long history that dates back to the late 90s. Click [28],
one of the most influential works in this area proposed to
build monolithic packet processing software using reusable
packet processing components called elements. Click’s focus
was more on the programmability than performance. Over
the years, Click influenced a significant body of subsequent
research on building modular yet high performance packet
processing platforms that employed different optimization
techniques of their own (e.g., NIC offloading, I/O batching,
kernel bypass, etc.) to improve packet processing performance
and add flexibility to VNF composition [20], [23], [58],
[59]. However, these are centered around the assumption
that a middlebox is a monolithic software. mOS proposed
to abstract layer 4-7 packet processing tasks into modular
and high-performance libraries for the ease of middlebox
development [60]. mOS is complimentary to our work on
disaggregating VNFs and can facilitate μNF development.

More recently, Slick [22] and OpenBox [24] proposed
different approaches to achieve a similar goal of building
packet processing from independently deployable components.
Slick focuses more on the programming model for middle-
box composition while OpenBox goes one step further and
decouples data and control planes of VNFs. In contrast to
μNF, OpenBox does not focus on addressing the engineering
challenges pertaining to realizing a data plane for modular
VNFs and SFCs. Its focus is more on the control aspects
such as designing a protocol between VNF control and data
planes, optimizing the forwarding graph, etc. OpenBox can
complement our proposed system by acting as a control and
orchestration layer above μNFs.

A chaining mechanism for lightweight VNFs has been pro-
posed in [61], which inserts per-VM SFCs between a VM and
a virtual switch for providing QoS, security, and monitoring

services. In contrast, our focus is not on per-VM services,
rather, on a general software architecture for realizing VNFs
and SFCs from lightweight, independently deployable, and
loosely-coupled packet processing components. An elaborate
discussion on the challenges associated with realizing such
microservice-based VNFs and SFCs can be found in [33].
An area of research orthogonal to modular and lightweight
packet processing is runtime systems built around uniker-
nels [62]. Unikernels are minimalistic OSs that are custom
made to run only a single application, thus losing the benefit
of being general purpose OSs. However, they have very low
memory footprint (a few megabytes) and high deployment
density (order of hundreds per physical machine) compared
to traditional VMs or containers [20], [63], hence, can be a
potential choice for μNF deployment.

B. Industry Efforts in Microservice-Based VNFs

There has been some movement in the industry for
re-designing large VNFs using microservice architecture.
As part of the CORD project [37], a number of VNFs
have been decomposed into having separate control and data
planes that are loosely coupled and can be independently
scaled. Another example is the Clearwater IP Multimedia
System [56] re-architected using microservices design prin-
ciple and also made available as an open-source software.
However, the independently deployable components them-
selves are rather complex and can be further decomposed
into more manageable sizes. The availability of Clearwater as
an open-source software has also fostered academic research,
including on enhancing its auto-scaling capabilities [64], [65],
and service latency and failure recovery time [66].

C. Middlebox Functionality Consolidation

CoMb [27] is one of the early works to experimentally
motivate the consolidation of common functionality into sepa-
rate services and share them across VNFs. However, CoMb’s
main focus was not to address the implementation issues
related to realizing such a system, rather demonstrate the
advantage of consolidating multiple NFs on commodity hard-
ware as opposed to using purpose-built hardware middleboxes.
E2 [10] proposed to consolidate management tasks such as
resource allocation, fault-tolerance, monitoring, auto-scaling,
etc., into a single framework, which is orthogonal to μNF
or CoMb’s objective. More recently, Microboxes proposed
to consolidate TCP protocol processing functions (e.g., TCP
bytestream reconstruction, TCP endpoint termination, etc.) of
multiple middleboxes [25]. Consolidation has the advantage
of reducing redundant development efforts in implementing
and optimizing common tasks. In this paper, we focus on the
engineering efforts related to software architecture, necessary
abstractions, and performance optimizations for realizing such
a disaggregated packet processing platform, facilitating better
consolidate of packet processing tasks with ease.

X. CONCLUSION

In this paper, we propose μNF, a system for building
VNFs and SFCs from reusable, independently deployable, and

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

CHOWDHURY et al.: DISAGGREGATED PACKET PROCESSING ARCHITECTURE FOR NFV 1087

loosely-coupled components enabling finer-grained resource
allocation. Our design goal is to keep the μNFs simple
and develop the necessary primitives to transparently enable
different communication patterns between them. We demon-
strated the effectiveness of our system through a DPDK based
prototype implementation and experimental evaluation. The
individual techniques used for implementing and optimizing
the system are not entirely new (e.g., batched I/O, zero-copy
I/O, pre-fetching, etc.). However, the bigger picture here is
to demonstrate that disaggregating complex VNFs using the
proposed software architecture combined with the individual
techniques is indeed a viable and competitive solution for
composing VNFs and SFCs. This is further supported by our
experimental evaluation showing that the combined engineer-
ing effort enables finer-grained resource allocation and scaling
while attaining comparable performance compared to the state-
of-the-art monolithic implementations.

REFERENCES

[1] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, “µNF:
A disaggregated packet processing architecture,” in Proc. IEEE Conf.
Netw. Softwarization (NetSoft), Jun. 2019, pp. 342–350.

[2] B. Carpenter and S. Brim, Middleboxes: Taxonomy and Issues,
document RFC 3234, Feb. 2002.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, Sep. 2012.

[4] “Network functions virtualisation—Introductory white paper,” ETSI,
Sophia Antipolis, France, White Paper, Oct. 2012. Accessed:
Apr. 5, 2017. [Online]. Available: https://portal.etsi.org/nfv/
nfv_white_paper.pdf

[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[6] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[7] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. USENIX NSDI,
2016, pp. 255–273.

[8] Open Platform for NFV (OPNFV). Accessed: Apr. 9, 2017. [Online].
Available: https://www.opnfv.org/

[9] Open Source MANO. Accessed: Apr. 9, 2017. [Online]. Available:
https://osm.etsi.org/

[10] S. Palkar et al., “E2: A framework for NFV applications,” in Proc. 25th
Symp. Operating Syst. Princ. (SOSP), 2015, pp. 121–136.

[11] J. Sherry et al., “Rollback-recovery for middleboxes,” in Proc. Conf.
Special Interest Group Data Commun., Sep. 2015, pp. 227–240.

[12] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing
virtual backup allocation for middleboxes,” in Proc. IEEE ICNP, 2016,
pp. 1–10.

[13] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “REINFORCE: Achieving efficient failure resiliency for
network function virtualization based services,” in Proc. ACM CoNeXT,
2018, pp. 41–53.

[14] J. Duan, X. Yi, S. Zhao, C. Wu, H. Cui, and F. Le, “NFVactor: A resilient
NFV system using the distributed actor model,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 586–599, Mar. 2019.

[15] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. USENIX NSDI, 2013, pp. 227–240.

[16] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 163–174, Feb. 2015.

[17] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in Proc.
USENIX NSDI, 2017, pp. 97–112.

[18] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. USENIX NSDI,
2018, pp. 299–312.

[19] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering
for service function chaining,” IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 487–507, 1st Quart., 2019.

[20] J. Martins et al., “ClickOS and the art of network function virtualiza-
tion,” in Proc. USENIX NSDI, 2014, pp. 459–473.

[21] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. USENIX NSDI, 2014, pp. 445–458.

[22] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. 1st ACM SIGCOMM Symp. Softw. Defined
Netw. Res. SOSR, 2015, pp. 14:1–14:13.

[23] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the V out of NFV,” in Proc. USENIX OSDI, 2016,
pp. 203–216.

[24] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. Conf. ACM SIGCOMM Conf. (SIGCOMM), 2016, pp. 511–524.

[25] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and T. Wood,
“Microboxes: High performance NFV with customizable, asynchronous
TCP stacks and dynamic subscriptions,” in Proc. Conf. ACM Special
Interest Group Data Commun. (SIGCOMM), 2018, pp. 504–517.

[26] J. Duan, X. Yi, J. Wang, C. Wu, and F. Le, “NetStar: A future/promise
framework for asynchronous network functions,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 600–612, Mar. 2019.

[27] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
USENIX NSDI, 2012, pp. 323–336.

[28] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM SIGOPS Operating Syst. Rev., vol. 33, no. 5,
pp. 217–231, Dec. 1999.

[29] M. Gallo and R. Laufer, “ClickNF: A modular stack for custom network
functions,” in Proc. USENIX ATC, 2018, pp. 745–757.

[30] Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, Service
Function Chaining Use Cases in Data Centers, document Internet-Draft
draft-ietf-sfc-dc-use-cases-06, IETF Secretariat, Feb. 2017.

[31] Blue Coat Systems Proxysg. Accessed: Apr. 9, 2017. [Online]. Avail-
able: https://bto.bluecoat.com/sites/default/files/tech_pubs/SGOS_4.3.1_
Upgrade_Downgrade.pdf

[32] Barracuda Web Application Firewall. Accessed: Apr. 9, 2017. [Online].
Available: https://www.barracuda.com/products/webapplicationfirewall

[33] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba,
“Re-architecting NFV ecosystem with microservices: State of the art
and research challenges,” IEEE Netw., vol. 33, no. 3, pp. 168–176,
May 2019.

[34] N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,”
in Present and Ulterior Software Engineering. Cham, Switzerland:
Springer, 2017, pp. 195–216.

[35] C. Dumitrescu, “Design patterns for packet processing applications on
multi-core Intel architecture processors,” Intel Corp., OR, USA, White
Paper 321058, Dec. 2008.

[36] Receiver Side Scaling. Accessed: Apr. 9, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/scaling.txt

[37] L. Peterson et al., “Central office re-architected as a data center,” IEEE
Commun. Mag., vol. 54, no. 10, pp. 96–101, Oct. 2016.

[38] R. S. Montero, E. Rojas, A. A. Carrillo, and I. M. Llorente, “Extending
the cloud to the network edge,” Computer, vol. 50, no. 4, pp. 91–95,
Apr. 2017.

[39] (Mar. 2014). TOSCA Simple Profile for Network Functions Vir-
tualization (NFV) Version 1.0, Committee Specification Draft 03.
Accessed: Apr. 9, 2017. [Online]. Available: https://docs.oasis-
open.org/tosca/tosca-nfv/v1.0/csd03/tosca-nfv-v1.0-csd03.pdf

[40] R. Penno, P. Quinn, D. Zhou, and J. Li, Yang Data Model for Service
Function Chaining, document Internet-Draft draft-penno-sfc-yang-15,
IETF Secretariat, Jun. 2016. Accessed: Apr. 9, 2017. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-penno-sfc-yang-15.txt

[41] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Dept. EECS, Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-155,
2015.

[42] “Network functions virtualisation (NFV); Management and orchestra-
tion,” ETSI Ind. Specification Group, Sophia Antipolis, France, White
Paper ETSI GS NFV-MAN 001, Dec. 2014. Accessed: Apr. 9, 2017.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_
099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

1088 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

[43] Y. Zhang et al., “ParaBox: Exploiting parallelism for virtual network
functions in service chaining,” in Proc. Symp. SDN Res. (SOSR), 2017,
pp. 143–149.

[44] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2017, pp. 43–56.

[45] Intel DPDK. Accessed: Apr. 9, 2017. [Online]. Available: http://
dpdk.org/

[46] HUGETLBFS Documentation. Apr. 9, 2017. [Online]. Available: https://
www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

[47] Address Space Layout Randomization. Accessed: Apr. 9, 2018.
[Online]. Available: https://www.kernel.org/doc/html/v4.13/security/
self-protection.html

[48] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” in Proc. ACM SIGCOMM, 2017, pp. 71–84.

[49] CFS Scheduler. Accessed: Apr. 9, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/scheduler/sched-design-
CFS.txt

[50] RT Scheduler. Accessed: Apr. 9, 2018. [Online]. Available: https://
www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

[51] pktgen-DPDK. Accessed: Apr. 9, 2017. [Online]. Available: http://
git.dpdk.org/apps/pktgen-dpdk/

[52] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. ACM
Conf. Internet Meas. Conf. (IMC), 2015, pp. 275–287.

[53] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards
optimal adaptation of NFV packet processing to modern CPU memory
architectures,” in Proc. 2nd Workshop Cloud-Assisted Netw. (CAN),
2017, pp. 7–12.

[54] Netbricks Repository. Accessed: Jan. 9, 2018. [Online]. Available:
https://github.com/NetSys/NetBricks

[55] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 123–137, Sep. 2015.

[56] (2018). Clearwater IMS, Project Documentation. Accessed:
Apr. 9, 2019. [Online]. Available: https://media.readthedocs.org/pdf/
clearwater/latest/clearwater.pdf

[57] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C. Ma,
“Ownership passing: Efficient distributed memory programming on
multi-core systems,” ACM SIGPLAN Notices, vol. 48, no. 8,
pp. 177–186, 2013.

[58] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
May 2015, pp. 5–16.

[59] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (net-
work balancing act): A high-performance packet processing frame-
work for heterogeneous processors,” in Proc. 10th Eur. Conf. Comput.
Syst. (EuroSys), 2015, pp. 22:1–22:14.

[60] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park,
“mOS: A reusable networking stack for flow monitoring middleboxes,”
in Proc. USENIX NSDI, 2017, pp. 113–129.

[61] R. Kawashima and H. Matsuo, “A generic and efficient local service
function chaining framework for user VM-dedicated micro-VNFs,”
IEICE Trans. Commun., vol. E100.B, no. 11, pp. 2017–2026, 2017.

[62] A. Madhavapeddy et al., “Unikernels: Library operating systems for the
cloud,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 461–472, Apr. 2013.

[63] P. L. Ventre et al., “On the fly orchestration of unikernels: Tuning
and performance evaluation of virtual infrastructure managers,” IEEE
Trans. Cloud Comput., early access, Nov. 20, 2018, doi: 10.1109/
TCC.2018.2882505.

[64] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource require-
ments,” IEEE Trans. Netw. Service Manage., vol. 14, no. 1, pp. 106–120,
Mar. 2017.

[65] J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling of
virtualized, distributed service chains: A case study of IMS,” IEEE J. Sel.
Areas Commun., vol. 35, no. 11, pp. 2501–2511, Nov. 2017.

[66] M. Taqi Raza, S. Lu, M. Gerla, and X. Li, “Refactoring network
functions modules to reduce latencies and improve fault tolerance in
NFV,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2275–2287,
Oct. 2018.

Shihabur Rahman Chowdhury (Student Member,
IEEE) received the B.Sc. degree in computer sci-
ence and engineering from BUET in 2009. He is
currently pursuing the Ph.D. degree with the David
R. Cheriton School of Computer Science, University
of Waterloo. His research interests include virtu-
alization and softwarization of computer networks.
He was a co-recipient of the Best Paper Award
at the IEEE/ACM/IFIP CNSM 2019, the IEEE
NetSoft 2019, and the IEEE/ACM/IFIP CNSM
2017 conferences.

Anthony received the bachelor’s degree in com-
puter science from NCTU, Taiwan, in 2015, and
the M.Math. degree in computer science from the
University of Waterloo, Canada, in 2018. He is cur-
rently a Software Engineer at Huawei Technologies
Canada. His research interests include network soft-
warization and cloud computing. He was a recipient
of the Mitacs Globalink Research Award in 2018.

Haibo Bian received the B.S.E. degree from Zhe-
jiang University, China, in 2016, and the M.Math.
degree from the David R. Cheriton School of
Computer Science, University of Waterloo, Canada,
in 2019. He is currently a Software Engineer at
Bioinformatics Solutions Inc. His research interests
include network function virtualization, cybersecu-
rity, and machine learning.

Tim Bai received the B.Math. and M.Math. degrees
from the David R. Cheriton School of Computer Sci-
ence, University of Waterloo, Canada, in 2019 and
2017, respectively. He is currently a Software Engi-
neer at Desire2Learn Canada. His current research
interests include machine learning, cybersecurity,
and network softwarization.

Raouf Boutaba (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from the Uni-
versity of Pierre and Marie Curie, Paris, in 1990 and
1994, respectively. He is currently a Professor of
computer science and a University Research Chair
at the University of Waterloom, and also an INRIA
International Chair at INRIA Nancy. His research
interests include resource and service management
in networks and distributed systems. He is a Fel-
low of the Royal Society of Canada, Engineering
Institute of Canada, and Canadian Academy of Engi-

neering. He is the Founding Editor-in-Chief of the IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT from 2007 to 2010, and is in the
editorial board of many other journals.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 11,2020 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2018.2882505
http://dx.doi.org/10.1109/TCC.2018.2882505

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

